Recent Advances in Low Valent Thorium and Uranium Chemistry
Abstract
:1. Introduction
2. Thorium
2.1. Isolation of Th(III) Complexes
2.2. Isolation of Th(II) Complexes
2.3. Reactivity of Th(III) and Th(II) Complexes
3. Uranium
3.1. Isolation of U(II) and U(I) Complexes and Their Reactivity
3.1.1. U(II) Compounds Supported by Cyclopentadienyl Ligands
3.1.2. U(II) Complexes Supported by Amido and RO− Ligands
3.2. Small Molecule Activation and Reactivity of U(II) Compounds
3.3. Isolation and Reactivity of a U(I) Complex
4. Cyclic Voltammetry (CV) Studies of Low Valent U and Th Complexes
5. Conclusions
Funding
Conflicts of Interest
References
- Jones, R.G.; Karmas, G.; Martin, G.A.; Gilman, H. Uranium(IV) Amides, Alkoxides and Mercaptides 42S5 Organic and Biological Chemistry [Contribution from the Organic Compounds of Uranium. II. Uranium(IV) Amides, Alkoxides and Mercaptides. J. Am. Chem. Soc. 1956, 78, 4285–4286. [Google Scholar] [CrossRef]
- Gilman, H. Some Personal Notes on More Than One-Half Century of Organometallic Chemistry. In Advances in Organometallic Chemistry; Stone, F.G.A., Robert, W., Eds.; Elsevier: Amsterdam, The Netherlands, 1969; Volume 7, pp. 1–52. ISBN 978-0-12-031107-1. [Google Scholar]
- Hickam, S.; Ray, D.; Szymanowski, J.E.S.; Li, R.Y.; Dembowski, M.; Smith, P.; Gagliardi, L.; Burns, P.C. Neptunyl Peroxide Chemistry: Synthesis and Spectroscopic Characterization of a Neptunyl Triperoxide Compound, Ca2[NpO2(O2)3]·9H2O. Inorg. Chem. 2019, 58, 12264–12271. [Google Scholar] [CrossRef] [PubMed]
- Loftier, S.T.; Meyer, K. Actinides. In Comprehensive Coordination Chemistry III; Elsevier: Amsterdam, The Netherlands, 2021; Volumes 1–9, pp. 471–521. ISBN 9780081026885. [Google Scholar]
- Woen, D.H.; Evans, W.J. Expanding the +2 Oxidation State of the Rare-Earth Metals, Uranium, and Thorium in Molecular Complexes. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier B.V.: Amsterdam, The Netherlands, 2016; Volume 50, pp. 337–394. [Google Scholar]
- Jantunen, K.C.; Scott, B.L.; Kiplinger, J.L. A Comparative Study of the Reactivity of Zr(IV), Hf(IV) and Th(IV) Metallocene Complexes: Thorium Is Not a Group IV Metal after All. J. Alloys Compd. 2007, 444–445, 363–368. [Google Scholar] [CrossRef]
- Cantat, T.; Graves, C.R.; Jantunen, K.C.; Burns, C.J.; Scott, B.L.; Schelter, E.J.; Morris, D.E.; Hay, J.; Kiplinger, J.L. Evidence for the Involvement of 5f Orbitals in the Bonding and Reactivity of Organometallic Actinide Compounds: Thorium(IV) and Uranium(IV) Bis(Hydrazonato) Complexes. J. Am. Chem. Soc. 2008, 130, 17537–17551. [Google Scholar] [CrossRef]
- Gardner, B.M.; Cleaves, P.A.; Kefalidis, C.E.; Fang, J.; Maron, L.; Lewis, W.; Blake, A.J.; Liddle, S.T. The Role of 5f-Orbital Participation in Unexpected Inversion of the σ-Bond Metathesis Reactivity Trend of Triamidoamine Thorium(Iv) and Uranium(Iv) Alkyls. Chem. Sci. 2014, 5, 2489–2497. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, G.; Zi, G.; Ding, W.; Walter, M.D. Influence of the 5f Orbitals on the Bonding and Reactivity in Organoactinides: Experimental and Computational Studies on a Uranium Metallacyclopropene. J. Am. Chem. Soc. 2016, 138, 5130–5142. [Google Scholar] [CrossRef]
- Liu, H.; Ghatak, T.; Eisen, M.S. Organoactinides in Catalytic Transformations: Scope, Mechanisms and Quo Vadis. Chem. Commun. 2017, 53, 11278–11297. [Google Scholar] [CrossRef]
- Liu, H.; Saha, S.; Eisen, M.S. Recent Advances in Organo- Lanthanides and Actinides Mediated Hydroaminations. Coord. Chem. Rev. 2023, 493, 215284. [Google Scholar] [CrossRef]
- Karmel, I.S.R.; Batrice, R.J.; Eisen, M.S. Catalytic Organic Transformations Mediated by Actinide Complexes. Inorganics 2015, 3, 392–428. [Google Scholar] [CrossRef]
- Nugent, L.J.; Baybarz, R.D.; Burnett, J.L.; Ryan, J.L. Electron-Transfer and f-d Absorption Bands of Some Lanthanide and Actinide Complexes and the Standard (II-III) Oxidation Potential for Each Member of the Lanthanide and Actinide Series’. J. Phys. Chem. 1973, 77, 1528–1539. [Google Scholar] [CrossRef]
- Ortu, F.; Formanuik, A.; Innes, J.R.; Mills, D.P. New Vistas in the Molecular Chemistry of Thorium: Low Oxidation State Complexes. Dalton Trans. 2016, 45, 7537–7549. [Google Scholar] [CrossRef] [PubMed]
- Kanellakopulos, B.; Dornber~er, E.; Baumgmrtner, F. Das erste dreiwertige thorium in einem aromatenkomplex: Tris(cyclopentadienyl)thorium(III) Einleitung. Inorg. Nucl. Chem. Lett. 1974, 10, 155–160. [Google Scholar] [CrossRef]
- Kalina, D.G.; Marks, T.J.; Wachter, W.A. Photochemical Synthesis of Low-Valent Organothorium Complexes. Evidence for Photoinduced β-Hydride Elimination. J. Am. Chem. Soc. 1977, 99, 3877–3879. [Google Scholar] [CrossRef]
- Bruno, J.W.; Kalina, D.G.; Mintz, E.A.; Marks, T.J. Mechanistic Study of Photoinduced β-Hydride Elimination. The Facile Photochemical Synthesis of Low-Valent and Uranium Organometallics. J. Am. Chem. Soc. 1982, 104, 1860–1869. [Google Scholar] [CrossRef]
- Blake, P.C.; Lappert, M.F.; Atwood, J.L.; Zhang, H. The Synthesis and Characterisation, Including X-Ray Diffraction Study, of [Th{η-C5H3(SiMe3)2}3]; the First Thorium(III) Crystal Structure. J. Chem. Soc. Chem. Commun. 1986, 1148–1149. [Google Scholar] [CrossRef]
- Blake, P.C.; Lappert, M.F.; Taylor, R.G.; Atwood, J.L.; Zhang, H. Some Aspects of the Coordination and Organometallic Chemistry of Thorium and Uranium (MIII, MIV, UV) in +3 and +4 Oxidation States. Inorg. Chim. Acta 1987, 139, 13–20. [Google Scholar] [CrossRef]
- Blake, P.C.; Edelstein, N.M.; Hitchcock, P.B.; Kot, W.K.; Lappert, M.F.; Shalimoff, G.V.; Tian, S. Synthesis, Properties and Structures of the Tris(Cyclopentadienyl)Thorium(III) Complexes [Th{η5-C5H3(SiMe2R)2-1,3}3] (R = Me or TBu). J. Organomet. Chem. 2001, 636, 124–129. [Google Scholar] [CrossRef]
- Kot, W.K.; Shalimoff, G.V.; Edelstein, N.M.; Edelman, M.A.; Lappert, M.F. [ThΙΙΙ(H5-C5H3(SiMe3)2]3], an Actinide Compound with a 6d1 Ground State. J. Am. Chem. Soc. 1988, 110, 986–987. [Google Scholar] [CrossRef]
- Parry, J.S.; Cloke, F.G.N.; Coles, S.J.; Hursthouse, M.B. Synthesis and Characterization of the First Sandwich Complex of: Trivalent Thorium: A Structural Comparison with the Uranium Analogue. J. Am. Chem. Soc. 1999, 121, 6867–6871. [Google Scholar] [CrossRef]
- Walensky, J.R.; Martin, R.L.; Ziller, J.W.; Evans, W.J. Importance of Energy Level Matching for Bonding in Th3+-Am3+ Actinide Metallocene Amidinates, (C5Me5)2[IPrNC(Me)NiPr]An. Inorg. Chem. 2010, 49, 10007–10012. [Google Scholar] [CrossRef]
- Evans, W.J.; Walensky, J.R.; Ziller, J.W.; Rheingold, A.L. Insertion of Carbodiimides and Organic Azides into Actinide—Carbon Bonds. Organometallics 2009, 28, 3350–3357. [Google Scholar] [CrossRef]
- Siladke, N.A.; Webster, C.L.; Walensky, J.R.; Takase, M.K.; Ziller, J.W.; Grant, D.J.; Gagliardi, L.; Evans, W.J. Actinide Metallocene Hydride Chemistry: C-H Activation in Tetramethylcyclopentadienyl Ligands to Form [μ-H5-C5Me3H(CH2)-Κc]2− Tuck-over Ligands in a Tetrathorium Octahydride Complex. Organometallics 2013, 32, 6522–6531. [Google Scholar] [CrossRef]
- Langeslay, R.R.; Chen, G.P.; Windorff, C.J.; Chan, A.K.; Ziller, J.W.; Furche, F.; Evans, W.J. Synthesis, Structure, and Reactivity of the Sterically Crowded Th3+ Complex (C5Me5)3Th Including Formation of the Thorium Carbonyl, [(C5Me5)3Th(CO)][BPh4]. J. Am. Chem. Soc. 2017, 139, 3387–3398. [Google Scholar] [CrossRef]
- Broach, R.W.; Schultz, A.J.; Williams, J.M.; Brown, G.M.; Manriquez, J.M.; Fagan, P.J.; Marks, T.J. Molecular Structure of an Unusual Organoactinide Hydride Determined Solely by Neutron Diffraction. Science (1979) 1979, 203, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Formanuik, A.; Ariciu, A.M.; Ortu, F.; Beekmeyer, R.; Kerridge, A.; Tuna, F.; McInnes, E.J.L.; Mills, D.P. Actinide Covalency Measured by Pulsed Electron Paramagnetic Resonance Spectroscopy. Nat. Chem. 2017, 9, 578–583. [Google Scholar] [CrossRef]
