Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating cell biology into therapeutic advances in Alzheimer's disease

Abstract

Studies of the molecular basis of Alzheimer's disease exemplify the increasingly blurred distinction between basic and applied biomedical research.The four genes so far implicated in familial Alzheimer's disease have each been shown to elevate brain levels of the self-aggregating amyloid-β protein, leading gradually to profound neuronal and glial alteration, synaptic loss and dementia. Progress in understanding this cascade has helped to identify specific therapeutic targets and provides a model for elucidating other neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-power photomicrograph of a section of the amygdala from an Alzheimer's patient showing the classical neuropathological lesions of the disorder.
Figure 2: Diagrams of APP and its principal metabolic derivatives.
Figure 3: APP mutations causing AD or hereditary cerebral haemorrhage.
Figure 4

Similar content being viewed by others

References

  1. Dickson, D. W. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56, 321–339 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Yamaguchi, H., Nakazato, Y., Hirai, S., Shoji, M. & Harigaya, Y. Electron micrograph of diffuse plaques: initial stage of senile plaque formation in the Alzheimer brain. Am. J. Pathol. 135, 593–597 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Goedert, M., Trojanowski, J. Q. & Lee, V. M.-Y. in The Molecular and Genetic Basis of Neurological Disease, 2nd edn (eds Rosenberg, R. N., Prusiner, S. B., DiMauro, S. & Barchi, R. L.) 613–627 (Butterworth-Heinemann, Boston, 1996).

    Google Scholar 

  4. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 1977–1981 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saunders, A. M. et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43, 1467–1472 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Sherrington, R. et al. Cloning of a novel gene bearing missense mutations in early onset familial Alzheimer disease. Nature 375, 754–760 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Levy-Lahad, E. et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science 269, 973–977 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rogaev, E. I. et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376, 775–778 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Blacker, D. et al. Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nature Genet. 19, 357–360 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA 95, 7737–7741 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hutton, M. et al. Association of missense and 5′-splice-site mutations in tau with the inherited FTDP-17. Nature 393, 702–705 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Poorkaj, P. et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol. 43, 815–825 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Goedert, M. Tau mutations cause frontotemporal dementias. Neuron 21, 955–958 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Glenner, G. G. & Wong, C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Selkoe, D. J. Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer's disease. Annu. Rev. Cell Biol. 10, 373–403 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, H. et al. β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81, 525–531 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Perez, R. G., Zheng, H., Van der Ploeg, L. H. & Koo, E. H. The beta-amyloid precursor protein of Alzheimer's disease enhances neuron viability and modulates neuronal polarity. J. Neurosci. 17, 9407–9414 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wasco, W. et al. Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid β-protein precursor. Proc. Natl Acad. Sci. USA 89, 10758–10762 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Slunt, H. H. et al. Expression of a ubiquitous, cross-reactive homologue of the mouse β-amyloid precursor protein (APP). J. Biol. Chem. 269, 2637–2644 (1994).

    CAS  PubMed  Google Scholar 

  21. Sisodia, S. S. β-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl Acad. Sci. USA 89, 6075–6079 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Black, R. A. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729–733 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Buxbaum, J. D. et al. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273, 27765–27767 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Seubert, P. et al. Isolation and quantitation of soluble Alzheimer's β-peptide from biological fluids. Nature 359, 325–327 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Busciglio, J., Gabuzda, D. H., Matsudaira, P. & Yankner, B. A. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl Acad. Sci. USA 90, 2092–2096 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seubert, P. et al. Secretion of β-amyloid precursor protein cleaved at the amino-terminus of the β-amyloid peptide. Nature 361, 260–263 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12,a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Levitan, D. et al. Assessment of normal and mutant human presenilin function in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 93, 14940–14944 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baumeister, R. et al. Human presenilin-1, but not familial Alzheimer's disease (FAD) mutants, facilitate Caenorhabditis elegans notch signalling independently of proteolytic processing. Genes Function 1, 149–159 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, J. et al. Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport 8, 2085–2090 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, G. et al. The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains beta-catenin. J. Biol. Chem. 273, 16470–16475 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Wong, P. et al. Presenilin 1 is required for Notch 1 and D111 expression in the paraxial mesoderm. Nature 397, 288 (1997).

