Next Issue
Volume 15, November
Previous Issue
Volume 15, September
 
 

Insects, Volume 15, Issue 10 (October 2024) – 94 articles

Cover Story (view full-size image): Understanding the distribution of plants and animals is a major focus of ecologists and is of increasing importance as temperatures rise and the world’s climate becomes more unpredictable. One large-scale pattern that has often been observed is that the number of species in a group of interest is greater in the tropics than towards the poles. Species also tend to decline in number at higher elevations. We examined mayfly species distributions at 243 sites throughout New Zealand to see whether their presence and composition were related to latitude and altitude. We found that the number of mayfly species declined at higher latitudes and elevations. Furthermore, the species composition of communities became increasingly different with distance along the latitudinal gradient. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 5580 KiB  
Article
Impact of Climate Change on Peach Fruit Moth Phenology: A Regional Perspective from China
by Haotian Bian, Shengjun Yu, Wenzhuo Li, Jing Lu, Chengmin Jia, Jianxiang Mao, Qingqing Fu, Yunzhe Song and Pumo Cai
Insects 2024, 15(10), 825; https://doi.org/10.3390/insects15100825 - 21 Oct 2024
Viewed by 905
Abstract
It is widely recognized that the phenology of insects, of which the life activities are closely tied to temperature, is shifting in response to global climate warming. This study aimed to investigate the impacts of climate change on the phenology of Carposina sasakii [...] Read more.
It is widely recognized that the phenology of insects, of which the life activities are closely tied to temperature, is shifting in response to global climate warming. This study aimed to investigate the impacts of climate change on the phenology of Carposina sasakii Matsumura, 1900 (Lepidoptera: Carposinidae) across large temporal and spatial scales, through collecting and systematically analyzing historical data on the pest’s occurrence and population dynamics in China. The results showed that for overwintering adults, the first occurrence date in eastern, northwestern, and northern China has significantly advanced, along with the population peak in eastern and northwestern China. At the provincial level, the population peak date in Shandong province has also moved significantly earlier, as well as the population peak date in Shandong and Shaanxi and the end occurrence date in Ningxia. However, the population peak date in Jilin has experienced a delayed trend. For first-generation adults, the first occurrence date in northeastern, eastern, and central China has notably advanced, while the first appearance date in northwestern and northern China has significantly delayed. Additionally, the population peak in northwestern China has experienced significant delays, along with the final occurrence in northeastern and northwestern China. At the provincial level, the first occurrence date in Liaoning, Shandong, and Shanxi has significantly advanced, while Hebei has demonstrated a significant delay. The population peak time in Gansu and Shaanxi has displayed significant delays, and the end occurrence date in Liaoning, Shanxi, and Shaanxi has also shown significant delays. Furthermore, these findings integrated with the Pearson correlation results reveal spatial heterogeneity in C. sasakii’s phenological responses to climate warming at both regional and provincial scales. The phenology of C. sasakii and their changing patterns with climate warming vary by geographical location. This study provides valuable information for the future monitoring, prediction, and prevention of peach fruit moths in the context of climate warming. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 3196 KiB  
Article
Courtship Behavior of Adult Spodoptera frugiperda (Lepidoptera: Noctuidae) Observed Using Track 3D Trajectory Tracking
by Jie Liu, Mariam Tallat, Gensong Wang, Zhi Li, Guoping Li, Xincheng Zhao and Hongqiang Feng
Insects 2024, 15(10), 824; https://doi.org/10.3390/insects15100824 - 20 Oct 2024
Viewed by 1079
Abstract
Spodoptera frugiperda, also known as the fall armyworm (FAW), is classified by the Food and Agriculture Organization of the United Nations (FAO) as a major agricultural pest. By gaining a more nuanced understanding of the fall armyworm’s courtship behavior, simpler and more [...] Read more.
Spodoptera frugiperda, also known as the fall armyworm (FAW), is classified by the Food and Agriculture Organization of the United Nations (FAO) as a major agricultural pest. By gaining a more nuanced understanding of the fall armyworm’s courtship behavior, simpler and more environmentally friendly methods of controlling this pest can be developed. This study used the Track 3D system to meticulously record and describe the activity characteristics and patterns of adult males and females during courtship. The results show that adult FAWs engaged in a variety of activities during courtship that were either discrete (flying, flapping, moving, and crawling), continuous (flapping + flying, flapping + crawling, and flying + crawling), or combined (flapping + touching + flapping; flying + touching + flying). Flying and flapping were the most common activities, with observed flight patterns consisting of parabolic, circular, and zigzag trajectories. The peak activity times for adult FAWs are mainly concentrated at 11:00 p.m., 3:00 a.m., and 5:00 a.m., providing fundamental data for the precise attraction and control of adult FAWs at later stages. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

22 pages, 1434 KiB  
Review
Major Insect Pests of Sweet Potatoes in Brazil and the United States, with Information on Crop Production and Regulatory Pest Management
by Maria J. S. Cabral, Muhammad Haseeb and Marcus A. Soares
Insects 2024, 15(10), 823; https://doi.org/10.3390/insects15100823 - 20 Oct 2024
Viewed by 1288
Abstract
The sweet potato [Ipomoea batatas (L.) Lam] is considered one of the most important crops in the world as food, fodder, and raw material for starch and alcohol production. Sweet potato consumption and demand for its value-added products have increased significantly over [...] Read more.
The sweet potato [Ipomoea batatas (L.) Lam] is considered one of the most important crops in the world as food, fodder, and raw material for starch and alcohol production. Sweet potato consumption and demand for its value-added products have increased significantly over the past two decades, leading to new cultivars, expansion in acreage, and increased demand in the United States and its export markets. Due to its health benefits, sweet potato production has multiplied over the past decade in Brazil, promoting food security and economic development in rural areas. Their adaptability and nutritional value make them a food of great importance for Brazil. As pest attacks and disease infection are the main limiting aspects that often cause yield loss and quality degradation in sweet potatoes, there is a great demand to develop effective defense strategies to maintain productivity. There is a critical need for research into non-pesticide control approaches that can provide safe, cost-effective, sustainable, and environmentally friendly pest and disease management techniques. Pests which feed on roots have trade implications worldwide. For example, sweet potato tuber shipments infested with the sweet potato weevil are generally not allowed for trade in North and South America. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 2950 KiB  
Article
Modelling Blow Fly (Diptera: Calliphoridae) Spatiotemporal Species Richness and Total Abundance Across Land-Use Types
by Madison A. Laprise, Alice Grgicak-Mannion and Sherah L. VanLaerhoven
Insects 2024, 15(10), 822; https://doi.org/10.3390/insects15100822 - 20 Oct 2024
Viewed by 1654
Abstract
Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, [...] Read more.
Geographic Information Systems provide the means to explore the spatial distribution of insect species across various land-use types to understand their relationship with shared or overlapping spatiotemporal resources. Blow fly species richness and total fly abundance were correlated among six land-use types (residential, commercial, waste, woods, roads, and agricultural crop types) and distance to streams. To generate multivariate models of species richness and total fly abundance, blow fly trapping sites were chosen across the land-use gradient of Windsor–Essex County (Ontario, Canada) using a stratified random sampling approach. Sampling occurred in mid-June (spring), late August (summer), and late October (fall). Spring species richness correlated highest to residential (−), woods (−), distance to streams (+), and tomato fields (+) in models across all three land-use buffer scale distances (0.5, 1, 2 km), with waste (+/−), roads (−), wheat/corn (−), and commercial (−) correlating at only two of the three scales. Spring total fly abundance correlated with all but one land-use variable across all buffer scale distances, but the distance to streams (+), followed by orchards/vineyards (+) exhibited the greatest importance to these models. Summer blow fly species richness correlated with roads (−) and commercial (+) across all buffer distances, whereas at two of three buffer distances wheat/corn (−), residential (+), distance to streams (+), waste (−), and orchards/vineyards (+) were also important. Summer total fly abundance correlated to models with distance to streams (+), orchards/vineyards (+), and sugar beets/other vegetables (+) at the 2 km scale. Species richness and total abundance models at the 0.5 km buffer distance exhibited the highest correlation, lowest root mean square error, and similar prediction error to those derived at larger buffer distances. This study provides baseline methods and models for future validation and expansion of species-specific knowledge regarding adult blow fly relationships with spatiotemporal resources across land-use types and landscape features. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