- Birnoschi, L.; Oakley, M.S.; McInnes, E.J.L.; Chilton, N.F. Relativistic Quantum Chemical Investigation of Actinide Covalency Measured by Electron Paramagnetic Resonance Spectroscopy. J. Am. Chem. Soc. 2024, 146, 14660–14671. [Google Scholar] [CrossRef]
- Denning, R.G.; Harmer, J.; Green, J.C.; Irwin, M. Covalency in the 4f Shell of Tris-Cyclopentadienyl Ytterbium (YbCp3)-A Spectroscopic Evaluation. J. Am. Chem. Soc. 2011, 133, 20644–20660. [Google Scholar] [CrossRef]
- Altman, A.B.; Brown, A.C.; Rao, G.; Lohrey, T.D.; Britt, R.D.; Maron, L.; Minasian, S.G.; Shuh, D.K.; Arnold, J. Chemical Structure and Bonding in a Thorium(Iii)-Aluminum Heterobimetallic Complex. Chem. Sci. 2018, 9, 4317–4324. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Altman, A.B.; Brown, A.C.; Tao, L.; Stich, T.A.; Arnold, J.; David Britt, R. Metal Bonding with 3d and 6d Orbitals: An EPR and ENDOR Spectroscopic Investigation of Ti3+-Al and Th3+-Al Heterobimetallic Complexes. Inorg. Chem. 2019, 58, 7978–7988. [Google Scholar] [CrossRef]
- Boronski, J.T.; Seed, J.A.; Hunger, D.; Woodward, A.W.; van Slageren, J.; Wooles, A.J.; Natrajan, L.S.; Kaltsoyannis, N.; Liddle, S.T. A Crystalline Tri-Thorium Cluster with σ-Aromatic Metal–Metal Bonding. Nature 2021, 598, 72–75. [Google Scholar] [CrossRef]
- Lin, X.; Mo, Y. On the Bonding Nature in the Crystalline Tri-Thorium Cluster: Core-Shell Syngenetic σ-Aromaticity. Angew. Chem.—Int. Ed. 2022, 61, e202209658. [Google Scholar] [CrossRef] [PubMed]
- Tomeček, J.; Liddle, S.T.; Kaltsoyannis, N. Actinide-Actinide Bonding: Electron Delocalisation and σ-Aromaticity in the Tri-Thorium Cluster [{Th(η8-C8H8)(μ-Cl)2}3K2]. ChemPhysChem 2023, 24, e202300366. [Google Scholar] [CrossRef] [PubMed]
- Szczepanik, D.W. Bonding in a Crystalline Tri-Thorium Cluster: Not σ-Aromatic But Still Unique. Angew. Chem.—Int. Ed. 2022, 61, e202204337. [Google Scholar] [CrossRef] [PubMed]
- Huh, D.N.; Roy, S.; Ziller, J.W.; Furche, F.; Evans, W.J. Isolation of a Square-Planar Th(III) Complex: Synthesis and Structure of [Th(OC6H2tBu2-2,6-Me-4)4]1−. J. Am. Chem. Soc. 2019, 141, 12458–12463. [Google Scholar] [CrossRef]
- MacDonald, M.R.; Fieser, M.E.; Bates, J.E.; Ziller, J.W.; Furche, F.; Evans, W.J. Identification of the +2 Oxidation State for Uranium in a Crystalline Molecular Complex, [K(2.2.2-Cryptand)][(C5H4SiMe3)3U]. J. Am. Chem. Soc. 2013, 135, 13310–13313. [Google Scholar] [CrossRef]
- Wedal, J.C.; Bekoe, S.; Ziller, J.W.; Furche, F.; Evans, W.J. In Search of Tris(Trimethylsilylcyclopentadienyl) Thorium. Dalton Trans. 2019, 48, 16633–16640. [Google Scholar] [CrossRef]
- Langeslay, R.R.; Fieser, M.E.; Ziller, J.W.; Furche, F.; Evans, W.J. Synthesis, Structure, and Reactivity of Crystalline Molecular Complexes of the {[C5H3(SiMe3)2]3Th}1− Anion Containing Thorium in the Formal +2 Oxidation State. Chem. Sci. 2015, 6, 517–521. [Google Scholar] [CrossRef]
- Formanuik, A.; Ortu, F.; Inman, C.J.; Kerridge, A.; Castro, L.; Maron, L.; Mills, D.P. Concomitant Carboxylate and Oxalate Formation From the Activation of CO2 by a Thorium(III) Complex. Chem.—Eur. J. 2016, 22, 17976–17979. [Google Scholar] [CrossRef]
- Formanuik, A.; Ortu, F.; Beekmeyer, R.; Kerridge, A.; Adams, R.W.; Mills, D.P. White Phosphorus Activation by a Th(III) Complex. Dalton Trans. 2016, 45, 2390–2393. [Google Scholar] [CrossRef]
- Formanuik, A.; Ortu, F.; Liu, J.; Nodaraki, L.E.; Tuna, F.; Kerridge, A.; Mills, D.P. Double Reduction of 4,4′-Bipyridine and Reductive Coupling of Pyridine by Two Thorium(III) Single-Electron Transfers. Chem.—Eur. J. 2017, 23, 2290–2293. [Google Scholar] [CrossRef]
- Liu, J.; Seed, J.A.; Formanuik, A.; Ortu, F.; Wooles, A.J.; Mills, D.P.; Liddle, S.T. Thorium(IV) Alkyl Synthesis from a Thorium(III) Cyclopentadienyl Complex and an N-Heterocyclic Olefin. J. Organomet. Chem. 2018, 857, 75–79. [Google Scholar] [CrossRef]
- Wedal, J.C.; Cajiao, N.; Neidig, M.L.; Evans, W.J. Anion-Induced Disproportionation of Th(III) Complexes to Form Th(II) and Th(IV) Products. Chem. Commun. 2022, 58, 5289–5291. [Google Scholar] [CrossRef] [PubMed]
- Langeslay, R.R.; Fieser, M.E.; Ziller, J.W.; Furche, F.; Evans, W.J. Expanding Thorium Hydride Chemistry Through Th2+, Including the Synthesis of a Mixed-Valent Th4+/Th3+ Hydride Complex. J. Am. Chem. Soc. 2016, 138, 4036–4045. [Google Scholar] [CrossRef]
- Evans, W.J.; Nyce, G.W.; Johnston, M.A.; Ziller, J.W. How Much Steric Crowding Is Possible in Tris(H5-Pentamethylcyclopentadienyl) Complexes? Synthesis and Structure of (C5Me5)3UCl and (C5Me5)3UF1. J. Am. Chem. Soc. 2000, 122, 12019–12020. [Google Scholar] [CrossRef]
- Evans, W.J.; Forrestal, K.J.; Ziller, J.W. Activity of [Sm(C5Me5)3] in Ethylene Polymerization and Synthesis of [U(C5Me5)3], the First Tris(Pentamethylcyclopentadienyl) 5f-Element Complex. Angew. Chem. (Int. Ed. Engl.) 1997, 36, 774–776. [Google Scholar] [CrossRef]
- Evans, W.J.; Perotti, J.M.; Kozimor, S.A.; Champagne, T.M.; Davis, B.L.; Nyce, G.W.; Fujimoto, C.H.; Clark, R.D.; Johnston, M.A.; Ziller, J.W. Synthesis and Comparative η 1-Alkyl and Sterically Induced Reduction Reactivity of (C5Me5)3Ln Complexes of La, Ce, Pr, Nd, and Sm. Organometallics 2005, 24, 3916–3931. [Google Scholar] [CrossRef]
- Ren, W.; Lukens, W.W.; Zi, G.; Maron, L.; Walter, M.D. Is the Bipyridyl Thorium Metallocene a Low-Valent Thorium Complex? A Combined Experimental and Computational Study. Chem. Sci. 2013, 4, 1168–1174. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Li, T.; Heng, Y.; Hou, G.; Zi, G.; Walter, M.D. Synthesis, Structure, and Reactivity of the Uranium Bipyridyl Complex [{η5-1,2,4-(Me3Si)3C5H2}2U(Bipy)]. Organometallics 2022, 41, 1543–1557. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.; Heng, Y.; Wang, D.; Hou, G.; Zi, G.; Walter, M.D. Small-Molecule Activation Mediated by [η5-1,3-(Me3Si)2C5H3]2U(Bipy). Inorg. Chem. 2022, 61, 6234–6251. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Hou, G.; Zi, G.; Walter, M.D. Small-Molecule Activation Mediated by a Uranium Bipyridyl Metallocene. Organometallics 2017, 36, 1179–1187. [Google Scholar] [CrossRef]
- Button, Z.E.; Higgins, J.A.; Suvova, M.; Cloke, F.G.N.; Roe, S.M. Mixed Sandwich Thorium Complexes Incorporating Bis(Tri-Isopropylsilyl)Cyclooctatetraenyl and Pentamethylcyclopentadienyl Ligands: Synthesis, Structure and Reactivity. Dalton Trans. 2015, 44, 2588–2596. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Liang, J.; Deng, C.; Lefèvre, G.; Cantat, T.; Diaconescu, P.L.; Huang, W. Arene-Bridged Dithorium Complexes: Inverse Sandwiches Supported by a Δbonding Interaction. J. Am. Chem. Soc. 2020, 142, 21292–21297. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, F.C.; Chen, D.; Rajeshkumar, T.; Scopelliti, R.; Maron, L.; Mazzanti, M. Two-Electron Redox Reactivity of Thorium Supported by Redox-Active Tripodal Frameworks. Angew. Chem.—Int. Ed. 2024, 63, e202317346. [Google Scholar] [CrossRef]
- Andersen, R.A. Tris((HexamethyldisiIyl)Amido)Uranium(III): Preparation and Coordination Chemistry. Inorg. Chem. 1979, 18, 1507–1509. [Google Scholar] [CrossRef]
- Brennan, J.G.; Andersen, R.A.; Zalkin, A. Chemistry of Trivalent Uranium Metallocenes: Electron-Transfer Reactions with Carbon. Formation of [(RC5H4)3U]2[μ-η1,η2-CS2]. Inorg. Chem. 1986, 25, 1756–1760. [Google Scholar] [CrossRef]
- Patel, D.; Wooles, A.J.; Hashem, E.; Omorodion, H.; Baker, R.J.; Liddle, S.T. Comments on Reactions of Oxide Derivatives of Uranium with Hexachloropropene to Give UCl4. New J. Chem. 2015, 39, 7559–7562. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Brown, B.C. Uranium(IV) Borohydride1. J. Am. Chem. Soc. 1953, 75, 219–221. [Google Scholar] [CrossRef]
- Haaland, A.; Shorokhov, D.J.; Tutukin, A.V.; Volden, H.V.; Swang, O.; McGrady, G.S.; Kaltsoyannis, N.; Downs, A.J.; Tang, C.Y.; Turner, J.F.C. Molecular Structures of Two Metal Tetrakis(Tetrahydroborates), Zr(BH4)4 and U(BH4)4: Equilibrium Conformations and Barriers to Internal Rotation of the Triply Bridging BH4 Groups. Inorg. Chem. 2002, 41, 6646–6655. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, C.D.; Jones, N.A.; Arnold, P.L. Low-Valent Uranium Iodides: Straightforward Solution Syntheses of UI3 and UI4 Etherates. Inorg. Chem. 2008, 47, 8577–8579. [Google Scholar] [CrossRef]
- Monreal, M.J.; Thomson, R.K.; Cantat, T.; Travia, N.E.; Scott, B.L.; Kiplinger, J.L. UI4(1,4-Dioxane)2, [UCl4(1,4-Dioxane)]2, and UI3(1,4-Dioxane)1.5: Stable and Versatile Starting Materials for Low- and High-Valent Uranium Chemistry. Organometallics 2011, 30, 2031–2038. [Google Scholar] [CrossRef]
- Boreen, M.A.; Parker, B.F.; Lohrey, T.D.; Arnold, J. A Homoleptic Uranium(III) Tris(Aryl) Complex. J. Am. Chem. Soc. 2016, 138, 15865–15868. [Google Scholar] [CrossRef]
- Der Sluys, V.; Burns, C.J.; Sattleberger, A.P. First Example Ot a Neutral Homoleptic Uranium Alkyl. Synthesis, Properties, and Structure of U[CH(SIMe3)2]3. Organometallics 1989, 8, 855–857. [Google Scholar] [CrossRef]
- Claude Berthet, J.; Lance, M.; Nierlich, M.; Ephritikhine, M. Synthesis of the Uranium Triflates U(OTf)3 and U(OTf)4—Crystal Structure of [U(OTf)2(OPPh3)4][OTf]. Eur. J. Inorg. Chem. 1999, 1999, 2005–2007. [Google Scholar] [CrossRef]
- Evans, W.J.; Nyce, G.W.; Forrestal, K.J.; Ziller, J.W. Multiple Syntheses of (C5Me5)3U. Organometallics 2002, 21, 1050–1055. [Google Scholar] [CrossRef]
- Avens, L.R.; Burns, C.J.; Butcher, R.J.; Clark, D.L.; Gordon, J.C.; Schake, A.R.; Scott, B.L.; Watkin, J.G.; Zwick, B.D. Mono(Pentamethylcyclopentadienyl)Uranium(III) Complexes: Synthesis, Properties, and X-Ray Structures of (η-C5Me5)UI2(THF)3, (η-C5Me5)UI2(Py)3, and (η-C5Me5)U[N(SiMe3)2]2. Organometallics 2000, 19, 451–457. [Google Scholar] [CrossRef]
- Baker, R.J. The Coordination and Organometallic Chemistry of UI3 and U{N(SiMe3)2}3: Synthetic Reagents Par Excellence. Coord. Chem. Rev. 2012, 256, 2843–2871. [Google Scholar] [CrossRef]
- Fetrow, T.V.; Grabow, J.P.; Leddy, J.; Daly, S.R. Convenient Syntheses of Trivalent Uranium Halide Starting Materials without Uranium Metal. Inorg. Chem. 2021, 60, 7593–7601. [Google Scholar] [CrossRef]
- Droidwski, J.; Du Preez, J.G.H. Synthesis and Characterization of Uranium Triiodide Tetrakis(Acetonitrile). Inorg. Chim. Acta 1994, 218, 203–205. [Google Scholar]
- Evans, W.J.; Kozimor, S.A.; Ziller, J.W.; Fagin, A.A.; Bochkarev, M.N. Facile Syntheses of Unsolvated Ul3 and Tetramethylcyclopentadienyl Uranium Halides. Inorg. Chem. 2005, 44, 3993–4000. [Google Scholar] [CrossRef]
- Schnaars, D.D.; Wu, G.; Hayton, T.W. Reactivity of UH3 with Mild Oxidants. Dalton Trans. 2008, 69, 6121–6126. [Google Scholar] [CrossRef]
- Arnold, P.L.; Stevens, C.J.; Farnaby, J.H.; Gardiner, M.G.; Nichol, G.S.; Love, J.B. New Chemistry from an Old Reagent: Mono- and Dinuclear Macrocyclic Uranium(III) Complexes from [U(BH4)3(THF)2]. J. Am. Chem. Soc. 2014, 136, 10218–10221. [Google Scholar] [CrossRef] [PubMed]
- Avens, L.R.; Bott, S.G.; Clark, D.L.; Sattelberger, A.P.; Watkin, J.G.; Zwick, B.D. A Convenient Entry into Trivalent Actinide Chemistry: Synthesis and Characterization of AnI3(THF)4 and An[N(SiMe3)2]3 (An = U, Np, Pu). Inorg. Chem. 1994, 33, 2248–2256. [Google Scholar] [CrossRef]
- Evans, W.J.; Miller, K.A.; DiPasquale, A.G.; Rheingold, A.L.; Stewart, T.; Bau, R. A Crystallizable F-Element Tuck-in Complex: The Tuck-in Tuck-over Uranium Metallocene [(C5Me5)U{μ-η5:η1:η1-C5Me3(CH2)2}(μ-H)2U-(C5Me5)2]. Angew. Chem.—Int. Ed. 2008, 47, 5075–5078. [Google Scholar] [CrossRef] [PubMed]
- Pierre, H.S.L.; Heinemann, F.W.; Meyer, K. Well-Defined Molecular Uranium(Iii) Chloride Complexes. Chem. Commun. 2014, 50, 3962–3964. [Google Scholar] [CrossRef] [PubMed]
- Tsoureas, N.; Summerscales, O.T.; Cloke, F.G.N.; Roe, S.M. Steric Effects in the Reductive Coupling of CO by Mixed-Sandwich Uranium(III) Complexes. Organometallics 2013, 32, 1353–1362. [Google Scholar] [CrossRef]
- Kahan, R.J.; Cloke, F.G.N.; Roe, S.M.; Nief, F. Activation of Carbon Dioxide by New Mixed Sandwich Uranium(III) Complexes Incorporating Cyclooctatetraenyl and Pyrrolide, Phospholide, or Arsolide Ligands. New J. Chem. 2015, 39, 7602–7607. [Google Scholar] [CrossRef]
- Summerscales, O.T.; Frey, A.S.P.; Cloke, F.G.N.; Hitchcock, P.B. Reductive Disproportionation of Carbon Dioxide to Carbonate and Squarate Products Using a Mixed-Sandwich U(III) Complex. Chem. Commun. 2009, 198–200. [Google Scholar] [CrossRef]
- Tsoureas, N.; Castro, L.; Kilpatrick, A.F.R.; Cloke, F.G.N.; Maron, L. Controlling Selectivity in the Reductive Activation of CO2 by Mixed Sandwich Uranium(Iii) Complexes. Chem. Sci. 2014, 5, 3777–3788. [Google Scholar] [CrossRef]
- Summerscales, O.T.; Cloke, F.G.N.; Hitchcock, P.B.; Green, J.C.; Hazari, N. Reductive Cyclotetramerization of CO to Squarate by a U(III) Complex: The x-Ray Crystal Structure of [U (η-C8H6{SiiPr3-1,4}2)(η-C5Me4H)]2(μ-η2:η2-C4O4). J. Am. Chem. Soc. 2006, 128, 9602–9603. [Google Scholar] [CrossRef]
- Inman, C.J.; Frey, A.S.P.; Kilpatrick, A.F.R.; Cloke, F.G.N.; Roe, S.M. Carbon Dioxide Activation by a Uranium(III) Complex Derived from a Chelating Bis(Aryloxide) Ligand. Organometallics 2017, 36, 4539–4545. [Google Scholar] [CrossRef]
- Frey, A.S.; Cloke, F.G.N.; Hitchcock, P.B.; Day, I.J.; Green, J.C.; Aitken, G. Mechanistic Studies on the Reductive Cyclooligomerisation of CO by U(III) Mixed Sandwich Complexes; the Molecular Structure of [U(η-C8H6{SiiPr3-1,4}2)(η-Cp*)]2(μ-η1:η1-C2O2). J. Am. Chem. Soc. 2008, 130, 13816–13817. [Google Scholar] [CrossRef] [PubMed]
- Kahan, R.J.; Farnaby, J.H.; Tsoureas, N.; Cloke, F.G.N.; Hitchcock, P.B.; Coles, M.P.; Roe, S.M.; Wilson, C. Sterically Encumbered Mixed Sandwich Compounds of Uranium(III): Synthesis and Reactivity with Small Molecules. J. Organomet. Chem. 2018, 857, 110–122. [Google Scholar] [CrossRef]
- Summerscales, O.T.; Cloke, F.G.N.; Hitchcock, P.B.; Green, J.C.; Hazari, N. Reductive Cyclotrimerization of Carbon to the Deltate Dianion by an Organometallic Uranium Complex. Science (1979) 2006, 311, 829–831. [Google Scholar] [CrossRef]
- Lam, O.P.; Meyer, K. Uranium-Mediated Carbon Dioxide Activation and Functionalization. Polyhedron 2012, 32, 1–9. [Google Scholar] [CrossRef]
- Lam, O.P.; Bart, S.C.; Kameo, H.; Heinemann, F.W.; Meyer, K. Insights into the Mechanism of Carbonate Formation through Reductive Cleavage of Carbon Dioxide with Low-Valent Uranium Centers. Chem. Commun. 2010, 46, 3137–3139. [Google Scholar] [CrossRef]
- Schmidt, A.C.; Nizovtsev, A.V.; Scheurer, A.; Heinemann, F.W.; Meyer, K. Uranium-Mediated Reductive Conversion of CO2 to CO and Carbonate in a Single-Vessel, Closed Synthetic Cycle. Chem. Commun. 2012, 48, 8634–8636. [Google Scholar] [CrossRef]
- Schmidt, A.; Heinemann, F.W.; Kefalidis, C.E.; Maron, L.; Roesky, P.W.; Meyer, K. Activation of SO2 and CO2 by Trivalent Uranium Leading to Sulfite/Dithionite and Carbonate/Oxalate Complexes. Chem.—Eur. J. 2014, 20, 13501–13506. [Google Scholar] [CrossRef]
- Arnold, P.L.; Turner, Z.R.; Bellabarba, R.M.; Tooze, R.P. Carbon Monoxide Coupling and Functionalisation at a Simple Uranium Coordination Complex. Chem. Sci. 2011, 2, 77–79. [Google Scholar] [CrossRef]
- Cooper, O.; Camp, C.; Pécaut, J.; Kefalidis, C.E.; Maron, L.; Gambarelli, S.; Mazzanti, M. Multimetallic Cooperativity in Uranium-Mediated CO2 Activation. J. Am. Chem. Soc. 2014, 136, 6716–6723. [Google Scholar] [CrossRef]
- Ward, R.J.; Kelley, S.P.; Lukens, W.W.; Walensky, J.R. Reduction of CO2 and CS2 with Uranium(III) Metallocene Aryloxides. Organometallics 2022, 41, 1579–1585. [Google Scholar] [CrossRef]
- Camp, C.; Chatelain, L.; Kefalidis, C.E.; Pécaut, J.; Maron, L.; Mazzanti, M. CO2 Conversion to Isocyanate via Multiple N-Si Bond Cleavage at a Bulky Uranium(III) Complex. Chem. Commun. 2015, 51, 15454–15457. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.M.; Stewart, J.C.; Davis, A.L.; Mcmaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. Homologation and Functionalization of Carbon Monoxide by a Recyclable Uranium Complex. Proc. Natl. Acad. Sci. USA 2012, 109, 9265–9270. [Google Scholar] [CrossRef] [PubMed]
- Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C. Functionalization of Carbon Dioxide and Carbon Disulfide Using a Stable Uranium(III) Alkyl Complex. J. Am. Chem. Soc. 2011, 133, 4948–4954. [Google Scholar] [CrossRef] [PubMed]
- Mansell, S.M.; Kaltsoyannis, N.; Arnold, P.L. Small Molecule Activation by Uranium Tris(Aryloxides): Experimental and Computational Studies of Binding of N2, Coupling of CO, and Deoxygenation Insertion of CO2 under Ambient Conditions. J. Am. Chem. Soc. 2011, 133, 9036–9051. [Google Scholar] [CrossRef] [PubMed]
- Mougel, V.; Camp, C.; Pécaut, J.; Copéret, C.; Maron, L.; Kefalidis, C.E.; Mazzanti, M. Siloxides as Supporting Ligands in Uranium(III)-Mediated Small-Molecule Activation. Angew. Chem.—Int. Ed. 2012, 51, 12280–12284. [Google Scholar] [CrossRef]
- Castro-Rodriguez, I.; Meyer, K. Carbon Dioxide Reduction and Carbon Monoxide Activation Employing a Reactive Uranium(III) Complex. J. Am. Chem. Soc. 2005, 127, 11242–11243. [Google Scholar] [CrossRef]
- Tsoureas, N.; Cloke, F.G.N. Activation of Carbon Suboxide (C3O2) by U(III) to Form a Cyclobutane-1,3-Dione Ring. Chem. Commun. 2018, 54, 8830–8833. [Google Scholar] [CrossRef]
- Frey, A.S.P.; Cloke, F.G.N.; Hitchcock, P.B.; Green, J.C. Activation of P4 by U(η5-C5Me5)(η8-C8H6(SiiPr3)2-1,4)(THF); The X-Ray Structure of [U(η5-C5Me5)(η8-C8H6(SiiPr3)2-1,4)]2(μ-η2:η2-P4). New J. Chem. 2011, 35, 2022–2026. [Google Scholar] [CrossRef]
- Tsoureas, N.; Kilpatrick, A.F.R.; Summerscales, O.T.; Nixon, J.F.; Cloke, F.G.N.; Hitchcock, P.B. The First Example of the Two-Electron Reduction of a Phosphaalkyne—Synthesis and Structural Characterisation of the Diuranium(IV) Pentalene Complex [(U{η5-C5Me5}{η8-C8H4(SiiPr3-1,4)2})2(μ-η2:η1-TBuCP)]. Eur J Inorg. Chem. 2013, 2013, 4085–4089. [Google Scholar] [CrossRef]
- Hoerger, C.J.; Heinemann, F.W.; Louyriac, E.; Maron, L.; Grützmacher, H.; Meyer, K. Formation of a Uranium-Bound N1-Cyaphide (CP-) Ligand via Activation and C-O Bond Cleavage of Phosphaethynolate (OCP-). Organometallics 2017, 36, 4351–4354. [Google Scholar] [CrossRef]
- Hoerger, C.J.; Heinemann, F.W.; Louyriac, E.; Rigo, M.; Maron, L.; Grützmacher, H.; Driess, M.; Meyer, K. Cyaarside (CAs−) and 1,3-Diarsaallendiide (AsCAs2−) Ligands Coordinated to Uranium and Generated via Activation of the Arsaethynolate Ligand (OCAs−). Angew.Chem.—Int. Ed. 2019, 58, 1679–1683. [Google Scholar] [CrossRef] [PubMed]
- Mansell, S.M.; Farnaby, J.H.; Germeroth, A.I.; Arnold, P.L. Thermally Stable Uranium Dinitrogen Complex with Siloxide Supporting Ligands. Organometallics 2013, 32, 4214–4222. [Google Scholar] [CrossRef]
- Roussel, P.; Scott, P. Complex of Dinitrogen with Trivalent Uranium. J. Am. Chem. Soc. 1998, 120, 1070–1071. [Google Scholar] [CrossRef]
- Roussel, P.; Errington, W.; Kaltsoyannis, N.; Scott, P. Back Bonding without σ-Bonding: A Unique π-Complex of Dinitrogen with Uranium. J. Organomet. Chem. 2001, 635, 69–74. [Google Scholar] [CrossRef]
- Cloke, F.G.N.; Hitchcock, P.B. Reversible Binding and Reduction of Dinitrogen by a Uranium(III) Pentalene Complex. J. Am. Chem. Soc. 2002, 124, 9352–9353. [Google Scholar] [CrossRef]
- Odom, A.L.; Arnold, P.L.; Cummins, C.C. Heterodinuclear Uranium/Molybdenum Dinitrogen Complexes. J. Am. Chem. Soc. 1998, 120, 5836–5837. [Google Scholar] [CrossRef]
- Evans, W.J.; Kozimor, S.A.; Ziller, J.W. A Monometallic f Element Complex of Dinitrogen: (C5Me5)3U(η1-N2). J. Am. Chem. Soc. 2003, 125, 14264–14265. [Google Scholar] [CrossRef]
- Korobkov, I.; Gambarotta, S.; Yap, G.P.A. A Highly Reactive Uranium Complex Supported by the Calix[4]Tetrapyrrole Tetraanion Affording Dinitrogen Cleavage, Solvent Deoxygenation, and Polysilanol Depolymerization. Angew. Chem.—Int. Ed. 2002, 41, 3433–3436. [Google Scholar] [CrossRef]
- Falcone, M.; Chatelain, L.; Scopelliti, R.; Živković, I.; Mazzanti, M. Nitrogen Reduction and Functionalization by a Multimetallic Uranium Nitride Complex. Nature 2017, 547, 332–335. [Google Scholar] [CrossRef]
- Jori, N.; Keener, M.; Rajeshkumar, T.; Scopelliti, R.; Maron, L.; Mazzanti, M. Dinitrogen Cleavage by a Dinuclear Uranium(Iii) Complex. Chem. Sci. 2023, 14, 13485–13494. [Google Scholar] [CrossRef]
- Jori, N.; Rajeshkumar, T.; Scopelliti, R.; Živković, I.; Sienkiewicz, A.; Maron, L.; Mazzanti, M. Cation Assisted Binding and Cleavage of Dinitrogen by Uranium Complexes. Chem. Sci. 2022, 13, 9232–9242. [Google Scholar] [CrossRef] [PubMed]
- Batov, M.S.; del Rosal, I.; Scopelliti, R.; Fadaei-Tirani, F.; Zivkovic, I.; Maron, L.; Mazzanti, M. Multimetallic Uranium Nitride Cubane Clusters from Dinitrogen Cleavage. J. Am. Chem. Soc. 2023, 145, 26435–26443. [Google Scholar] [CrossRef] [PubMed]
- Jori, N.; Moreno, J.J.; Shivaraam, R.A.K.; Rajeshkumar, T.; Scopelliti, R.; Maron, L.; Campos, J.; Mazzanti, M. Iron Promoted End-on Dinitrogen-Bridging in Heterobimetallic Complexes of Uranium and Lanthanides. Chem. Sci. 2024, 15, 6842–6852. [Google Scholar] [CrossRef]
- Falcone, M.; Barluzzi, L.; Andrez, J.; Fadaei Tirani, F.; Zivkovic, I.; Fabrizio, A.; Corminboeuf, C.; Severin, K.; Mazzanti, M. The Role of Bridging Ligands in Dinitrogen Reduction and Functionalization by Uranium Multimetallic Complexes. Nat. Chem. 2019, 11, 154–160. [Google Scholar] [CrossRef]
- Arnold, P.L.; Ochiai, T.; Lam, F.Y.T.; Kelly, R.P.; Seymour, M.L.; Maron, L. Metallacyclic Actinide Catalysts for Dinitrogen Conversion to Ammonia and Secondary Amines. Nat. Chem. 2020, 12, 654–659. [Google Scholar] [CrossRef]
- Wang, P.; Douair, I.; Zhao, Y.; Wang, S.; Zhu, J.; Maron, L.; Zhu, C. Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Non-Innocent Ligand and the Uranium Center. Angew. Chem.—Int. Ed. 2021, 60, 473–479. [Google Scholar] [CrossRef]
- Halter, D.P.; Heinemann, F.W.; Bachmann, J.; Meyer, K. Uranium-Mediated Electrocatalytic Dihydrogen Production from Water. Nature 2016, 530, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Halter, D.P.; Heinemann, F.W.; Maron, L.; Meyer, K. The Role of Uranium-Arene Bonding in H2O Reduction Catalysis. Nat. Chem. 2018, 10, 259–267. [Google Scholar] [CrossRef]
- Arnold, P.L.; Mansell, S.M.; Maron, L.; McKay, D. Spontaneous Reduction and C-H Borylation of Arenes Mediated by Uranium(III) Disproportionation. Nat. Chem. 2012, 4, 668–674. [Google Scholar] [CrossRef]
- Barluzzi, L.; Falcone, M.; Mazzanti, M. Small Molecule Activation by Multimetallic Uranium Complexes Supported by Siloxide Ligands. Chem. Commun. 2019, 55, 13031–13047. [Google Scholar] [CrossRef]
- Castro-Rodriguez, I.; Nakai, H.; Zakharov, L.N.; Rheingold, A.L.; Meyer, K. A Linear, O-Coordinated H1-CO2 Bound to Uranium. Science (1979) 2004, 305, 1757–1759. [Google Scholar] [CrossRef]
- Tsoureas, N.; Maron, L.; Kilpatrick, A.F.R.; Layfield, R.A.; Cloke, F.G.N. Ethene Activation and Catalytic Hydrogenation by a Low-Valent Uranium Pentalene Complex. J. Am. Chem. Soc. 2020, 142, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Camp, C.; Cooper, O.; Andrez, J.; Pécaut, J.; Mazzanti, M. CS2 Activation at Uranium(Iii) Siloxide Ate Complexes: The Effect of a Lewis Acidic Site. Dalton Trans. 2015, 44, 2650–2656. [Google Scholar] [CrossRef]
- Lam, O.P.; Heinemann, F.W.; Meyer, K. C-C Bond Formation through Reductive Coupling of CS2 to Yield Uranium Tetrathiooxalate and Ethylenetetrathiolate Complexes. Angew. Chem.—Int. Ed. 2011, 50, 5965–5968. [Google Scholar] [CrossRef]
- Lam, O.P.; Franke, S.M.; Heinemann, F.W.; Meyer, K. Reactivity of U-E-U (E = S, Se) toward CO2, CS2, and COS: New Mixed-Carbonate Complexes of the Types U-CO2E-U (E = S, Se), U-CS2E-U (E = O, Se), and U-COSSe-U. J. Am. Chem. Soc. 2012, 134, 16877–16881. [Google Scholar] [CrossRef]
- Hoerger, C.J.; La Pierre, H.S.; Maron, L.; Scheurer, A.; Heinemann, F.W.; Meyer, K. Reductive Disproportionation of Nitric Oxide Mediated by Low-Valent Uranium. Chem. Commun. 2016, 52, 10854–10857. [Google Scholar] [CrossRef] [PubMed]
- Siladke, N.A.; Meihaus, K.R.; Ziller, J.W.; Fang, M.; Furche, F.; Long, J.R.; Evans, W.J. Synthesis, Structure, and Magnetism of an f Element Nitrosyl Complex, (C5Me4H)3UNO. J. Am. Chem. Soc. 2012, 134, 1243–1249. [Google Scholar] [CrossRef]
- Frey, A.S.P.; Cloke, F.G.N.; Coles, M.P.; Hitchcock, P.B. UIII-Induced Reductive Co-Coupling of NO and CO to Form UIV Cyanate and Oxo Derivates. Chem.—Eur. J. 2010, 16, 9446–9448. [Google Scholar] [CrossRef]
- Kefalidis, C.E.; Frey, A.S.P.; Roe, S.M.; Cloke, F.G.N.; Maron, L. Formation of Cyanates in Low-Valent Uranium Chemistry: A Synergistic Experimental/Theoretical Study. Dalton Trans. 2014, 43, 11202–11208. [Google Scholar] [CrossRef]
- Matson, E.M.; Forrest, W.P.; Fanwick, P.E.; Bart, S.C. Synthesis and Reactivity of Trivalent Tp*U(CH2Ph)2(THF): Insertion vs Oxidation at Low-Valent Uranium-Carbon Bonds. Organometallics 2013, 32, 1484–1492. [Google Scholar] [CrossRef]
- Zuend, S.J.; Lam, O.P.; Heinemann, F.W.; Meyer, K. Carbon Dioxide Insertion into Uranium-Activated Dicarbonyl Complexes. Angew. Chem.—Int. Ed. 2011, 50, 10626–10630. [Google Scholar] [CrossRef] [PubMed]
- David J Arney, G.S.; Burns, C.J. Synthesis and Structure of High-Valent Organouranium Containing Terminal Monooxo Functional. J. Am. Chem. Soc 1993, 115, 3939. [Google Scholar] [CrossRef]
- Tsoureas, N.; Kilpatrick, A.F.R.; Inman, C.J.; Cloke, F.G.N. Steric Control of Redox Events in Organo-Uranium Chemistry: Synthesis and Characterisation of U(v) Oxo and Nitrido Complexes. Chem. Sci. 2016, 7, 4624–4632. [Google Scholar] [CrossRef] [PubMed]
- King, D.M.; Tuna, F.; McMaster, J.; Lewis, W.; Blake, A.J.; McInnes, E.J.L.; Liddle, S.T. Single-Molecule Magnetism in a Single-Ion Triamidoamine Uranium(V) Terminal Mono-Oxo Complex. Angew. Chem.—Int. Ed. 2013, 52, 4921–4924. [Google Scholar] [CrossRef]
- Smiles, D.E.; Wu, G.; Hayton, T.W. Synthesis of Uranium-Ligand Multiple Bonds by Cleavage of a Trityl Protecting Group. J. Am. Chem. Soc. 2014, 136, 96–99. [Google Scholar] [CrossRef]
- Brown, J.L.; Fortier, S.; Lewis, R.A.; Wu, G.; Hayton, T.W. A Complete Family of Terminal Uranium Chalcogenides, [U(E)(N{SiMe3}2)3]− (E = O, S, Se, Te). J. Am. Chem. Soc. 2012, 134, 15468–15475. [Google Scholar] [CrossRef]
- Smiles, D.E.; Wu, G.; Hayton, T.W. Synthesis of Terminal Monochalcogenide and Dichalcogenide Complexes of Uranium Using Polychalcogenides, [En]2− (E = Te, n = 2; E = Se, n = 4), as Chalcogen Atom Transfer Reagents. Inorg. Chem. 2014, 53, 10240–10247. [Google Scholar] [CrossRef]
- Kraft, S.J.; Walensky, J.; Fanwick, P.E.; Hall, M.B.; Bart, S.C. Crystallographic Evidence of a Base-Free Uranium(IV) Terminal Oxo Species. Inorg. Chem. 2010, 49, 7620–7622. [Google Scholar] [CrossRef]
- Arnold, P.L.; Puig-Urrea, L.; Wells, J.A.L.; Yuan, D.; Cruickshank, F.L.; Young, R.D. Applications of Boroxide Ligands in Supporting Small Molecule Activation by U(Iii) and U(Iv) Complexes. Dalton Trans. 2019, 48, 4894–4905. [Google Scholar] [CrossRef]
- Zi, G.; Jia, L.; Werkema, E.L.; Walter, M.D.; Gottfriedsen, J.P.; Andersen, R.A. Preparation and Reactions of Base-Free Bis(1,2,4-Tri-Tert-Butylcyclopentadienyl)Uranium Oxide, Cp′2UO. Organometallics 2005, 24, 4251–4264. [Google Scholar] [CrossRef]
- Evans, W.J.; Kozimor, S.A.; Ziller, J.W. Bis(Pentamethylcyclopentadienyl) U(III) Oxide and U(IV) Oxide Carbene Complexes. Polyhedron 2004, 23, 2689–2694. [Google Scholar] [CrossRef]
- Fortier, S.; Brown, J.L.; Kaltsoyannis, N.; Wu, G.; Hayton, T.W. Synthesis, Molecular and Electronic Structure of U V(O) [N(SiMe3)2]3. Inorg. Chem. 2012, 51, 1625–1633. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Liang, J.; Sun, R.; Wang, Y.; Fu, P.X.; Wang, B.W.; Gao, S.; Huang, W. Accessing Five Oxidation States of Uranium in a Retained Ligand Framework. Nat. Commun. 2023, 14, 4657. [Google Scholar] [CrossRef] [PubMed]
- Settineri, N.S.; Shiau, A.A.; Arnold, J. Two-Electron Oxidation of a Homoleptic U(Iii) Guanidinate Complex by Diphenyldiazomethane. Chem. Commun. 2018, 54, 10913–10916. [Google Scholar] [CrossRef]
- King, D.M.; Tuna, F.; McInnes, E.J.L.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. Isolation and Characterization of a Uranium(VI)-Nitride Triple Bond. Nat. Chem. 2013, 5, 482–488. [Google Scholar] [CrossRef] [PubMed]
- King, D.M.; Tuna, F.; McInnes, E.J.L.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. Synthesis and Structure of a Terminal Uranium Nitride Complex. Science (1979) 2012, 337, 717–720. [Google Scholar] [CrossRef]
- King, D.M.; Atkinson, B.E.; Chatelain, L.; Gregson, M.; Seed, J.A.; Wooles, A.J.; Kaltsoyannis, N.; Liddle, S.T. Uranium-Nitride Chemistry: Uranium-Uranium Electronic Communication Mediated by Nitride Bridges. Dalton Trans. 2022, 51, 8855–8864. [Google Scholar] [CrossRef]
- Du, J.; King, D.M.; Chatelain, L.; Lu, E.; Tuna, F.; McInnes, E.J.L.; Wooles, A.J.; Maron, L.; Liddle, S.T. Thorium- and Uranium-Azide Reductions: A Transient Dithorium-Nitride: Versus Isolable Diuranium-Nitrides. Chem. Sci. 2019, 10, 3738–3745. [Google Scholar] [CrossRef]
- Cleaves, P.A.; King, D.M.; Kefalidis, C.E.; Maron, L.; Tuna, F.; McInnes, E.J.L.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. Two-Electron Reductive Carbonylation of Terminal Uranium(V) and Uranium(VI) Nitrides to Cyanate by Carbon Monoxide. Angew. Chem.—Int. Ed. 2014, 53, 10412–10415. [Google Scholar] [CrossRef]
- Evans, W.J.; Kozimor, S.A.; Ziller, J.W. Chemistry: Molecular Octa-Uranium Rings with Alternating Nitride and Azide Bridges. Science (1979) 2005, 309, 1835–1838. [Google Scholar] [CrossRef]
- Thomson, R.K.; Cantat, T.; Scott, B.L.; Morris, D.E.; Batista, E.R.; Kiplinger, J.L. Uranium Azide Photolysis Results in C-H Bond Activation and Provides Evidence for a Terminal Uranium Nitride. Nat. Chem. 2010, 2, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Barluzzi, L.; Scopelliti, R.; Mazzanti, M. Photochemical Synthesis of a Stable Terminal Uranium(VI) Nitride. J. Am. Chem. Soc. 2020, 142, 19047–19051. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, C.T.; Scopelliti, R.; Zivkovic, I.; Mazzanti, M. C-H Bond Activation by an Isolated Dinuclear U(III)/U(IV) Nitride. J. Am. Chem. Soc. 2020, 142, 3149–3157. [Google Scholar] [CrossRef] [PubMed]
- Barluzzi, L.; Hsueh, F.C.; Scopelliti, R.; Atkinson, B.E.; Kaltsoyannis, N.; Mazzanti, M. Synthesis, Structure, and Reactivity of Uranium(vi) Nitrides. Chem. Sci. 2021, 12, 8096–8104. [Google Scholar] [CrossRef]
- Staun, S.L.; Wu, G.; Lukens, W.W.; Hayton, T.W. Synthesis of a Heterobimetallic Actinide Nitride and an Analysis of Its Bonding. Chem. Sci. 2021, 12, 15519–15527. [Google Scholar] [CrossRef]
- Tatebe, C.J.; Zeller, M.; Bart, S.C. [2π+2π] Cycloaddition of Isocyanates to Uranium(IV) Imido Complexes for the Synthesis of U(IV) Κ2-Ureato Compounds. Inorg. Chem. 2017, 56, 1956–1965. [Google Scholar] [CrossRef]
- Evans, W.J.; Miller, K.A.; Ziller, J.W.; Greaves, J. Analysis of Uranium Azide and Nitride Complexes by Atmospheric Pressure Chemical Ionization Mass Spectrometry. Inorg. Chem. 2007, 46, 8008–8018. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.; Mindiola, D.J.; Baker, T.A.; Davis, W.M.; Cummins, C.C. Uranium Hexakisamido Complexes. Angew. Chem.—Int. Ed. 2000, 39, 3063–3066. [Google Scholar] [CrossRef]
- Anderson, N.H.; Yin, H.; Kiernicki, J.J.; Fanwick, P.E.; Schelter, E.J.; Bart, S.C. Investigation of Uranium Tris(Imido) Complexes: Synthesis, Characterization, and Reduction Chemistry of [U(NDIPP)3(Thf)3]. Angew. Chem. 2015, 127, 9518–9521. [Google Scholar] [CrossRef]
- Anderson, N.H.; Odoh, S.O.; Yao, Y.; Williams, U.J.; Schaefer, B.A.; Kiernicki, J.J.; Lewis, A.J.; Goshert, M.D.; Fanwick, P.E.; Schelter, E.J.; et al. Harnessing Redox Activity for the Formation of Uranium Tris(Imido) Compounds. Nat. Chem. 2014, 6, 919–926. [Google Scholar] [CrossRef]
- Hayton, T.W.; Boncella, J.M.; Scott, B.L.; Batista, E.R.; Hay, P.J. Synthesis and Reactivity of the Imido Analogues of the Uranyl Ion. J. Am. Chem. Soc. 2006, 128, 10549–10559. [Google Scholar] [CrossRef] [PubMed]
- Hayton, T.W.; Boncella, J.M.; Scott, B.L.; Palmer, P.D.; Batista, E.R.; Hay, J.P. Synthesis of Imido Analogs of the Uranyl Ion. Science (1979) 2005, 310, 1941–1943. [Google Scholar] [CrossRef] [PubMed]
- Lam, O.P.; Franke, S.M.; Nakai, H.; Heinemann, F.W.; Hieringer, W.; Meyer, K. Observation of the Inverse Trans Influence (ITI) in a Uranium(V) Imide Coordination Complex: An Experimental Study and Theoretical Evaluation. Inorg. Chem. 2012, 51, 6190–6199. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.H.; Xie, J.; Ray, D.; Zeller, M.; Gagliardi, L.; Bart, S.C. Elucidating Bonding Preferences in Tetrakis(Imido)Uranate(VI) Dianions. Nat. Chem. 2017, 9, 850–855. [Google Scholar] [CrossRef]
- Andersen, R.A.; Brennan, J.G. Electron-Transfer Reactions of Trivalent Uranium. Preparation and Structure of (MeC5H4)3U=NPh and [(MeC5H4)3U]2[μ-η1,η1-PhNCO]. J. Am. Chem. Soc. 1985, 107, 514–516. [Google Scholar] [CrossRef]
- Tsoureas, N.; Cloke, F.G.N. Mixed Sandwich Imido Complexes of Uranium(V) and Uranium(IV): Synthesis, Structure and Redox Behaviour. J. Organomet. Chem. 2018, 857, 25–33. [Google Scholar] [CrossRef]
- Vlaisavljevich, B.; Diaconescu, P.L.; Lukens, W.L.; Gagliardi, L.; Cummins, C.C. Investigations of the Electronic Structure of Arene-Bridged Diuranium Complexes. Organometallics 2013, 32, 1341–1352. [Google Scholar] [CrossRef]
- Mullane, K.C.; Cheisson, T.; Nakamaru-Ogiso, E.; Manor, B.C.; Carroll, P.J.; Schelter, E.J. Reduction of Carbonyl Groups by Uranium(III) and Formation of a Stable Amide Radical Anion. Chem.—Eur. J. 2018, 24, 826–837. [Google Scholar] [CrossRef]
- Arnold, P.L. Uranium-Mediated Activation of Small Molecules. Chem. Commun. 2011, 47, 9005–9010. [Google Scholar] [CrossRef]
- Boreen, M.A.; Arnold, J. The Synthesis and Versatile Reducing Power of Low-Valent Uranium Complexes. Dalton Trans. 2020, 49, 15124–15138. [Google Scholar] [CrossRef]
- Liddle, S.T. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg. Chem. 2024, 63, 9366–9384. [Google Scholar] [CrossRef] [PubMed]
- Hartline, D.R.; Meyer, K. From Chemical Curiosities and Trophy Molecules to Uranium-Based Catalysis: Developments for Uranium Catalysis as a New Facet in Molecular Uranium Chemistry. JACS Au 2021, 1, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Gardner, B.M.; Liddle, S.T. Small-Molecule Activation at Uranium(III). Eur. J. Inorg. Chem. 2013, 2013, 3753–3770. [Google Scholar] [CrossRef]
- Liddle, S.T. The Renaissance of Non-Aqueous Uranium Chemistry. Angew. Chem. 2015, 127, 8726–8764. [Google Scholar] [CrossRef]
- Lam, O.P.; Heinemann, F.W.; Meyer, K. A New Diamantane Functionalized Tris(Aryloxide) Ligand System for Small Molecule Activation Chemistry at Reactive Uranium Complexes. C. R. Chim. 2010, 13, 803–811. [Google Scholar] [CrossRef]
- Andrews, L.; Zhou, M.; Liang, B.; Li, J.; Bursten, B.E. Reactions of Laser-Ablated U and Th with CO2: Neon Matrix Infrared Spectra and Density Functional Calculations of OUCO, OThCO, and Other Products. J. Am. Chem. Soc. 2000, 122, 11440–11449. [Google Scholar] [CrossRef]
- Mclaren, A.B.; Kanellakopulos, B.; Dornberger, E. Unexpected chemistry in the reduction of uranium cyclopentadienides. Inorg. Nucl. Chem. Lett. 1980, 16, 223–225. [Google Scholar] [CrossRef]
- Diaconescu, P.L.; Arnold, P.L.; Baker, T.A.; Mindiola, D.J.; Cummins, C.C. Arene-Bridged Diuranium Complexes: Inverted Sandwiches Supported by δ Backbonding. J. Am. Chem. Soc. 2000, 122, 6108–6109. [Google Scholar] [CrossRef]
- Evans, W.J.; Kozimor, S.A.; Ziller, J.W.; Kaltsoyannis, N. Structure, Reactivity, and Density Functional Theory Analysis of the Six-Electron Reductant, [(C5Me5)2U]2(μ-η6:η6-C6H6), Synthesized via a New Mode of (C5Me5)3M Reactivity. J. Am. Chem. Soc. 2004, 126, 14533–14547. [Google Scholar] [CrossRef]
- Liddle, S.T. Inverted Sandwich Arene Complexes of Uranium. Coord. Chem. Rev. 2015, 293–294, 211–227. [Google Scholar] [CrossRef]
- Evans, W.J. Tutorial on the Role of Cyclopentadienyl Ligands in the Discovery of Molecular Complexes of the Rare-Earth and Actinide Metals in New Oxidation States. Organometallics 2016, 35, 3088–3100. [Google Scholar] [CrossRef]
- Macdonald, M.R.; Bates, J.E.; Ziller, J.W.; Furche, F.; Evans, W.J. Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+. J. Am. Chem. Soc. 2013, 135, 9857–9868. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, H.M.; Mills, D.P. Lanthanides: Divalent Organometallic Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: New York, NY, USA, 2017; pp. 1–10. [Google Scholar]
- Cassani, M.C.; Lappert, M.F.; Laschi, F. First Identification by EPR Spectra of Lanthanum(II) Organometallic (and E1/2 for La3+ → La2+) in the C-O Bond Activation of Dimethoxyethane. Chem. Commun. 1997, 1563–1564. [Google Scholar] [CrossRef]
- Hitchcock, P.B.; Lappert, M.F.; Maron, L.; Protchenko, A.V. Lanthanum Does Form Stable Molecular Compounds in the +2 Oxidation State. Angew. Chem.—Int. Ed. 2008, 47, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Windorff, C.J.; MacDonald, M.R.; Meihaus, K.R.; Ziller, J.W.; Long, J.R.; Evans, W.J. Expanding the Chemistry of Molecular U2+ Complexes: Synthesis, Characterization, and Reactivity of the {[C5H3(SiMe3)2]3U}− Anion. Chem.—Eur. J. 2016, 22, 772–782. [Google Scholar] [CrossRef]
- Windorff, C.J.; Evans, W.J. 29Si NMR Spectra of Silicon-Containing Uranium Complexes. Organometallics 2014, 33, 3786–3791. [Google Scholar] [CrossRef]
- Wedal, J.C.; Barlow, J.M.; Ziller, J.W.; Yang, J.Y.; Evans, W.J. Electrochemical Studies of Tris(Cyclopentadienyl)Thorium and Uranium Complexes in the +2, +3, and +4 Oxidation States. Chem. Sci. 2021, 12, 8501–8511. [Google Scholar] [CrossRef]
- Huh, D.N.; Ziller, J.W.; Evans, W.J. Chelate-Free Synthesis of the U(II) Complex, [(C5H3(SiMe3)2)3U]1−, Using Li and Cs Reductants and Comparative Studies of La(II) and Ce(II) Analogs. Inorg. Chem. 2018, 57, 11809–11814. [Google Scholar] [CrossRef]
- Parry, J.; Carmona, E.; Coles, S.; Hursthouse, M. Synthesis and Single Crystal X-Ray Diffraction on the First Isolable Carbonyl Complex of an Actinide, (C5Me4H)3U(CO). J. Am. Chem. Soc. 1995, 117, 2649–2650. [Google Scholar] [CrossRef]
- Ryan, A.J.; Angadol, M.A.; Ziller, J.W.; Evans, W.J. Isolation of U(Ii) Compounds Using Strong Donor Ligands, C5Me4H and N(SiMe3)2, Including a Three-Coordinate U(Ii) Complex. Chem. Commun. 2019, 55, 2325–2327. [Google Scholar] [CrossRef]
- Jenkins, T.F.; Woen, D.H.; Mohanam, L.N.; Ziller, J.W.; Furche, F.; Evans, W.J. Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in [K(2.2.2-Cryptand)][(C5Me4H)3Ln] Complexes. Organometallics 2018, 37, 3863–3873. [Google Scholar] [CrossRef]
- Guo, F.; Tsoureas, N.; Huang, G.; Tong, M.; Mansikkamäki, A.; Layfield, R.A. Isolation of a Perfectly Linear Uranium(II) Metallocene. Angew. Chem. 2020, 132, 2319–2323. [Google Scholar] [CrossRef]
- Streitweiser, A.; Muller-Westerhoff, U. Bis(Cyclooctatetraeny Uranium (Uranocene). J. Am. Chem. Soc. 1968, 90, 7364. [Google Scholar] [CrossRef]
- Boreen, M.A.; Lussier, D.J.; Skeel, B.A.; Lohrey, T.D.; Watt, F.A.; Shuh, D.K.; Long, J.R.; Hohloch, S.; Arnold, J. Structural, Electrochemical, and Magnetic Studies of Bulky Uranium(III) and Uranium(IV) Metallocenes. Inorg. Chem. 2019, 58, 16629–16641. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.S.; Chen, Y.C.; Tong, M.L.; Mansikkamäki, A.; Layfield, R.A. Uranocenium: Synthesis, Structure, and Chemical Bonding. Angew. Chem.—Int. Ed. 2019, 58, 10163–10167. [Google Scholar] [CrossRef]
- McClain, K.R.; Gould, C.A.; Marchiori, D.A.; Kwon, H.; Nguyen, T.T.; Rosenkoetter, K.E.; Kuzmina, D.; Tuna, F.; Britt, R.D.; Long, J.R.; et al. Divalent Lanthanide Metallocene Complexes with a Linear Coordination Geometry and Pronounced 6s-5d Orbital Mixing. J. Am. Chem. Soc. 2022, 144, 22193–22201. [Google Scholar] [CrossRef]
- Lapierre, H.S.; Scheurer, A.; Heinemann, F.W.; Hieringer, W.; Meyer, K. Synthesis and Characterization of a Uranium(II) Monoarene Complex Supported by δ-Backbonding. Angew. Chem.—Int. Ed. 2014, 53, 7158–7162. [Google Scholar] [CrossRef]
- Bart, S.C.; Heinemann, F.W.; Anthon, C.; Hauser, C.; Meyer, K. A New Tripodal Ligand System with Steric and Electronic Modularity for Uranium Coordination Chemistry. Inorg. Chem. 2009, 48, 9419–9426. [Google Scholar] [CrossRef]
- Lapierre, H.S.; Kameo, H.; Halter, D.P.; Heinemann, F.W.; Meyer, K. Coordination and Redox Isomerization in the Reduction of a Uranium(III) Monoarene Complex. Angew. Chem.—Int. Ed. 2014, 53, 7154–7157. [Google Scholar] [CrossRef]
- Fieser, M.E.; Palumbo, C.T.; La Pierre, H.S.; Halter, D.P.; Voora, V.K.; Ziller, J.W.; Furche, F.; Meyer, K.; Evans, W.J. Comparisons of Lanthanide/Actinide +2 Ions in a Tris(Aryloxide)Arene Coordination Environment. Chem. Sci. 2017, 8, 7424–7433. [Google Scholar] [CrossRef]
- Billow, B.S.; Livesay, B.N.; Mokhtarzadeh, C.C.; McCracken, J.; Shores, M.P.; Boncella, J.M.; Odom, A.L. Synthesis and Characterization of a Neutral U(II) Arene Sandwich Complex. J. Am. Chem. Soc. 2018, 140, 17369–17373. [Google Scholar] [CrossRef] [PubMed]
- Straub, M.D.; Ouellette, E.T.; Boreen, M.A.; Britt, R.D.; Chakarawet, K.; Douair, I.; Gould, C.A.; Maron, L.; Del Rosal, I.; Villarreal, D.; et al. A Uranium(II) Arene Complex That Acts as a Uranium(I) Synthon. J. Am. Chem. Soc. 2021, 143, 19748–19760. [Google Scholar] [CrossRef]
- Keener, M.; Shivaraam, R.A.K.; Rajeshkumar, T.; Tricoire, M.; Scopelliti, R.; Zivkovic, I.; Chauvin, A.S.; Maron, L.; Mazzanti, M. Multielectron Redox Chemistry of Uranium by Accessing the +II Oxidation State and Enabling Reduction to a U(I) Synthon. J. Am. Chem. Soc. 2023, 145, 16271–16283. [Google Scholar] [CrossRef] [PubMed]
- Wedal, J.C.; Furche, F.; Evans, W.J. Density Functional Theory Analysis of the Importance of Coordination Geometry for 5f36d1versus 5f4Electron Configurations in U(II) Complexes. Inorg. Chem. 2021, 60, 16316–16325. [Google Scholar] [CrossRef]
- Green, M.L.H.; Parkin, G. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry. J. Chem. Educ. 2014, 91, 807–816. [Google Scholar] [CrossRef]
- Wedal, J.C.; Bekoe, S.; Ziller, J.W.; Furche, F.; Evans, W.J. C−H Bond Activation via U(II) in the Reduction of Heteroleptic Bis(Trimethylsilyl)Amide U(III) Complexes. Organometallics 2020, 39, 3425–3432. [Google Scholar] [CrossRef]
- Modder, D.K.; Scopelliti, R.; Mazzanti, M. Accessing a Highly Reducing Uranium(III) Complex through Cyclometalation. Inorg. Chem. 2024, 63, 9527–9538. [Google Scholar] [CrossRef]
- Modder, D.K.; Palumbo, C.T.; Douair, I.; Scopelliti, R.; Maron, L.; Mazzanti, M. Single Metal Four-Electron Reduction by U(II) and Masked “u(II)” Compounds. Chem. Sci. 2021, 12, 6153–6158. [Google Scholar] [CrossRef]
- Modder, D.K.; Palumbo, C.T.; Douair, I.; Fadaei-Tirani, F.; Maron, L.; Mazzanti, M. Delivery of a Masked Uranium(II) by an Oxide-Bridged Diuranium(III) Complex. Angew. Chem.—Int. Ed. 2021, 60, 3737–3744. [Google Scholar] [CrossRef]
- Arliguie, T.; Lance, M.; Nierlich, M.; Vignerb, J.; Ephritikhinea, M. Inverse Cycloheptatrienyl Sandwich Complexes. Crystal Structure of [U(BH4)2(OC4H8)5][[(BH4)3U(μ-η7,η7-C7H7)U(BH4)3]. J. Chem. Soc. Chem. Commun. 1994, 847–848. [Google Scholar] [CrossRef]
- Arliguie, T.; Lance, M.; Nierlich, M.; Ephritikhine, M. Inverse Cycloheptatrienyl Sandwich Complexes of Uranium and Neodymium. J. Chem. Soc. Dalton Trans. 1997, 2501–2504. [Google Scholar] [CrossRef]
- Arliguie, T.; Lance, M.; Nierlich, M.; Vigner, J.; Ephritikhine, M. Synthesis and Crystal Structure of [K(C12H24O6)][U(η-C7H7)2], The First Cycloheptatrienyl Sandwich Compound. J. Chem. Soc. Chem. Commun. 1995, 183–184. [Google Scholar] [CrossRef]
- Keerthi Shivaraam, R.A.; Keener, M.; Modder, D.K.; Rajeshkumar, T.; Živković, I.; Scopelliti, R.; Maron, L.; Mazzanti, M. A Route to Stabilize Uranium(II) and Uranium(I) Synthons in Multimetallic Complexes. Angew. Chem.—Int. Ed. 2023, 62, e202304051. [Google Scholar] [CrossRef]
- Kiernicki, J.J.; Fanwick, P.E.; Bart, S.C. Utility of a Redox-Active Pyridine(Diimine) Chelate in Facilitating Two Electron Oxidative Addition Chemistry at Uranium. Chem. Commun. 2014, 50, 8189–8192. [Google Scholar] [CrossRef]
- Barluzzi, L.; Giblin, S.R.; Mansikkamäki, A.; Layfield, R.A. Identification of Oxidation State +1 in a Molecular Uranium Complex. J. Am. Chem. Soc. 2022, 144, 18229–18233. [Google Scholar] [CrossRef]
- Bratsch, S.G.; Lagowski, J.J. Actinide thermodynamic predictions. 3. Thermodynamics of compounds and aquo-ions of the 2+, 3+, and 4+ oxidation states and standard electrode potentials at 298.15 K. J. Phys. Chem. 1986, 90, 307–312. [Google Scholar] [CrossRef]
- Inman, C.J.; Cloke, F.G.N. The Experimental Determination of Th(Iv)/Th(Iii) Redox Potentials in Organometallic Thorium Complexes. Dalton Trans. 2019, 48, 10782–10784. [Google Scholar] [CrossRef]
- Moehring, S.A.; Evans, W.J. Evaluating Electron-Transfer Reactivity of Complexes of Actinides in +2 and +3 Oxidation States by Using EPR Spectroscopy. Chem.—Eur. J. 2020, 26, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Trinh, M.T.; Wedal, J.C.; Evans, W.J. Evaluating Electrochemical Accessibility of 4fn5d1and 4fn+1 Ln(II) Ions in (C5H4SiMe3)3Ln and (C5Me4H)3Ln Complexes. Dalton Trans. 2021, 50, 14384–14389. [Google Scholar] [CrossRef]
- Riedhammer, J.; Halter, D.P.; Meyer, K. Nonaqueous Electrochemistry of Uranium Complexes: A Guide to Structure-Reactivity Tuning. Chem. Rev. 2023, 123, 7761–7781. [Google Scholar] [CrossRef]
- MacKenzie, I.A.; Wang, L.; Onuska, N.P.R.; Williams, O.F.; Begam, K.; Moran, A.M.; Dunietz, B.D.; Nicewicz, D.A. Discovery and Characterization of an Acridine Radical Photoreductant. Nature 2020, 580, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Windorff, C.J.; Batista, E.R.; Evans, W.J.; Gaunt, A.J.; Janicke, M.T.; Kozimor, S.A.; Scott, B.L.; Woen, D.H.; Yang, P. Identification of the Formal +2 Oxidation State of Neptunium: Synthesis and Structural Characterization of {NpII[C5H3(SiMe3)2]3}1−. J. Am. Chem. Soc. 2018, 140, 7425–7428. [Google Scholar] [CrossRef] [PubMed]
- Windorff, C.J.; Chen, G.P.; Cross, J.N.; Evans, W.J.; Furche, F.; Gaunt, A.J.; Janicke, M.T.; Kozimor, S.A.; Scott, B.L. Identification of the Formal +2 Oxidation State of Plutonium: Synthesis and Characterization of {PuII[C5H3(SiMe3)2]3}−. J. Am. Chem. Soc. 2017, 139, 3970–3973. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.Y.; Lan, J.H.; Wang, C.Z.; Cheng, Z.P.; Chai, Z.F.; Gibson, J.K.; Shi, W.Q. Paving the Way for the Synthesis of a Series of Divalent Actinide Complexes: A Theoretical Perspective. Dalton Trans. 2016, 45, 3102–3110. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Janicke, M.T.; Scott, B.L.; Gaunt, A.J. (An = Np, Pu) Preparation Bypassing An0Metal Precursors: Access to Np3+/Pu3+Nonaqueous and Organometallic Complexes. J. Am. Chem. Soc. 2021, 143, 20680–20696. [Google Scholar] [CrossRef]
- Staun, S.L.; Stevens, L.M.; Smiles, D.E.; Goodwin, C.A.P.; Billow, B.S.; Scott, B.L.; Wu, G.; Tondreau, A.M.; Gaunt, A.J.; Hayton, T.W. Expanding the Nonaqueous Chemistry of Neptunium: Synthesis and Structural Characterization of [Np(NR2)3Cl], [Np(NR2)3Cl]−, and [Np{N(R)(SiMe2CH2)}2(NR2)]-(R = SiMe3). Inorg. Chem. 2021, 60, 2740–2748. [Google Scholar] [CrossRef]
- Pattenaude, S.A.; Anderson, N.H.; Bart, S.C.; Gaunt, A.J.; Scott, B.L. Non-Aqueous Neptunium and Plutonium Redox Behaviour in THF-Access to a Rare Np(III) Synthetic Precursor. Chem. Commun. 2018, 54, 6113–6116. [Google Scholar] [CrossRef] [PubMed]
- Whitefoot, M.A.; Perales, D.; Zeller, M.; Bart, S.C. Synthesis of Non-Aqueous Neptunium(III) Halide Solvates from NpO2. Chem.—Eur. J. 2021, 27, 18054–18057. [Google Scholar] [CrossRef]
- Gaunt, A.J.; Enriquez, A.E.; Reilly, S.D.; Scott, B.L.; Neu, M.P. Structural Characterization of Pu[N(SiMe3)2]3, a Synthetically Useful Nonaqueous Plutonium(III) Precursor. Inorg. Chem. 2008, 47, 26–28. [Google Scholar] [CrossRef]
- Gaunt, A.J.; Reilly, S.D.; Enriquez, A.E.; Hayton, T.W.; Boncella, J.M.; Scott, B.L.; Neu, M.P. Low-Valent Molecular Plutonium Halide Complexes. Inorg. Chem. 2008, 47, 8412–8419. [Google Scholar] [CrossRef]
- Lopez, L.M.; Uible, M.C.; Zeller, M.; Bart, S.C. Lewis Base Adducts of NpCl4. Chem. Commun. 2024, 60, 5956–5959. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.L.; Dutkiewicz, M.S.; Walter, O. Organometallic Neptunium Chemistry. Chem Rev 2017, 117, 11460–11475. [Google Scholar] [CrossRef]
- Dutkiewicz, M.S.; Farnaby, J.H.; Apostolidis, C.; Colineau, E.; Walter, O.; Magnani, N.; Gardiner, M.G.; Love, J.B.; Kaltsoyannis, N.; Caciuffo, R.; et al. Organometallic Neptunium(III) Complexes. Nat. Chem. 2016, 8, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, C.A.P.; Wooles, A.J.; Murillo, J.; Lu, E.; Boronski, J.T.; Scott, B.L.; Gaunt, A.J.; Liddle, S.T. Carbene Complexes of Neptunium. J. Am. Chem. Soc. 2022, 144, 9764–9774. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.J.; Tarlton, M.L.; Kelley, S.P.; Lukens, W.W.; Walensky, J.R. Synthesis and Utility of Neptunium(III) Hydrocarbyl Complex. Angew. Chem. 2019, 131, 15033–15037. [Google Scholar] [CrossRef]
- Dutkiewicz, M.S.; Apostolidis, C.; Walter, O.; Arnold, P.L. Reduction Chemistry of Neptunium Cyclopentadienide Complexes: From Structure to Understanding. Chem. Sci. 2017, 8, 2553–2561. [Google Scholar] [CrossRef]
- Shephard, J.J.; Berryman, V.E.J.; Ochiai, T.; Walter, O.; Price, A.N.; Warren, M.R.; Arnold, P.L.; Kaltsoyannis, N.; Parsons, S. Covalent Bond Shortening and Distortion Induced by Pressurization of Thorium, Uranium, and Neptunium Tetrakis Aryloxides. Nat. Commun. 2022, 13, 5923. [Google Scholar] [CrossRef]
- Long, B.N.; Beltrán-Leiva, M.J.; Celis-Barros, C.; Sperling, J.M.; Poe, T.N.; Baumbach, R.E.; Windorff, C.J.; Albrecht-Schönzart, T.E. Cyclopentadienyl Coordination Induces Unexpected Ionic Am−N Bonding in an Americium Bipyridyl Complex. Nat. Commun. 2022, 13, 201. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Su, J.; Albrecht-Schmitt, T.E.; Blake, A.V.; Batista, E.R.; Daly, S.R.; Dehnen, S.; Evans, W.J.; Gaunt, A.J.; Kozimor, S.A.; et al. [Am(C5Me4H)3]: An Organometallic Americium Complex. Angew. Chem. 2019, 131, 11821–11825. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Su, J.; Stevens, L.M.; White, F.D.; Anderson, N.H.; Auxier, J.D.; Albrecht-Schönzart, T.E.; Batista, E.R.; Briscoe, S.F.; Cross, J.N.; et al. Isolation and Characterization of a Californium Metallocene. Nature 2021, 599, 421–424. [Google Scholar] [CrossRef]
Element | Z | Electronic Configuration |
---|---|---|
Fr a | 87 | [Rn] 7s1 |
Ra a | 88 | [Rn] 7s2 |
Ac | 89 | [Rn] 6d1 7s2 |
Th | 90 | [Rn] 6d2 7s2 |
Pa | 91 | [Rn] 5f2 6d1 7s2 |
U | 92 | [Rn] 5f3 6d1 7s2 |
Np | 93 | [Rn] 5f4 6d1 7s2 |
Pu | 94 | [Rn] 5f6 7s2 |
Am | 95 | [Rn] 5f7 7s2 |
Cm | 96 | [Rn] 5f7 6d1 7s2 |
Bk | 97 | [Rn] 5f9 7s2 |
Cf | 98 | [Rn] 5f10 7s2 |
Es | 99 | [Rn] 5f11 7s2 |
Fm | 100 | [Rn] 5f12 7s2 |
Md | 101 | [Rn] 5f13 7s2 |
No | 102 | [Rn] 5f14 7s2 |
Lr | 103 | [Rn] 5f14 6d1 7s2 |
Compound | U-E (Å) (E = N, O) | U-Arene(Cent) (Å) |
---|---|---|
[UIII{(Ad,MeArO)3Mes}] (77) | 2.158(2), 2.178(2), 2.169(2) | 2.35 |
[K(2.2.2)-crypt)][UII{(Ad,MeArO)3Mes}] (78) | 2.236(4) | 2.18 |
[UIII(NHAriPr6)2I] (79) | 2.390(3), 2.372(3) | 2.777(1), 2.790(1) |
[UII(NHAriPr6)2] (80) | 2.330(2) | 2.405(1) |
[UIII(NHAriPr6)2]+[BARF24]− (113) a,b | 2.283(6), 2.583(3) | 2.573(3), 2.583(3) |
[UIII(κ1-O:η6-TDA)(κ1, κ1-N,O-TDA)2] (77) | 2.310(2) c | 2.602(2) |
K(2.2.2-crypt)][UII(κ1-O:η6-TDA)2] (82) | 2.339(3), 2.356(4) c | 2.334(6) (see also below) |
[UIII(AdTBPN3)] (83) | 2.413(2), 2.427(2), 2.429(2) | 2.34 |
[K(2.2.2)-crypt)] [UII(AdTBPN3)] (84) | 2.477(avg) d | 2.18 |
[UIII[{OSi(OtBu)2Ar}3-arene](THF)] (85) | 2.201(3); 2.209(3); 2.210(3) | 2.485(2) |
[K(THF)2-UII[{OSi(OtBu)2Ar}3-arene](THF)] (86) | 2.236(5); 2.241(5); 2.250(5) | 2.255(9) (see also below) |
[K(2.2.2-crypt.][UII[{OSi(OtBu)2Ar}3-arene](THF)] (86-crypt) | 2.2181(18); 2.2183(18); 2.2197(18) | 2.256(1) |
[UIIIN″3] (87) | 2.320 (avg) | N/A |
[K(2.2.2-crypt)][UIIN″3] (88-U) | 2.373 (avg) | N/A |
Compound | E1/2 Th(IV)/Th(III) a | E1/2 An(III)/(II) a |
---|---|---|
[ThIV(η5-Cp″)3Cl] (6-Cl) [191,221] | −2.96 b/−2.93 c | |
[ThIII(η5-Cp″)3] (5) [191,221] | −2.96 b/−2.93 c | −2.85 c |
[ThIV (η5-Cp″)3Br] (124) [191] | −2.89 c | |
[ThIV (η5-Cp′)3Cl] (125) [191] | −3.14 c | |
[ThIV (η5-Cp′)3Br] (126) [191] | −3.17 c,d | |
[ThIV (η5-CpMe4)3Br] (15-Br) [191] | −3.34 c | |
[ThIII (η5-CpMe4)3] (15) [191] | −3.28 c | |
[K(18-c-6)(THF)2][ThII(η5-Cp″)3] (30) [191] | −2.84 c | |
[K(2.2.2-crypt)] [ThII(η5-Cp″)3] (30) [221] | −2.85 c | |
[ThIV(η8-COTTIPS2)(η5-Cp*)Cl] (53-Cl) [221] | −3.32 b | |
[ThIV(η8-COTTBDMS2)2] (9-Th) [221] | −3.23 b | |
[UIII(η5-Cp″)3] (67′-U) [191] | −2.73 c | |
[K(18-c-6)(THF)2][UII(η5-Cp″)3] (68″-U) [191] | −2.71 c | |
[UIII(η5-Cp′)3] (67′-U) [191] | −2.26 e | |
[K(2.2.2-crypt)][UII(η5-Cp′)3] (68′-U) [191] | −2.27 e | |
[UIII(η5-CpMe4)3] (73) [191] | −3.11 c | |
[UIII {(Ad,MeArO)3Mes}] (77) [203] | −2.495 f | |
[UIII(AdTBPN3)] (84) [146] | −2.40 h | |
[UIII[{OSi(OtBu)2Ar}3-arene](THF)] (86) [207] | −2.52 i | |
[UIII(η5-CpiPr5)2I] (75) [196] | −2.33 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoureas, N.; Vagiakos, I. Recent Advances in Low Valent Thorium and Uranium Chemistry. Inorganics 2024, 12, 275. https://doi.org/10.3390/inorganics12110275
Tsoureas N, Vagiakos I. Recent Advances in Low Valent Thorium and Uranium Chemistry. Inorganics. 2024; 12(11):275. https://doi.org/10.3390/inorganics12110275
Chicago/Turabian StyleTsoureas, Nikolaos, and Ioannis Vagiakos. 2024. "Recent Advances in Low Valent Thorium and Uranium Chemistry" Inorganics 12, no. 11: 275. https://doi.org/10.3390/inorganics12110275
APA StyleTsoureas, N., & Vagiakos, I. (2024). Recent Advances in Low Valent Thorium and Uranium Chemistry. Inorganics, 12(11), 275. https://doi.org/10.3390/inorganics12110275