    Article  ADS  Google Scholar 

  35. Shen, J. et al. Skeletal and CNS defects in presenilin-1 deficient mice. Cell 89, 629–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Qian, S. et al. Mutant human presenilin 1 protects presenilin 1 null mouse against embryonic lethality and elevates Abeta1-42/43 expression. Neuron 20, 611–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Thinakaran, G. et al. Endoprotreolysis of presenilin 1 and accumulation of processed derivatives in vivo . Neuron 17, 181–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Podlisny, M. B. et al. Presenilin proteins undergo heterogeneous endoproteolysis between Thr291 and Ala299 and occur as stable N- and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol. Dis. 3, 325–337 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Li, X. & Greenwald, I. Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc. Natl Acad. Sci. USA 95, 7109–7114 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thinakaran, G. et al. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J. Biol. Chem. 272, 28415–28422 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Steiner, H. et al. Expression of Alzheimer's disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J. Biol. Chem. 273, 32322–32331 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Capell, A. et al. The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. J. Biol. Chem. 273, 3205–3211 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, J. et al. Subcellular distribution and turnover of presenilins in transfected cells. J. Biol. Chem. 273, 12436–12442 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Tomita, T. et al. Molecular dissection of domains in mutant presenilin 2 that mediate overproduction of amyloidogenic forms of amyloid beta peptides. Inability of truncated forms of PS2 with familial Alzheimer's disease mutation to increase secretion of Abeta42. J. Biol. Chem. 273, 21153–21160 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Selkoe, D. J. Alzheimer's disease: genotypes, phenotype, and treatments. Science 275, 630–631 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Lemere, C. A. et al. Sequence of deposition of heterogeneous amyloid β-peptides and Apo E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Mann, D. M. et al. Microglial cells and amyloid beta protein (A beta) deposition; association with A beta 40-containing plaques. Acta Neuropathol. (Berl.) 90, 472–477 (1995).

    Article  CAS  Google Scholar 

  49. Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch-type. Science 248, 1124–1126 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Hendriks, L. et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genet. 1, 218–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Biere, A. L. et al. Co-expression of β-amyloid precursor protein (βAPP) and apolipoprotein E in cell culture: analysis of βAPP processing. Neurobiol. Dis. 2, 177–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Schmechel, D. E. et al. Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl Acad. Sci. USA 90, 9649–9653 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rebeck, G. W., Reiter, J. S., Strickland, D. K. & Hyman, B. T. Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11, 575–580 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Ma, J., Yee, A., Brewer, H. B. Jr, Das, S. & Potter, H. The amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote the assembly of the Alzheimer β-protein into filaments. Nature 372, 92–94 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Evans, K. C., Berger, E. P., Cho, C.-G., Weisgraber, K. H. & Lansbury, P. T. Jr Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc. Natl Acad. Sci. USA 92, 763–767 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bales, K. R. et al. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nature Genet. 17, 263–264 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Hardy, J. The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc. Natl Acad. Sci. USA 94, 2095–2097 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Holcomb, L. et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Med. 4, 97–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Lemere, C. A. et al. The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nature Med. 2, 1146–1148 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Mann, D. M. A. et al. Amyloid beta protein (A-beta) deposition in chromosome 14-linked Alzheimer's disease—predominance of A-beta (42(43)). Ann. Neurol. 40, 149–156 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Thinakaran, G. et al. Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Dis. 4, 438–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Xia, W. et al. Presenilin 1 regulates the processing APP C-terminal fragments and the generation of amyloid β-protein in ER and Golgi. Biochemistry 37, 16465–16471 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Weidemann, A. et al. Formation of stable complexes between two Alzheimer's disease gene products: presenilin-2 and β-amyloid precursor protein. Nature Med. 3, 328–332 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Xia, W., Zhang, J., Perez, R., Koo, E. H. & Selkoe, D. J. Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer's disease. Proc. Natl Acad. Sci. USA 94, 8208–8213 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and β-secretase activity. Nature 398, 513–517 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. De Strooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–390 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Brockhaus, M. et al. Caspase-mediated cleavage is not required for the activity of presenilins in amyloidogenesis and NOTCH signaling. NeuroReport 9, 1481–1486 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Skovronsky, D. M., Doms, R. W. & Lee, V. M.-Y. Detection of a novel intraneuronal pool of insoluble amyloid β protein that accumulates with time in culture. J. Cell Biol. 141, 1031–1039 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Eikelenboom, P., Zhan, S. S., van Gool, W. A. & Allsop, D. Inflammatory mechanisms in Alzheimer's disease. Trends Pharmacol. Sci. 15, 447–450 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. McGeer, P. L. & McGeer, E. G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 21, 195–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Rogers, J. et al. Inflammation and Alzheimer's disease pathogenesis. Neurobiol. Aging 17, 681–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Rogers, J. et al. Complement activation by β-amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA 89, 10016–10020 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Itagaki, S., Akiyama, H., Saito, H. & McGeer, P. L. Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer's disease. Brain Res. 645, 78–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. A. & Carney, J. M. Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp. Neurol. 131, 193–202 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Sano, M. et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med. 336, 1216–1222 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Mattson, M. P. et al. β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 379–389 (1992).