12 pages, 1859 KiB  
Article
Hand Warmer-Induced Hypoxia Accelerates Pest Control in Hermetic Storage
by Wenbo Li, John Stephen Yaninek and Dieudonne Baributsa
Insects 2024, 15(10), 821; https://doi.org/10.3390/insects15100821 - 20 Oct 2024
Viewed by 688
Abstract
Accelerating oxygen depletion during hermetic storage can minimize pest damage and preserve product quality. This study evaluated the effectiveness of hand warmers in accelerating hypoxia to control insect pests inside hermetic containers. We used one, two, or four hand warmers to deplete oxygen [...] Read more.
Accelerating oxygen depletion during hermetic storage can minimize pest damage and preserve product quality. This study evaluated the effectiveness of hand warmers in accelerating hypoxia to control insect pests inside hermetic containers. We used one, two, or four hand warmers to deplete oxygen in a 4-gallon hermetic jar with 4 kg of cowpea and cowpea bruchids, alongside a non-hermetic control with cowpea bruchids and no hand warmers. Oxygen levels, insect mortality, egg counts, seed moisture content, and germination rates were monitored over 2, 5, or 8 days of storage. Only the four hand warmers treatment reduced oxygen levels below 1% within 12 h and maintained them for up to 168 h. The other treatments did not achieve this level. Insect mortality was higher with more hand warmers and extended storage duration, reaching 100% after 5 and 8 days with four and two hand warmers, respectively. Similarly, increased hand warmers and extended storage durations reduced egg counts and adult emergence. The treatments did not affect the moisture content or germination rates of the stored cowpea seeds. Hand warmers proved effective in accelerating hypoxia during hermetic storage, resulting in high insect mortality and reduced reproduction, without compromising grain quality. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 9272 KiB  
Article
The Effect of Climate Change on Indicator Wetland Insects: Predicting the Current and Future Distribution of Two Giant Water Bugs (Hemiptera: Belostomatidae) in South Korea
by Seon Yi Kim, Changseob Lim, Ji Hyoun Kang and Yeon Jae Bae
Insects 2024, 15(10), 820; https://doi.org/10.3390/insects15100820 - 19 Oct 2024
Viewed by 1036
Abstract
Giant water bugs (Hemiptera: Belostomatidae) are top predators in wetland ecosystems, serving as biological indicators of the health of lentic ecosystems and as effective biological control agents for freshwater snails and mosquitoes. This study aimed to predict the current and future distribution of [...] Read more.
Giant water bugs (Hemiptera: Belostomatidae) are top predators in wetland ecosystems, serving as biological indicators of the health of lentic ecosystems and as effective biological control agents for freshwater snails and mosquitoes. This study aimed to predict the current and future distribution of two Korean giant water bugs, Appasus japonicus and Diplonychus esakii, under three climate change scenarios, contributing to the sustainable management of wetland ecosystems in South Korea. Using MaxEnt models, we employed seven climatic and three non-climatic variables to investigate the habitat preferences and distribution patterns of the species. The results revealed that A. japonicus is likely to experience a northward range contraction due to climate change, while D. esakii is predicted to expand its distribution northward without losing its current range. These responses may lead to occupancy turnover between the two species, potentially driving reassembly in aquatic organism community. Elevation was the primary factor influencing the distribution of A. japonicus, whereas annual mean temperature was the most informative variable for D. esakii, both factors derived under the current climate conditions. These findings suggest that both species are highly sensitive to climate change, with potential range shifts toward higher latitudes and elevations. This study provides insights into how climate change could impact two giant water bugs, thereby supporting future efforts to manage and conserve wetland ecosystems in this country. Full article
(This article belongs to the Special Issue Aquatic Insects: Diversity, Ecology and Evolution)
Show Figures

Figure 1

12 pages, 824 KiB  
Article
Spatial Aggregations of the Grey Field Slug Deroceras reticulatum Are Unstable Under Abnormally High Soil Moisture Conditions
by Claire S. V. Price, W. Edwin Harris, Emily Forbes and Keith F. A. Walters
Insects 2024, 15(10), 819; https://doi.org/10.3390/insects15100819 - 19 Oct 2024
Viewed by 821
Abstract
Deroceras reticulatum in arable fields display spatio-temporally stable slug patches that have been well documented under typical soil moisture conditions. The effect of abnormally high soil moisture on slug patch stability, however, is unknown. In this study, stepped gradient choice tests comparing soil [...] Read more.
Deroceras reticulatum in arable fields display spatio-temporally stable slug patches that have been well documented under typical soil moisture conditions. The effect of abnormally high soil moisture on slug patch stability, however, is unknown. In this study, stepped gradient choice tests comparing soil moisture levels of 50–125% soil capacity showed slug preferences for levels in a range near to 125%. Activity became erratic, however, when given a choice of high moisture levels (125–370%), potentially because slugs searched for preferred conditions. Slug spatial aggregation was investigated in 21 commercial fields in 2023/24, a season of extreme rainfall, and then compared to years exhibiting typical rainfall (2015–2018). Slug patches occurred in 27.2% of assessment visits to fields during 2023/24 compared to 96.4% in typical years, suggesting weather conditions leading to abnormally high soil moisture are significantly associated with the breakdown of slug spatial aggregation behaviour. Random forest models identified the weather predictors (precipitation, relative humidity, temperature) with the highest impact on slug distribution and relative abundance, with the assessment date and region also related to relative abundance. However, a complex of environmental parameters affects soil moisture content, and no statistically significant effects of individual weather predictors emerged. The results are discussed in relation to slug behaviour in the context of their impact on targeted slug treatments. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

10 pages, 1847 KiB  
Article
Species Diversity and Seasonal Abundance of Stomoxyinae (Diptera: Muscidae) and Tabanid Flies (Diptera: Tabanidae) on a Beef Cattle and a Buffalo Farm in Nakhon Si Thammarat Province, Southern Thailand
by Yotsapat Phetcharat, Tuempong Wongtawan, Punpichaya Fungwithaya, Jens Amendt and Narin Sontigun
Insects 2024, 15(10), 818; https://doi.org/10.3390/insects15100818 - 18 Oct 2024
Viewed by 721
Abstract
This study investigated species diversity and seasonal abundance of Stomoxyinae and tabanid flies, which are significant pests and vectors of animal pathogens, on a beef cattle and a buffalo farm in Nakhon Si Thammarat province, southern Thailand. During a one-year period from December [...] Read more.
This study investigated species diversity and seasonal abundance of Stomoxyinae and tabanid flies, which are significant pests and vectors of animal pathogens, on a beef cattle and a buffalo farm in Nakhon Si Thammarat province, southern Thailand. During a one-year period from December 2020 to November 2021, flies were collected using Nzi traps from 6 a.m. to 6 p.m. over three consecutive days each month, resulting in the capture of 1912 biting flies, representing seven Stomoxyinae and nine tabanid species. The five most prevalent species were Tabanus megalops, Haematobia irritans exigua, Stomoxys calcitrans, Stomoxys indicus, and Stomoxys uruma. Fly density was notably higher on the beef cattle farm compared to the buffalo farm, with most species peaking during the rainy season, except for H. i. exigua, which was more abundant during the dry season. This study also examined the influence of temperature, relative humidity, and rainfall on fly density, revealing species-specific patterns. These findings offer updated insights into species diversity and seasonal trends, providing critical baseline data essential for the development of effective control strategies aimed at mitigating the impact of these flies on livestock health. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

15 pages, 1370 KiB  
Article
A First Step Towards Black Soldier Fly Larvae (Diptera: Stratiomyidae) Welfare by Considering Dietary Regimes (Part I)
by Arianna Cattaneo, Simona Belperio, Luca Sardi, Giovanna Martelli, Eleonora Nannoni, Marco Meneguz and Sihem Dabbou
Insects 2024, 15(10), 817; https://doi.org/10.3390/insects15100817 - 18 Oct 2024
Cited by 1 | Viewed by 1318
Abstract
The insect farming sector is expanding, but knowledge of insect welfare is still limited. This article aims to optimize the dietary regime for “black soldier fly” (Hermetia illucens L., BSF) larvae by applying a holistic view of welfare. Four diets were tested: [...] Read more.
The insect farming sector is expanding, but knowledge of insect welfare is still limited. This article aims to optimize the dietary regime for “black soldier fly” (Hermetia illucens L., BSF) larvae by applying a holistic view of welfare. Four diets were tested: control (CONTR, commercial laying hen feed), vegetable (VEG), omnivorous (OMN), and carnivorous (MEAT) diet, conducting experiments at a large (2000 larvae) and small scale (100 larvae). Rearing parameters were calculated including the growth rate, substrate reduction, efficiency of conversion of digested food, waste reduction index, and survival rate. Chemical analyses were conducted on BSF larvae and the residual frass. While the MEAT diet appears to be non-well-performing for the larvae, the VEG diet performed comparably to the control diet. Interestingly, the OMN diet demonstrated improved efficiency when evaluating the growth process at both scales. The chemical composition of larvae and frass highlighted the nutritional adequacy of the OMN diet, with the BSF larvae showing adequate protein and lipid content without nutrient catabolism or signs of discomfort. Applying the five freedoms of Brambell’s report as a welfare standard for animal rearing and evaluating performance as an indirect indicator of welfare, the OMN diet appears to promote larval welfare in rearing practices. Full article
(This article belongs to the Special Issue Insect Rearing: Reserve Forces with Commercial and Ecological Values)
Show Figures

Graphical abstract

11 pages, 1517 KiB  
Article
Adaptability of the Soybean Aphid Aphis glycines (Hemiptera: Aphididae) to Temperature and Photoperiod in a Laboratory Experiment
by Bo Gao, Kaice Yang, Yifan Tian, Bing Bai, Zhenqi Tian and Jian Liu
Insects 2024, 15(10), 816; https://doi.org/10.3390/insects15100816 - 17 Oct 2024
Viewed by 743
Abstract
The soybean aphid, Aphis glycines Matsumura, 1917, is a crucial soybean pest. Cultivated soybean, Glycine max (Carl von Linné) Elmer Drew Merrill, 1917, and wild soybean, Glycine soja Philipp Franz von Siebold & Joseph Gerhard Zuccarini, 1843, are summer hosts of A. glycines [...] Read more.
The soybean aphid, Aphis glycines Matsumura, 1917, is a crucial soybean pest. Cultivated soybean, Glycine max (Carl von Linné) Elmer Drew Merrill, 1917, and wild soybean, Glycine soja Philipp Franz von Siebold & Joseph Gerhard Zuccarini, 1843, are summer hosts of A. glycines. In this study, the development, reproduction, and morphogenesis of A. glycines fed wild soybean (AgFW) were studied at different temperatures and photoperiods. The data were compared with that of A. glycines fed soybean (AgFS). At 20–29 °C, the adult lifespan of the first–third-generation AgFW was shorter than or equal to that of AgFS. Significant differences existed in the adult fecundity and intrinsic rate of increase between AgFW and AgFS. At a 10L:14D h photoperiod, males of AgFW were deposited earlier than, or as early as, males of AgFS. At 17 °C, the gynoparae of AgFW were deposited in proportions greater than or equal to those of AgFS. Based on these results, we concluded that the adaptability of AgFW and AgFS to temperature and photoperiod significantly differs. It is important to understand the life cycle of A. glycines in Harbin, northeast China, and formulate an integrated pest management strategy for A. glycines in the region. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

6 pages, 1517 KiB  
Brief Report
The Effect of Spinosad on the Oak Lace Bug Corythucha arcuata (Hemiptera: Tingidae)—A Preliminary Study Performed Under Laboratory Conditions
by Ciprian George Fora, Artúr Botond Csorba and Adalbert Balog
Insects 2024, 15(10), 815; https://doi.org/10.3390/insects15100815 - 16 Oct 2024
Viewed by 1659
Abstract
The effect of biopesticide compound spinosad in different concentrations was tested for the first time under laboratory conditions against the rapidly spreading forest pest, oak lace bug (Corythucha arcuata, Say 1832), and its effects were compared with the synthetic pesticide lambda-cyhalothrin. [...] Read more.
The effect of biopesticide compound spinosad in different concentrations was tested for the first time under laboratory conditions against the rapidly spreading forest pest, oak lace bug (Corythucha arcuata, Say 1832), and its effects were compared with the synthetic pesticide lambda-cyhalothrin. These results revealed a significant effect of spinosad at 2 mL/4 L and 2 mL/2 L water concentrations against C. arcuata nymphs. The mortality rate after 3 days was similar to synthetic insecticide effects and reached 94% and 98%, respectively. Overall, it can be concluded that spinosad is an effective biological method to control oak lace bug; treatments under field conditions should consider the high diversity of other insects in oak forests. Full article
(This article belongs to the Special Issue Invasive Pest Management and Climate Change—2nd Edition)
Show Figures

Figure 1

22 pages, 4376 KiB  
Article
Desert Ant (Melophorus bagoti) Dumpers Learn from Experience to Improve Waste Disposal and Show Spatial Fidelity
by Sudhakar Deeti and Ken Cheng
Insects 2024, 15(10), 814; https://doi.org/10.3390/insects15100814 - 16 Oct 2024
Viewed by 614
Abstract
The Central Australian red honey-pot ant Melophorus bagoti maintains non-cryptic ground-nesting colonies in the semi-desert habitat, performing all the activities outside the nest during the hottest periods of summer days. These ants rely on path integration and view-based cues for navigation. They manage [...] Read more.
The Central Australian red honey-pot ant Melophorus bagoti maintains non-cryptic ground-nesting colonies in the semi-desert habitat, performing all the activities outside the nest during the hottest periods of summer days. These ants rely on path integration and view-based cues for navigation. They manage waste by taking out unwanted food, dead nestmates, and some other wastes, typically depositing such items at distances > 5 m from the nest entrance, a process called dumping. We found that over multiple runs, dumpers headed in the same general direction, showing sector fidelity. Experienced ants dumped waste more efficiently than naive ants. Naive individuals, lacking prior exposure to the outdoor environment around the nest, exhibited much scanning and meandering during waste disposal. In contrast, experienced ants dumped waste with straighter paths and a notable absence of scanning behaviour. Furthermore, experienced dumpers deposited waste at a greater distance from the nest compared to their naive counterparts. We also investigated the navigational knowledge of naive and experienced dumpers by displacing them 2 m away from the nest. Naive dumpers were not oriented towards the nest in their initial trajectory at any of the 2 m test locations, whereas experienced dumpers were oriented towards the nest at all test locations. Naive dumpers were nest-oriented as a group, however, at the test location nearest to where they dumped their waste. These differences suggest that in red honey ants, learning supports waste disposal, with dumping being refined through experience. Dumpers gain greater spatial knowledge through repeated runs outside the nest, contributing to successful homing behaviour. Full article
(This article belongs to the Section Social Insects)
Show Figures

Figure 1

20 pages, 1160 KiB  
Article
Preference and Toxicity of Sulfoxaflor, Flupyradifurone, and Triflumezopyrim Bait against the Fire Ant Solenopsis invicta (Hymenoptera: Formicidae) and Their Efficacy under Field Conditions
by Jiefu Deng, Mei Yi, Mingrong Liang, Delong Tan, Weihui Bai, Cai Wang, Guiying Liu, Yijuan Xu, Yixiang Qi, Yongyue Lu and Lei Wang
Insects 2024, 15(10), 813; https://doi.org/10.3390/insects15100813 - 16 Oct 2024
Viewed by 755
Abstract
The red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) is native to South America; however, its introduction to other countries has caused serious biodiversity, agricultural, and public health problems. As toxic bait is an effective method to control fire ant populations, the [...] Read more.
The red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) is native to South America; however, its introduction to other countries has caused serious biodiversity, agricultural, and public health problems. As toxic bait is an effective method to control fire ant populations, the aim of this study was to determine the most effective concentration of sulfoxaflor, flupyradifurone, and triflumezopyrim as ingredients for baits against S. invicta under laboratory and field conditions. Sulfoxaflor, flupyradifurone, and triflumezopyrim had no effect on the feeding behavior of the fire ants. However, they significantly reduced the climbing, walking, and arrest abilities of the fire ant workers after 10 days of treatment, and insecticides were horizontally transferred from workers to alates or larvae. Specifically, sulfoxaflor and triflumezopyrim at 0.05% concentration were the most effective in exterminating fire ants. Sulfoxaflor and triflumezopyrim are nonrepellent and effective insecticides against S. invicta. Full article
(This article belongs to the Special Issue Biology, Physiological Ecology and Management of Invasive Ants)
Show Figures

Figure 1

18 pages, 5647 KiB  
Article
An Ecological Survey of Chiggers (Acariformes: Trombiculidae) Associated with Small Mammals in an Epidemic Focus of Scrub Typhus on the China–Myanmar Border in Southwest China
by Ru-Jin Liu, Xian-Guo Guo, Cheng-Fu Zhao, Ya-Fei Zhao, Pei-Ying Peng and Dao-Chao Jin
Insects 2024, 15(10), 812; https://doi.org/10.3390/insects15100812 - 16 Oct 2024
Viewed by 773
Abstract
Chiggers (chigger mites) are a group of tiny arthropods, and they are the exclusive vector of Orientia tsutsugamushi (Ot), the causative agent of scrub typhus (tsutsugamushi disease). Dehong Prefecture in Yunnan Province of southwest China is located on the China–Myanmar border and is [...] Read more.
Chiggers (chigger mites) are a group of tiny arthropods, and they are the exclusive vector of Orientia tsutsugamushi (Ot), the causative agent of scrub typhus (tsutsugamushi disease). Dehong Prefecture in Yunnan Province of southwest China is located on the China–Myanmar border and is an important focus of scrub typhus. Based on the field surveys in Dehong between 2008 and 2022, the present paper reports the infestation and ecological distribution of chiggers on the body surface of rodents and other sympatric small mammals (shrews, tree shrews, etc.) in the region for the first time. The constituent ratio (Cr), prevalence (PM), mean abundance (MA), and mean intensity (MI) were routinely calculated to reflect the infestation of small-mammal hosts with chiggers. Additionally, the species richness (S), Shannon–Wiener diversity index (H), Simpson dominance index (D), and Pielou’s evenness index (E) were calculated to illustrate the chigger community structure. Preston’s log-normal model was used to fit the theoretical curve of species abundance distribution, and the Chao 1 formula was used to roughly estimate the expected total species. The “corrplot” package in R software (Version 4.3.1) was used to analyze interspecific relationships, and the online drawing software was used to create a chord diagram to visualize the host–chigger associations. From 1760 small-mammal hosts, a total of 9309 chiggers were identified as belonging to 1 family, 16 genera, and 117 species, with high species diversity. The dominant chigger species were Leptotrombidium deliense, Walchia ewingi, and Gahrliepia longipedalis, with a total Cr = 47.65% (4436/9309), among which L. deliense is the most important vector of Ot in China. The overall infestation indexes (PM, MA, and MI) and community parameters (S, H, and E) of chiggers in the mountainous areas and outdoors were higher than those in the flatland areas and indoors, with an obvious environmental heterogeneity. Leptotrombidium deliense was the dominant species in the flatland and indoors, while G. longipedalis was the prevalent species in the mountainous and outdoor areas. The species abundance distribution of the chigger community conformed to log-normal distribution with the theoretical curve equation: S(R)=28e[0.23(R0)]2, indicating the existence of many rare species and only a few dominant species in the community. The expected total number of chigger species was roughly estimated to be 147 species, 30 more than the 117 species actually collected, suggesting that some uncommon species may have been missed in the sampling survey. The host–parasite association analysis revealed that one host species can harbor different chigger species, and one chigger species can parasitize different host species with low host specificity. A positive or negative correlation existed among different chigger species, indicating a cooperative or competitive interspecific relationship. The species diversity of chiggers is high in Dehong on the China–Myanmar border, and a large host sample is recommended to find more uncommon species. There is an obvious environmental heterogeneity of the chigger community, with different species diversity and dominant species in different environments. The low host specificity of chiggers and the occurrence of a large number of L. deliense in Dehong, especially in flatland areas and indoors, would increase the risk of persistent transmission of scrub typhus in the region. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

12 pages, 2167 KiB  
Article
Differentiation of Vespa velutina nigrithorax Colonies Using Volatile Organic Compound Profiles of Hornets and Nests
by Omaira de la Hera and Rosa María Alonso
Insects 2024, 15(10), 811; https://doi.org/10.3390/insects15100811 - 16 Oct 2024
Viewed by 805
Abstract
Vespa velutina (Lepeletier, 1836) (Hymenoptera: Vespidae) is a eusocial insect that lives in colonies of hundreds to thousands of individuals, which are divided into castes according to their task: queens, workers, and males. The proper functioning of the colony requires communication between the [...] Read more.
Vespa velutina (Lepeletier, 1836) (Hymenoptera: Vespidae) is a eusocial insect that lives in colonies of hundreds to thousands of individuals, which are divided into castes according to their task: queens, workers, and males. The proper functioning of the colony requires communication between the individuals that make up the colony. Chemical signals (pheromones) are the most common means of communication used by these insects to alarm and differentiate between individuals belonging or not to the colony. In this work, profiles of volatile organic compounds were obtained from the hornets and the external cover of four secondary nests located in the Basque Country. The obtained profiles were treated using chemometric tools. The grouping of hornets and nests according to the different colonies and geographical location was observed. In total, 37 compounds were found in common in hornets and nests. Most of them have been reported in the literature as belonging to different insects and plant species. This would corroborate the transfer of chemical compounds between the nest and the hornets’ nest and vice versa. This information could be applied to the development of more efficient control methods for this invasive species, such as attractive traps or baits containing the relevant compounds. Full article
(This article belongs to the Section Social Insects)
Show Figures

Graphical abstract

13 pages, 3254 KiB  
Article
Seed Coating with Thiamethoxam-Induced Plant Volatiles Mediates the Olfactory Behavior of Sitobion miscanthi
by Jiacong Sun, Yonggang Liu, Shaodan Fei, Yixuan Wang, Jinglong Liu and Haiying Zhang
Insects 2024, 15(10), 810; https://doi.org/10.3390/insects15100810 - 16 Oct 2024
Viewed by 947
Abstract
Pesticides can induce target plants to release odors that are attractive or repellent to their herbivore insects. But, to date, the activity of volatile organic compounds (VOCs), singly or as mixtures, which play a crucial role in the olfactory behavior of herbivore insects, [...] Read more.
Pesticides can induce target plants to release odors that are attractive or repellent to their herbivore insects. But, to date, the activity of volatile organic compounds (VOCs), singly or as mixtures, which play a crucial role in the olfactory behavior of herbivore insects, remains unclear. The objective of our research was to investigate the impact of thiamethoxam (TMX), a pesticide, on the emission of odors by wheat plants, and how these odors influence the behavior of grain aphids (Sitobion miscanthi). S. miscanthi showed a greater repellent response to the volatiles emitted by Thx-induced plants compared to those emitted by uncoated plants. Using gas chromatography–mass spectrometry (GCMS), we discovered that TMX greatly induced the release of VOCs in wheat plants. For instance, the levels of Bornyl acetate, 2-Oxepanone, Methyl acrylate, Cyclohexene, α-Pinene, and 1-Nonanol in coated wheat plants were significantly higher as compared to uncoated wheat plants. Moreover, varying concentrations also had an impact on the olfactory behavior of S. miscanthi. For instance, Cyclohexene exhibited clear attractiveness to aphids at concentrations of 100 μL/mL, whereas it displayed evident repellent properties at concentrations of 1 μL/mL and 10 μL/mL. These new findings demonstrate how TMX-induced VOCs affect the behavior of S. miscanthi and could help in developing innovative approaches to manage aphids by manipulating the emission of plant volatiles. Furthermore, these findings can also be utilized to evaluate substances that either attract or repel aphids, with the aim of implementing early monitoring and environmentally friendly methods to manage aphids, while simultaneously impeding the spread of viruses. Full article
(This article belongs to the Special Issue Biology and Molecular Mechanisms of Plant-Aphid Interactions)
Show Figures

Graphical abstract

14 pages, 1920 KiB  
Article
Energy Reserve Allocation in the Trade-Off between Migration and Reproduction in Fall Armyworm
by Chuan-Feng Xu, Peng-Cheng Liu, Jason W. Chapman, Karl R. Wotton, Guo-Jun Qi, Yu-Meng Wang and Gao Hu
Insects 2024, 15(10), 809; https://doi.org/10.3390/insects15100809 - 16 Oct 2024
Viewed by 917
Abstract
Striking a trade-off between migration and reproduction becomes imperative during long-range migration to ensure proper energy allocation. However, the mechanisms involved in this trade-off remain poorly understood. Here, we used a takeoff assay to distinguish migratory from non-migratory individuals in the fall armyworm, [...] Read more.
Striking a trade-off between migration and reproduction becomes imperative during long-range migration to ensure proper energy allocation. However, the mechanisms involved in this trade-off remain poorly understood. Here, we used a takeoff assay to distinguish migratory from non-migratory individuals in the fall armyworm, which is a major migratory insect worldwide. Migratory females displayed delayed ovarian development and flew further and faster than non-migratory females during tethered flight. Transcriptome analyses demonstrated an enrichment of fatty acid genes across successive levels of ovarian development and different migratory behaviors. Additionally, genes with roles in phototransduction and carbohydrate digestion along with absorption function were enriched in migratory females. Consistent with this, we identified increased abdominal lipids in migratory females that were mobilized to supply energy to the flight muscles in the thorax. Our study reveals that the fall armyworm faces a trade-off in allocating abdominal triglycerides between migration and reproduction during flight. The findings provide valuable insights for future research on this trade-off and highlight the key energy components involved in this strategic balance. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1920 KiB  
Article
Invasive Ant Detection: Evaluating Honeybee Learning and Discrimination Abilities for Detecting Solenopsis invicta Odor
by Suwimol Chinkangsadarn and Lekhnath Kafle
Insects 2024, 15(10), 808; https://doi.org/10.3390/insects15100808 - 15 Oct 2024
Viewed by 1040
Abstract
Invasive red imported fire ants (Solenopsis invicta) create a serious threat to public safety, agriculture, biodiversity, and the local economy, necessitating early detection and surveillance, which are currently time-consuming and dependent on the inspector’s expertise. This study marks an initial investigation [...] Read more.
Invasive red imported fire ants (Solenopsis invicta) create a serious threat to public safety, agriculture, biodiversity, and the local economy, necessitating early detection and surveillance, which are currently time-consuming and dependent on the inspector’s expertise. This study marks an initial investigation into the potential of honeybees (Apis mellifera) to detect and discriminate the odor of S. invicta through the olfactory conditioning of proboscis extension responses. Deceased S. invicta were used as conditioned stimuli to ensure relevance to non-infested areas. The results showed that the bees rapidly learned to respond to deceased ant odors, with response levels significantly increasing at higher odor intensities. Bees exhibited generalization across the odors of 25 minor workers, 21 median workers, 1 major worker, and 1 female alate. When conditioned with deceased ant odors, bees effectively recognized live ants, particularly when trained on a single minor worker. Discrimination abilities varied by species and were higher when S. invicta was paired with Polyrhachis dives and Nylanderia yaeyamensis, and lower with S. geminata, Pheidole rabo, and Pheidole fervens. Notably, discrimination improved significantly with the application of latent inhibition. These findings suggest that trained honeybees have the potential to detect S. invicta. Further refinement of this approach could enhance its effectiveness for detection and surveillance. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 2556 KiB  
Article
Impact of Zinnia elegans Cultivation on the Control Efficacy and Distribution of Aphidius colemani Viereck (Hymenoptera: Braconidae) against Aphis gossypii Glover (Hemiptera: Aphididae) in Cucumber Greenhouses
by Eun-Jung Han, Sung-Hoon Baek and Jong-Ho Park
Insects 2024, 15(10), 807; https://doi.org/10.3390/insects15100807 - 15 Oct 2024
Viewed by 688
Abstract
This study aimed to evaluate the enhancement of A. gossypii control by A. colemani when Z. elegans was planted as a companion crop in cucumber greenhouses. The density and spatial distribution of A. gossypii and parasitized mummies were investigated across three treatment plots: [...] Read more.
This study aimed to evaluate the enhancement of A. gossypii control by A. colemani when Z. elegans was planted as a companion crop in cucumber greenhouses. The density and spatial distribution of A. gossypii and parasitized mummies were investigated across three treatment plots: (1) the simultaneous application of A. colemani and cultivation of Z. elegans (parasitoid-zinnia plot); (2) the application of A. colemani alone (parasitoid plot); and (3) a control plot (no application of both). A. gossypii maintained low densities in the parasitoid–zinnia plots, while its densities in the parasitoid plots initially decreased but rapidly increased thereafter. The spatial distribution patterns of A. gossypii and parasitized mummies showed similar trends across treatments. However, the parasitism rate of A. gossypii exhibited random distribution in parasitoid and control plots, while showing uniform distribution in the parasitoid–zinnia treatment. These results supported the idea that cultivating Z. elegans alongside cucumber could enhance the effectiveness of A. colemani as a biocontrol agent against A. gossypii, highlighting the importance of such companion planting in pest management strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

11 pages, 1651 KiB  
Article
Influence of Temperature and Host Plant on the Digestion of Frankliniella intonsa (Trybom) Revealed by Molecular Detection
by Keqing Yang, Dongyin Han, Jian Wen, Changshou Liang, Canlan Zhan, Yiyangyang You, Yueguan Fu, Lei Li and Zhengpei Ye
Insects 2024, 15(10), 806; https://doi.org/10.3390/insects15100806 - 15 Oct 2024
Viewed by 713
Abstract
Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae) is an important type of thrip and a polyphagous pest, which poses a serious threat to many crops, especially those in tropical regions of China. Its feeding behavior and the damage caused vary among different host plant species [...] Read more.
Frankliniella intonsa (Trybom) (Thysanoptera: Thripidae) is an important type of thrip and a polyphagous pest, which poses a serious threat to many crops, especially those in tropical regions of China. Its feeding behavior and the damage caused vary among different host plant species and are affected by ambient temperature and plant nutrients as well. The digestion rate is an important index for directly observing the digestion process, but there have been no studies directly measuring the digestion in thrips under the influence of different temperatures and host plants. Here, the digestion rate of F. intonsa was assessed by using a molecular diagnostic tool. We also determined the nutrient content in three host plant (mango, cowpea, and pepper), including soluble proteins, free fatty acids, soluble sugars, and water. The results showed that the high and low temperatures (16 °C and 32 °C) both seemed to accelerate the digestion of F. intonsa compared to the optimal temperature (26 °C) and the protein content of plants played an important role in the digestive response of F. intonsa to temperature changes. The findings can help reveal the feeding damage caused by F. intonsa to different plants and help to better understand its feeding ecology, according to its interaction with the host plant. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 1575 KiB  
Article
Navigational Signals for Insect and Slug Parasitic Nematodes: The Role of Ascorbate–Glutathione System and Volatiles Released by Insect-Damaged Sweet Pepper Roots
by Žiga Laznik, Mitja Križman, Jure Zekič, Mihaela Roškarič, Stanislav Trdan and Andreja Urbanek Krajnc
Insects 2024, 15(10), 805; https://doi.org/10.3390/insects15100805 - 15 Oct 2024
Viewed by 1062
Abstract
This study of underground multitrophic communication, involving plant roots, insects, and parasitic nematodes, is an emerging field with significant implications for understanding plant–insect–nematode interactions. Our research investigated the impact of wireworm (Agriotes lineatus L. [Coleoptera: Elateridae]) infestations on the ascorbate–glutathione system in [...] Read more.
This study of underground multitrophic communication, involving plant roots, insects, and parasitic nematodes, is an emerging field with significant implications for understanding plant–insect–nematode interactions. Our research investigated the impact of wireworm (Agriotes lineatus L. [Coleoptera: Elateridae]) infestations on the ascorbate–glutathione system in sweet pepper (Capsicum annuum L.) plants in order to study the potential role in root-exudate-mediated nematode chemotaxis. We observed that an A. lineatus infestation led to a decrease in leaf ascorbate levels and an increase in root ascorbate, with corresponding increases in the glutathione content in both roots and leaves. Additionally, a pigment analysis revealed increased carotenoid and chlorophyll levels and a shift towards a de-epoxidized state in the xanthophyll cycle. These changes suggest an individual and integrated regulatory function of photosynthetic pigments accompanied with redox modifications of the ascorbate–glutathione system that enhance plant defense. We also noted changes in the root volatile organic compound (VOC). Limonene, methyl salicylate, and benzyl salicylate decreased, whereas hexanal, neoisopulegol, nonanal, phenylethyl alcohol, m-di-tert-butylbenzene, and trans-β-ionone increased in the roots of attacked plants compared to the control group. Most notably, the VOC hexanal and amino acid exudate cysteine were tested for the chemotaxis assay. Nematode responses to chemoattractants were found to be species-specific, influenced by environmental conditions such as temperature. This study highlights the complexity of nematode chemotaxis and suggests that VOC-based biological control strategies must consider nematode foraging strategies and environmental factors. Future research should further explore these dynamics to optimize nematode management in agricultural systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 8730 KiB  
Article
Sublethal Effects of α-Cypermethrin on the Behavioral Asymmetries and Mating Success of Alphitobius diaperinus
by Demeter Lorentha S. Gidari, Nickolas G. Kavallieratos and Maria C. Boukouvala
Insects 2024, 15(10), 804; https://doi.org/10.3390/insects15100804 - 15 Oct 2024
Viewed by 962
Abstract
Sublethal exposure to insecticides can adversely impact various biological and behavioral characteristics of insects. Although α-cypermethrin has been previously tested for its effects on control of Alphitobius diaperinus, there is no knowledge about the effect of this insecticide on its behavioral asymmetries [...] Read more.
Sublethal exposure to insecticides can adversely impact various biological and behavioral characteristics of insects. Although α-cypermethrin has been previously tested for its effects on control of Alphitobius diaperinus, there is no knowledge about the effect of this insecticide on its behavioral asymmetries and mating success. Μales at all exposures (control, LC10, and LC30), that first approached their mate, showed right-biased tendency (approached their mate from their right side) in mate recognition. Females, however, showed variation in this behavior between the three exposures. Right-biased tendency of males in all treatment scenarios led to a higher percentage of successful copulations compared to the three other directions. For males that first approached their mate, the insecticide did not affect their lateralization of the first approach but did affect their copulation success. The duration of copulation time was reduced after the exposure to the insecticide, with the longest duration noted in the control females (63.0 s) and the lowest in the α-cypermethrin LC30 females (46.9 s). Moreover, at the α-cypermethrin LC10 exposure, mate recognition time was reduced, as opposed to α-cypermethrin LC30 exposure where mate recognition time was increased. These results can be further utilized to uncover the behavioral impacts of insecticides, enhancing the effectiveness of pest management in warehouses and poultry production facilities. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 2545 KiB  
Article
Functional Response of Four Phytoseiid Mites to Eggs and First-Instar Larvae of Western Flower Thrips, Frankliniella occidentalis
by Viet Ha Nguyen, Ziwei Song, Duc Tung Nguyen, Thomas Van Leeuwen and Patrick De Clercq
Insects 2024, 15(10), 803; https://doi.org/10.3390/insects15100803 - 14 Oct 2024
Viewed by 758
Abstract
The predation capacity and functional responses of adult females of the phytoseiid mites Amblyseius largoensis (Muma), Proprioseiopsis lenis (Corpuz and Rimando), Paraphytoseius cracentis (Corpuz and Rimando), and Amblyseius swirskii (Athias-Henriot) were studied on eggs and first instars of the western flower thrips, Frankliniella [...] Read more.
The predation capacity and functional responses of adult females of the phytoseiid mites Amblyseius largoensis (Muma), Proprioseiopsis lenis (Corpuz and Rimando), Paraphytoseius cracentis (Corpuz and Rimando), and Amblyseius swirskii (Athias-Henriot) were studied on eggs and first instars of the western flower thrips, Frankliniella occidentalis (Pergande), in the laboratory at 25 °C and 30 °C. At both temperatures, the functional response of all four phytoseiid mites was type II to first instars of the thrips. In contrast, when offered thrips eggs, the functional response was type III. At both temperatures tested, A. swirskii had the highest mean daily consumption of first-instar F. occidentalis, followed by A. largoensis, P. cracentis, and P. lenis. Amblyseius largoensis had the shortest handling time and the highest maximum attack rate when first-instar thrips were the prey. When fed on thrips eggs, A. largoensis had the highest mean daily consumption, followed by A. swirskii, P. cracentis, and P. lenis. On thrips eggs, A. swirskii showed the shortest handling time and highest maximum attack rate. Our findings indicate that all four phytoseiids had a better ability to prey on first-instar larvae of F. occidentalis compared to thrips eggs. At 25 and 30 °C, A. largoensis was the better predator on thrips larvae, whereas A. swirskii was superior in consuming eggs of F. occidentalis. Proprioseiopsis lenis was the inferior predator on both thrips larvae and eggs compared to the other phytoseiids tested. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 573 KiB  
Article
Assessment of Phosphine Resistance in Major Stored-Product Insects in Greece Using Two Diagnostic Protocols
by Paraskevi Agrafioti, Efstathios Kaloudis, Dimitrios Kateris and Christos G. Athanassiou
Insects 2024, 15(10), 802; https://doi.org/10.3390/insects15100802 - 14 Oct 2024
Viewed by 618
Abstract
Post-harvest losses due to insect infestation and spoilage by bacteria and molds pose significant challenges to global cereal production. This study investigates the prevalence of resistance to phosphine, a commonly used grain protection agent, in stored-grain insects. The research, conducted in various storage [...] Read more.
Post-harvest losses due to insect infestation and spoilage by bacteria and molds pose significant challenges to global cereal production. This study investigates the prevalence of resistance to phosphine, a commonly used grain protection agent, in stored-grain insects. The research, conducted in various storage facilities across Greece, examined 53 populations of key stored-product insect species. Two assessment protocols, namely, dose–response (at 50–1000 ppm for 3 days exposure) and CORESTA (at 300 ppm for 6 days), were used herein to estimate phosphine resistance. The results showed that 13.3% of field populations were resistant, and mortality rates increased with higher phosphine concentrations. Specifically, according to the dose–response protocol, among the 53 field populations, 37.7% were found to be resistant to phosphine, namely, two populations of O. surinamensis, one of S. oryzae, seven of T. confusum, one of C. ferrugineus, one of T. castaneum, and all populations of R. dominica, whereas, according to the CORESTA protocol, all populations were found to be susceptible to phosphine. The observed resistance patterns differ from those reported in other regions of the world. The study highlights the importance of tailored fumigation strategies, considering insect species varying susceptibility to phosphine. It recommends the use of best management practices and rotational strategies, such as combining phosphine with other methods, to develop effective resistance management plans. The results provide valuable insights into the dynamic landscape of phosphine resistance in stored-product insects and suggest potential avenues for further research and control measures. Full article
(This article belongs to the Collection Integrated Management and Impact of Stored-Product Pests)
Show Figures

Figure 1

13 pages, 279 KiB  
Article
Effects of High-Temperature Stress on Biological Characteristics of Coccophagus japonicus Compere
by Ying Sun, Meijuan Yang, Zhengpei Ye, Junhong Zhu, Yueguan Fu, Junyu Chen and Fangping Zhang
Insects 2024, 15(10), 801; https://doi.org/10.3390/insects15100801 - 14 Oct 2024
Viewed by 693
Abstract
The parasitoid, Coccophagus japonicus Compere (Hymenoptera: Aphelinidae) is a dominant natural enemy of Parasaissetia nigra Nietner (Hemiptera: Coccidae), an important pest of rubber trees. Much of Chinese rubber is cultivated in hotter regions such as Yunnan and Hainan, exposing applied parasitoids to non-optimal [...] Read more.
The parasitoid, Coccophagus japonicus Compere (Hymenoptera: Aphelinidae) is a dominant natural enemy of Parasaissetia nigra Nietner (Hemiptera: Coccidae), an important pest of rubber trees. Much of Chinese rubber is cultivated in hotter regions such as Yunnan and Hainan, exposing applied parasitoids to non-optimal temperatures. Therefore, C. japonicus must adapt to avoid temperature-related impacts on survival and population expansion. In this study, we monitored the survival rate, developmental duration, parasitism rate, and fecundity of C. japonicus during short-term exposures to 36 °C, 38 °C, and 40 °C for 2, 4, and 6 h, as well as continuous exposures to 32 °C and 34 °C for 3 days. The results show that short-term exposure to high-temperature stress leads to decreased survival rate of C. japonicus larvae and pupae, with survival rates declining as temperature and duration increase. High-temperature stress also delayed insect development, reduced mature egg production, shortened the body length of newly emerged females, and decreased female lifespans. Moreover, continuous high-temperature stress was found to significantly impact the development and reproduction of C. japonicus. Compared with the CK (27 °C), 3 d of continuous exposure to 34 °C prolonged developmental duration, shortened the body length and lifespan of newly emerged females, reduced survival rate and single female fecundity, and significantly decreased offspring numbers and parasitism rates. Temperatures of 36 °C, 38 °C, and 40 °C decreased the mortality time of adult females to 28.78, 16.04, and 7.91 h, respectively. Adverse temperatures also affected the insects’ functional response, with 8 h of stress at 36 °C, 38 °C, and 40 °C causing the control efficiency of C. japonicus on P. nigra. This level of stress in the parasitoids was found to reduce the immediate attack rate and search effect, prolong processing time, and attenuate interference between small prey. Parasitoid efficiency was lowest following exposure to 40 °C. In this study, we determined the range of high temperatures that C. japonicus populations can tolerate under short- or long-term stress, providing guidance for future field applications. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
16 pages, 5433 KiB  
Article
The Effect of Hive Type on Colony Homeostasis and Performance in the Honey Bee (Apis mellifera)
by Rola Kutby, Barbara Baer-Imhoof, Samuel Robinson, Lucy Porter and Boris Baer
Insects 2024, 15(10), 800; https://doi.org/10.3390/insects15100800 - 14 Oct 2024
Viewed by 1502
Abstract
The colonies of honey bees are mostly sessile organisms. Consequently, the type of nest boxes that beekeepers provide to their bees should impact a colony’s ability to maintain homeostasis, which is a key determinant of performance and fitness. Here, we used European honey [...] Read more.
The colonies of honey bees are mostly sessile organisms. Consequently, the type of nest boxes that beekeepers provide to their bees should impact a colony’s ability to maintain homeostasis, which is a key determinant of performance and fitness. Here, we used European honey bees (Apis mellifera) and provided them with two hive setups widely used and known as Langstroth and Warré. We compared colony performance in a Mediterranean climate for five months from late spring to early autumn, which covered the most active time of bees and included periods of heat and drought. We found that irrespective of hive type or season, honey bees kept hive temperature and humidity within a remarkably narrow range. Nevertheless, the hive type impacted the daily fluctuations in temperature and humidity. In Warré hives, where bees have more autonomy to build and maintain their combs, we found that bees were able to reduce daily fluctuations in temperature and humidity and kept both measures closer to the overall average. This increase in colony homeostasis found in Warré hives negatively correlated with other hive performance indicators, such as immunocompetence. We conclude that different hive types affect key areas, such as the central part of the colony with frames of developing brood or the queen, which are the most susceptible individuals. This implies that climatic changes resulting in extreme weather events are expected to impact colony performance and fitness, especially in non-managed honey bees that are limited by available nesting sites. For managed bees, adaptations to existing hive setups could be provided to help bees minimize the effects of abiotic stress. Full article
(This article belongs to the Section Social Insects)
Show Figures

Figure 1

12 pages, 1756 KiB  
Article
Host Status of Persian Lime (Citrus latifolia Tan.) to Oriental Fruit Fly and Mediterranean Fruit Fly (Diptera: Tephritidae) in Hawai’i
by Peter A. Follett, Xiuxiu Sun and Spencer S. Walse
Insects 2024, 15(10), 799; https://doi.org/10.3390/insects15100799 - 14 Oct 2024
Viewed by 738
Abstract
We investigated the host status of harvest-ready green Persian lime, Citrus x latifolia Tan. (Rutaceae), to Oriental fruit fly (Bactrocera dorsalis [Hendel]) and Mediterranean fruit fly (Ceratitis capitata [Wiedemann]) (Diptera: Tephritidae) using laboratory and field studies. In forced-infestation small cage exposures [...] Read more.
We investigated the host status of harvest-ready green Persian lime, Citrus x latifolia Tan. (Rutaceae), to Oriental fruit fly (Bactrocera dorsalis [Hendel]) and Mediterranean fruit fly (Ceratitis capitata [Wiedemann]) (Diptera: Tephritidae) using laboratory and field studies. In forced-infestation small cage exposures (using 25 × 25 × 25 cm screened cages with 50 gravid females) and large olfactometer cage tests (using 2.9 × 2.9 × 2.5 m walk-in screened cages with 100 gravid females), punctured limes were infested by Oriental fruit fly and Mediterranean fruit fly at low rates compared to papaya controls, whereas undamaged intact fruit was not infested. Field collection and packing of 45,958 commercial export-grade fruit and subsequent incubation to look for natural infestation resulted in no emergence of fruit flies. Forced infestation studies in the field using sleeve cages to enclose fruit with a high density of fruit flies (50 gravid females) on the tree also showed no infestation. Commercial export-grade Persian lime fruit should be considered a conditional nonhost for Oriental fruit fly and Mediterranean fruit fly. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

13 pages, 2571 KiB  
Article
The Field Assessment of Quiescent Egg Populations of Aedes aegypti and Aedes albopictus during the Dry Season in Tapachula, Chiapas, Mexico, and Its Potential Impact on Vector Control Strategies
by José Ignacio Navarro-Kraul, Luis Alberto Cisneros Vázquez, Keila Elizabeth Paiz-Moscoso, Rogelio Danis-Lozano, Jesús A Dávila-Barboza, Beatriz Lopez-Monroy, Rosa María Sánchez-Casas, Marco Antonio Domínguez-Galera, Pedro Christian Mis-Avila and Ildefonso Fernandez-Salas
Insects 2024, 15(10), 798; https://doi.org/10.3390/insects15100798 - 14 Oct 2024
Viewed by 946
Abstract
Although integrated management and control programs implement intense control measures for adult, pupal, larval, and breeding sites during outbreaks, there is a lack of studies to understand the role of the vector egg stage in disease dynamics. This study aimed to assess the [...] Read more.
Although integrated management and control programs implement intense control measures for adult, pupal, larval, and breeding sites during outbreaks, there is a lack of studies to understand the role of the vector egg stage in disease dynamics. This study aimed to assess the dry season quiescent Aedes aegypti and Aedes albopictus egg populations in houses and backyards in Tapachula, southern Mexico. Two hundred and fifty ovitraps were placed in 125 homes in the Las Americas neighborhood. A total of 7290 eggs were collected from 211 (84.4%) ovitraps. Only 5667 (77.7%) hatched under insectary water immersion and food supply conditions, with 4031 (71.1%) identified as Ae. aegypti, and 1636 (28.8%) as Ae. albopictus, respectively. The remaining 1623 (22.3%) did not hatch due to Delayed Hatching and/or quiescence tropical stage. Eighty-three larval containers were sampled with desiccated eggs during the dry season; most of them were described as trash waste because larvicides are only used for larger containers of 5–10 L. Evolutionary characteristics for the two species including partial egg hatching, ambient-regulated quiescence, the ability of the embryo to survive for a more extended period intra-seasonally, the egg sticking to inner container walls, demands urgent operational research to achieve successful egg-proof larval container methods. Full article
Show Figures

Figure 1

30 pages, 1123 KiB  
Review
Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences
by Andrea Gřešková and Marek Petřivalský
Insects 2024, 15(10), 797; https://doi.org/10.3390/insects15100797 - 14 Oct 2024
Viewed by 1025
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic [...] Read more.
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine–cysteine pair in the active site is replaced by a cysteine–cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR’s role in the antioxidant and immune system of model insect species. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

12 pages, 26246 KiB  
Article
Evaluating the Efficacy of the Male Annihilation Technique in Managing Oriental Fruit Fly (Diptera: Tephritidae) Populations through Microscopic Assessment of Female Spermathecae
by Dian Zhou, Meizhu Liu, Jing Wang, Fang Fang, Zhanbin Gong, Daihong Yu, Yunguo Li and Chun Xiao
Insects 2024, 15(10), 796; https://doi.org/10.3390/insects15100796 - 14 Oct 2024
Viewed by 845
Abstract
The male annihilation technique (MAT) plays a crucial role in the pest management program of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). However, a suitable method for real-time and accurate assessment of MAT’s control efficiency has not been established. Laboratory investigations [...] Read more.
The male annihilation technique (MAT) plays a crucial role in the pest management program of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). However, a suitable method for real-time and accurate assessment of MAT’s control efficiency has not been established. Laboratory investigations found that motile sperms can be observed clearly under the microscope when the spermathecae dissected from mated females were torn, and no sperms were found in the spermathecae of virgin females. Furthermore, it was confirmed that sperms can be preserved in the spermathecae for more than 50 days once females have mated. Laboratory results also indicated that proportion of mated females decreased from 100% to 2% when the sex ratio (♀:♂) was increased from 1:1 to 100:1. Further observation revealed that there were no significant differences in the superficial area of the ovary or spermatheca between mated females and virgin females. Field investigations revealed that the proportion of mated females (PMF) could reach 81.2% in abandoned mango orchards, whereas the PMF was less than 36.4% in mango orchards where MAT was applied. This indicates that the PMF of the field population can be determined by examining the presence of sperms in the spermathecae. Therefore, we suggest that this method can be used to monitor the control efficiency when MAT is used in the field. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop