Effect of Hydrolyzed Frozen Meat on Diet Palatability, Apparent Digestibility, Immune Response, Fecal Microbiota, and Metabolome in British Shorthair Cats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Diet
2.3. Experimental Design
2.4. Chemical Analysis of Diets and Feces
2.5. Fecal 16S rRNA High-Throughput Sequencing Analysis
2.6. Blood Collection and Analyses
2.7. Serum Untargeted Metabolomics Analyses
2.8. Statistical Analysis
3. Results
3.1. Palatability
3.2. Intake, Apparent Total Tract Digestibility, and Fecal Characteristics
3.3. Biochemistry, Antioxidant Capacity and Inflammatory Cytokines
3.4. Fecal Microbiota
3.5. Serum Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Volume of Pet Food Consumption Worldwide from 2014 to 2027 (in Billion Kilograms). Available online: https://www.statista.com/forecasts/1181223/volume-pet-food-worldwide (accessed on 15 September 2022).
- Schleicher, M.; Cash, S.B.; Freeman, L.M. Determinants of pet food purchasing decisions. Can. Vet. J. 2019, 60, 644–650. [Google Scholar] [PubMed]
- Verbrugghe, A.; Hesta, M. Cats and Carbohydrates: The Carnivore Fantasy? Vet. Sci. 2017, 4, 55. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, E.A.; Bosch, G.; Hendriks, W.H. Estimation of the dietary nutrient profile of free-roaming feral cats: Possible implications for nutrition of domestic cats. Br. J. Nutr. 2011, 106, S35–S48. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Vondran, J.C.; Vanchina, M.A.; Jewell, D.E. When fed foods with similar palatability, healthy adult dogs and cats choose different macronutrient compositions. J. Exp. Biol. 2018, 221, 173450. [Google Scholar] [CrossRef]
- Passlack, N.; Thies, L.V.; Vahjen, W.; Zentek, J. Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats. Metabolites 2022, 12, 105. [Google Scholar] [CrossRef]
- Sa, A.; Moreno, Y.; Carciofi, B. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. 2020, 60, 3367–3386. [Google Scholar] [CrossRef]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front. Microbiol. 2020, 11, 1266. [Google Scholar] [CrossRef]
- Cave, N.J. Hydrolyzed Protein Diets for Dogs and Cats. Vet. Clin. North. Am. Small Anim. Pract. 2006, 36, 1251–1268. [Google Scholar] [CrossRef]
- Koopman, R.; Crombach, N.; Gijsen, A.P.; Walrand, S.; Fauquant, J.; Kies, A.K.; Lemosquet, S.; Saris, W.H.; Boirie, Y.; van Loon, L.J. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am. J. Clin. Nutr. 2009, 90, 106–115. [Google Scholar] [CrossRef]
- Gao, R.; Yu, Q.; Shen, Y.; Chu, Q.; Chen, G.; Fen, S.; Yang, M.; Yuan, L.; McClements, D.J.; Sun, Q. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends Food Sci. Technol. 2021, 110, 687–699. [Google Scholar] [CrossRef]
- Zoia, M.T.; Uana, D.S.M.; Bosch, G.; Vasconcellos, R.S. Effects of enzymatically hydrolysed poultry byproduct meal in extruded diets on serum angiotensin-converting enzyme activity and aldosterone in cats. Arch. Anim. Nutr. 2021, 75, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Szczepanik, M.P.; Golynski, M.; Wilkolek, P.; Kalisz, G. Evaluation of a hydrolysed salmon and pea hypoallergenic diet application in dogs and cats with cutaneous adverse food reaction. Pol. J. Vet. Sci. 2022, 25, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kathrani, A.; Yen, S.; Swann, J.R.; Hall, E.J. The effect of a hydrolyzed protein diet on the fecal microbiota in cats with chronic enteropathy. Sci. Rep. 2022, 12, 2746. [Google Scholar] [CrossRef] [PubMed]
- Folador, J.F.; Karr-Lilienthal, L.K.; Parsons, C.M.; Bauer, L.L.; Utterback, P.L.; Schasteen, C.S.; Bechtel, P.J.; Fahey, G.J. Fish meals, fish components, and fish protein hydrolysates as potential ingredients in pet foods. J. Anim. Sci. 2006, 84, 2752–2765. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.F.; Garcia-Bejar, B.; Bang-Berthelsen, C.H.; Hansen, E.B. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int. J. Food Microbiol. 2022, 381, 109889. [Google Scholar] [CrossRef]
- Joye, I. Protein Digestibility of Cereal Products. Foods 2019, 8, 199. [Google Scholar] [CrossRef]
- Aldrich, G.C.; Koppel, K. Pet Food Palatability Evaluation: A Review of Standard Assay Techniques and Interpretation of Results with a Primary Focus on Limitations. Animals 2015, 5, 43–55. [Google Scholar] [CrossRef]
- Carciofi, A.C.; Takakura, F.S.; De-Oliveira, L.D.; Teshima, E.; Jeremias, J.T.; Brunetto, M.A.; Prada, F. Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response. J. Anim. Physiol. N 2008, 92, 326–336. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Etemadian, Y.; Ghaemi, V.; Shaviklo, A.R.; Pourashouri, P.; Sadeghi Mahoonak, A.R.; Rafipour, F. Development of animal/plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. J. Clean. Prod. 2021, 278, 123219. [Google Scholar] [CrossRef]
- Fawale, O.S.; Gbadamosi, S.O.; Ige, M.M.; Kadiri, O. Effects of cooking and fermentation on the chemical composition, functional, and antinutritional properties of kariya (Hildergardia barteri) seeds. Food Sci. Nutr. 2017, 5, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.N.; Mir, N.A.; Wadhwa, R.; Tushir, S.; Sethi, S.; Anurag, R.K.; Oberoi, H.S. Hydrolysis of peanut (Arachis hypogea L) protein concentrate by fungal crude protease extract: Effect on structural, functional and in-vitro protein digestibility. J. Food Sci. Technol. Mys. 2022, 59, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e1538. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, Z.; Dai, Z.; Wang, G.; Wu, G. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J. Anim. Sci. Biotechnol. 2017, 8, 24. [Google Scholar] [CrossRef]
- Loeffler, A.; Lloyd, D.H.; Bond, R.; Kim, J.Y.; Pfeiffer, D.U. Dietary trials with a commercial chicken hydrolysate diet in 63 pruritic dogs. Vet. Rec. 2004, 154, 519–522. [Google Scholar] [CrossRef]
- Selamassakul, O.; Laohakunjit, N.; Kerdchoechuen, O.; Yang, L.; Maier, C.S. Bioactive peptides from brown rice protein hydrolyzed by bromelain: Relationship between biofunctional activities and flavor characteristics. J. Food Sci. 2020, 85, 707–717. [Google Scholar] [CrossRef]
- Miraglia, D.G.M.; D’Auria, E.; Peroni, D.; Palazzo, S.; Radaelli, G.; Comberiati, P.; Galdo, F.; Maiello, N.; Riva, E. Flavor, relative palatability and components of cow’s milk hydrolysed formulas and amino acid-based formula. Ital. J. Pediatr. 2015, 41, 42. [Google Scholar] [CrossRef]
- Cho, M.J.; Unklesbay, N.; Hsieh, F.H.; Clarke, A.D. Hydrophobicity of bitter peptides from soy protein hydrolysates. J. Agric. Food Chem. 2004, 52, 5895–5901. [Google Scholar] [CrossRef]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet(-)Microbe(-)Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef]
- Nylund, L.; Nermes, M.; Isolauri, E.; Salminen, S.; de Vos, W.M.; Satokari, R. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy 2015, 70, 241–244. [Google Scholar] [CrossRef]
- Verduci, E.; Salvatore, S.; Bresesti, I.; Di Profio, E.; Pendezza, E.; Bosetti, A.; Agosti, M.; Zuccotti, G.V.; D’Auria, E. Semi-Elemental and Elemental Formulas for Enteral Nutrition in Infants and Children with Medical Complexity-Thinking about Cow’s Milk Allergy and Beyond. Nutrients 2021, 13, 4230. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Cerquetella, M.; Gavazza, A.; Galosi, L.; Berardi, S.; Mangiaterra, S.; Mari, S.; Suchodolski, J.S.; Lidbury, J.A.; Steiner, J.M.; et al. Rapid Resolution of Large Bowel Diarrhea after the Administration of a Combination of a High-Fiber Diet and a Probiotic Mixture in 30 Dogs. Vet. Sci. 2020, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Jamalzad Falah, F.; Rajabi Islami, H.; Shamsaie Mehrgan, M. Dietary folic acid improved growth performance, immuno-physiological response and antioxidant status of fingerling Siberian sturgeon, Acipenser baerii (Brandt 1896). Aquac. Rep. 2020, 17, 100391. [Google Scholar] [CrossRef]
- Insoft, R.M.; Sanderson, I.R.; Walker, W.A. Development of immune function in the intestine and its role in neonatal diseases. Pediatr. Clin. N. Am. 1996, 43, 551–571. [Google Scholar] [CrossRef] [PubMed]
- Kathrani, A.; Hall, E. A preliminary study assessing cytokine production following ex vivo stimulation of whole blood with diet in dogs with chronic enteropathy. Bmc Vet. Res. 2019, 15, 185. [Google Scholar] [CrossRef]
- Dang, T.D.; Tang, M.L.K.; Koplin, J.J.; Licciardi, P.V.; Eckert, J.K.; Tan, T.; Gurrin, L.C.; Ponsonby, A.L.; Dharmage, S.C.; Allen, K.J.; et al. Characterization of plasma cytokines in an infant population cohort of challenge-proven food allergy. Allergy Cph. 2013, 68, 1233–1240. [Google Scholar] [CrossRef]
- Shandilya, U.K.; Kapila, R.; Singh, S.; Dahiya, D.; Kapila, S.; Kansal, V.K. Induction of immune tolerance to caseins and whey proteins by oral intubation in mouse allergy model. J. Anim. Physiol. N 2014, 98, 467–475. [Google Scholar] [CrossRef]
- Brown, P.; Nair, B.; Mahajan, S.D.; Sykes, D.E.; Rich, G.; Reynolds, J.L.; Aalinkeel, R.; Wheeler, J.; Schwartz, S.A. Single nucleotide polymorphisms (SNPs) in key cytokines may modulate food allergy phenotypes. Eur. Food Res. Technol. 2012, 235, 971–980. [Google Scholar] [CrossRef]
- Tanaka, S.; Ninomiya, T.; Taniguchi, M.; Tokumoto, M.; Masutani, K.; Ooboshi, H.; Kitazono, T.; Tsuruya, K. Impact of blood urea nitrogen to creatinine ratio on mortality and morbidity in hemodialysis patients: The Q-Cohort Study. Sci. Rep. 2017, 7, 14901. [Google Scholar] [CrossRef]
- Kieler, I.N.; Osto, M.; Hugentobler, L.; Puetz, L.; Gilbert, M.; Hansen, T.; Pedersen, O.; Reusch, C.E.; Zini, E.; Lutz, T.A.; et al. Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Sci. Rep. 2019, 9, 4822. [Google Scholar] [CrossRef]
- Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut Bifidobacteria Populations in Human Health and Aging. Front. Microbiol. 2016, 7, 1204. [Google Scholar] [CrossRef] [PubMed]
- Lazzi, C.; Meli, F.; Lambertini, F.; Bottesini, C.; Nikolaev, I.; Gatti, M.; Sforza, S.; Koroleva, O.; Popov, V.; Neviani, E.; et al. Growth promotion of Bifidobacterium and Lactobacillus species by proteinaceous hydrolysates derived from poultry processing leftovers. Int. J. Food Sci. Technol. 2013, 48, 341–349. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Li, H.; Liu, X. The potential of proteins, hydrolysates and peptides as growth factors for Lactobacillus and Bifidobacterium: Current research and future perspectives. Food Funct. 2020, 11, 1946–1957. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Brailey, P.M.; Lebrusant-Fernandez, M.; Barral, P. NKT cells and the regulation of intestinal immunity: A two-way street. Febs J. 2020, 287, 1686–1699. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Yun, S.W.; Han, M.J.; Jang, S.E.; Kim, D.H. IL-10 Expression-Inducing Gut Bacteria Alleviate High-Fat Diet-Induced Obesity and Hyperlipidemia in Mice. J. Microbiol. Biotechnol. 2020, 30, 599–603. [Google Scholar] [CrossRef]
- Wu, Y.T.; Shen, S.J.; Liao, K.F.; Huang, C.Y. Dietary Plant and Animal Protein Sources Oppositely Modulate Fecal Bilophila and Lachnoclostridium in Vegetarians and Omnivores. Microbiol. Spectr. 2022, 10, e204721. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Amat, S.; Lantz, H.; Munyaka, P.M.; Willing, B.P. Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms 2020, 8, 1584. [Google Scholar] [CrossRef]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Z.; Wu, W.; Lin, Q.; Liang, Y. High animal protein diet and gut microbiota in human health. Crit. Rev. Food Sci. 2022, 62, 6225–6237. [Google Scholar] [CrossRef] [PubMed]
- Peled, S.; Livney, Y.D. The role of dietary proteins and carbohydrates in gut microbiome composition and activity: A review. Food Hydrocoll. 2021, 120, 106911. [Google Scholar] [CrossRef]
- Canfora, E.E.; Meex, R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Vitek, L.; Haluzik, M. The role of bile acids in metabolic regulation. J. Endocrinol. 2016, 228, R85–R96. [Google Scholar] [CrossRef] [PubMed]
- Jeusette, I.; Tami, G.; Fernandez, A.; Torre, C.; Tvarijonaviciute, A.; Ceron, J.; Salas-Mani, A.; Fatjò, J. Evaluation of a new prescription diet with lemon balm, fish peptides, oligofructose and L-tryptophan to reduce urinary cortisol, used as a marker of stress, in cats. J. Vet. Behav. 2021, 42, 30–36. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef]
- Bacqué-Cazenave, J.; Bharatiya, R.; Barrière, G.; Delbecque, J.P.; Bouguiyoud, N.; Di Giovanni, G.; Cattaert, D.; De Deurwaerdère, P. Serotonin in Animal Cognition and Behavior. Int. J. Mol. Sci. 2020, 21, 1649. [Google Scholar] [CrossRef]
Group 1 | N (Male–Female) | Age (M) | Weight (kg) |
---|---|---|---|
MM | 8 (2:6) | 1.68 ± 0.26 | 4.16 ± 0.16 |
FM | 8 (2:6) | 1.66 ± 0.35 | 4.17 ± 0.21 |
HFM | 8 (2:6) | 1.65 ± 0.29 | 4.17 ± 0.11 |
Items | Diets | ||
---|---|---|---|
MM | FM | HFM | |
Ingredients, (as-is basis, %) | |||
Chicken meat meal | 36 | ||
Fish meat meal | 36 | ||
Dehydrated frozen chicken meat | 33 | ||
Dehydrated frozen salmon meat | 33 | ||
Dehydrated hydrolyzed frozen chicken meat | 33 | ||
Dehydrated hydrolyzed frozen salmon meat | 33 | ||
Sweet potato flour | 8 | 9 | 9 |
Cassava flour | 8 | 9 | 9 |
Chicken oil | 5 | 8 | 8 |
Fish oil | 1.6 | 2.6 | 2.6 |
Alfalfa granule | 4 | 4 | 4 |
Vitamins and minerals premix 1 | 1 | 1 | 1 |
Yucca | 0.2 | 0.2 | 0.2 |
Plantago | 0.1 | 0.1 | 0.1 |
Madder | 0.1 | 0.1 | 0.1 |
Analytical composition (DM basis, %) | |||
DM | 91.02 | 91.29 | 91.26 |
CP | 58.29 | 60.52 | 59.55 |
Fat | 17.73 | 17.64 | 17.44 |
Ash | 10.25 | 4.94 | 5.07 |
GE, kcal/g | 5.66 | 5.81 | 5.69 |
Items | Diet | SEM | p-Value | ||
---|---|---|---|---|---|
MM | FM | HFM | |||
Intake [g/(kg BW0.67·d)] | |||||
FI | 15.45 a | 15.11 b | 15.34 a,b | 0.04 | 0.097 |
DM | 14.06 | 13.7 | 14.00 | 0.06 | 0.147 |
GE [kcal/(kg BW0.67·d)] | 79.57 | 80.11 | 79.66 | 0.53 | 0.765 |
Apparent total tract digestibility (%) | |||||
DM | 80.95 b | 88.81 a | 89.46 a | 0.02 | 0.003 |
CP | 90.66 b | 92.25 a | 93.51 a | 0.01 | 0.045 |
Fat | 91.92 | 90.58 | 90.73 | 0.11 | 0.445 |
Fecal characteristics | |||||
Fecal score | 2.61 b | 2.85 a,b | 3.10 a | 0.32 | 0.068 |
Items | MM | FM | HFM | SEM | p-Value |
---|---|---|---|---|---|
ALB g/L | 30.27 | 26.20 | 30.14 | 1.11 | 0.250 |
TP g/L | 83.15 | 75.36 | 87.60 | 2.98 | 0.226 |
GLOB g/L | 52.91 | 49.17 | 57.49 | 2.38 | 0.354 |
AGR | 0.59 | 0.53 | 0.54 | 0.02 | 0.598 |
AST U/L | 23.33 | 19.43 | 23.75 | 1.29 | 0.331 |
ALT U/L | 27.33 | 21.33 | 27.38 | 1.45 | 0.167 |
CK U/L | 269.33 | 139.28 | 203.13 | 24.22 | 0.104 |
Crea μmol/L | 127.70 | 140.23 | 145.36 | 7.04 | 0.614 |
BUN mmol/L | 7.77 | 6.66 | 6.53 | 0.34 | 0.290 |
BCR | 62.88 a | 47.33 b | 44.93 b | 2.32 | 0.001 |
GLU mmol/L | 4.92 a | 4.03 b | 4.68 a | 0.18 | 0.018 |
TG mmol/L | 0.52 | 0.42 | 0.49 | 0.03 | 0.429 |
Ca mmol/L | 2.30 | 2.07 | 2.29 | 0.07 | 0.289 |
PHOS mmol/L | 1.90 | 1.67 | 2.00 | 0.09 | 0.271 |
Items | MM | FM | HFM | SEM | p-Value |
---|---|---|---|---|---|
MDA (nmol/mL) | 2.87 | 2.46 | 2.81 | 0.25 | 0.798 |
SOD (U/ML) | 14.03 | 14.21 | 13.53 | 0.74 | 0.833 |
CAT (U/ML) | 1.09 | 1.62 | 1.02 | 0.17 | 0.397 |
GSH-PX (U/mL) | 1521.34 | 1416.16 | 1241.02 | 58.38 | 0.137 |
T-AOC (mM) | 0.84 | 0.84 | 0.87 | 0.02 | 0.573 |
Items | MM | FM | HFM | SEM | p-Value |
---|---|---|---|---|---|
SAA (μg/L) | 161.16 | 167.48 | 168.32 | 3.34 | 0.700 |
TNF-a (ng/L) | 104.65 | 118.01 | 102.52 | 3.67 | 0.154 |
IFN-γ (ng/L) | 33.58 | 31.78 | 28.47 | 1.32 | 0.293 |
IL-10 (ng/L) | 19.24 b | 22.40 b | 26.93 a | 1.25 | 0.036 |
IgM (μg/mL) | 1.36 b | 2.15 a | 1.67 b | 0.10 | 0.004 |
IL-8 (ng/L) | 16.00 | 17.41 | 17.34 | 0.41 | 0.366 |
IgA (μg/mL) | 0.85 | 0.93 | 0.82 | 0.04 | 0.506 |
IgG (μg/mL) | 35.06 | 33.09 | 32.72 | 1.58 | 0.848 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, S.; Cao, Z.; Jian, S.; Zhang, L.; Deng, B.; Deng, J. Effect of Hydrolyzed Frozen Meat on Diet Palatability, Apparent Digestibility, Immune Response, Fecal Microbiota, and Metabolome in British Shorthair Cats. Pets 2024, 1, 427-442. https://doi.org/10.3390/pets1030030
Ye S, Cao Z, Jian S, Zhang L, Deng B, Deng J. Effect of Hydrolyzed Frozen Meat on Diet Palatability, Apparent Digestibility, Immune Response, Fecal Microbiota, and Metabolome in British Shorthair Cats. Pets. 2024; 1(3):427-442. https://doi.org/10.3390/pets1030030
Chicago/Turabian StyleYe, Shibin, Zhihao Cao, Shiyan Jian, Limeng Zhang, Baichuan Deng, and Jinping Deng. 2024. "Effect of Hydrolyzed Frozen Meat on Diet Palatability, Apparent Digestibility, Immune Response, Fecal Microbiota, and Metabolome in British Shorthair Cats" Pets 1, no. 3: 427-442. https://doi.org/10.3390/pets1030030
APA StyleYe, S., Cao, Z., Jian, S., Zhang, L., Deng, B., & Deng, J. (2024). Effect of Hydrolyzed Frozen Meat on Diet Palatability, Apparent Digestibility, Immune Response, Fecal Microbiota, and Metabolome in British Shorthair Cats. Pets, 1(3), 427-442. https://doi.org/10.3390/pets1030030