    Article  Google Scholar 

  79. Pike, C. J., Burdick, D., Walencewicz, A. J., Glabe, C. G. & Cotman, C. W. Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13, 1676–1687 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lorenzo, A. & Yankner, B. β-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl Acad. Sci. USA 91, 12243–12247 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Games, D. et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Sturchler-Pierrat, C. et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl Acad. Sci. USA 94, 13287–13292 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury, P. T. Jr Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem. Biol. 4, 119–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Walsh, D. M. et al. Amyloid β-protein fibrillogenesis: detection of a protofibrillar intermediate. J. Biol. Chem. 272, 22364–22374 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Lambert, M. P. et al. Diffusible, nonfribrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 6448–6453 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wolozin, B. et al. Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274, 1710–1713 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Miller, D. L., Papayannopoulos, I. A., Styles, J. & Bobin, S. A. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch. Biochem. Biophys. 301, 41–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Roher, A. E. et al. β-amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer's disease. Proc. Natl Acad. Sci. USA 90, 10836–10840

  90. Iwatsubo, T. et al. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13, 45–53 (1995).

    Article  Google Scholar 

  91. Jarrett, J. T., Berger, E. P. & Lansbury, P. T. Jr The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32, 4693–4697 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Yamazaki, T., Koo, E. H. & Selkoe, D. J. Trafficking of cell-surface amyloid β-protein precursor. II. Endocytosis, recycling and lysosomal targeting detected by immunolocalization. J. Cell Sci. 109, 999–1008 (1996).

    CAS  PubMed  Google Scholar 

  93. Yamazaki, T., Selkoe, D. J. & Koo, E. H. Trafficking of cell surface β-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons. J. Cell Biol. 129, 431–442 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Koo, E. H. & Squazzo, S. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389 (1994).

    CAS  PubMed  Google Scholar 

  95. Wilde-Bode, C. et al. Intracellular generation and accumulation of amyloid β-peptide terminating at amino acid 42. J. Biol. Chem. 272, 16085–16088 (1997).

    Article  Google Scholar 

  96. Cook, D. G. et al. Alzheimer's Aβ (1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med. 3, 1021–1023 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Chyung, A. S. C., Greenberg, B. D., Cook, D. G., Doms, R. W. & Lee, V. M.-Y. Novel β-secretase cleavage of β-amyloid precursor protein in the endoplasmic reticulum/intermediate compartment of NT2N cells. J. Cell Biol. 138, 671–680 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Haass, C. et al. The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway. Nature Med. 1, 1291–1296 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Hartmann, T. et al. Distinct sites of intracellular production for Alzheimer's disease Aβ-40/42 amyloid peptides. Nature Med. 3, 1016–1020 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Lee, S. J. et al. A detergent-insoluble membrane compartment contains Aβ in vivo. Nature Med. 4, 730–734 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selkoe, D. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399, A23–A31 (1999). https://doi.org/10.1038/399a023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/399a023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing