Beyond the Basics: Taxonomic Classification and Pathogenomics in Recently Discovered Dickeya dadantii Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation, Genomes Database, and Sequencing Data
2.2. Quality Control, Assembly, and Annotation
2.3. Taxonomic Classification
2.4. Pan Analyses
3. Results
3.1. Quality Control and Standardization of the Dataset
3.2. Taxogenomics of the Species and Its Evolutionary Relationships
3.2.1. First Insights into CCRMP144 and CCRMP250 Isolates
3.2.2. Orthologue Analysis of CCRMP144 and CCRMP250 Isolates
3.3. Analysis of Shared Genes Reveals the Pathogenic Potential of the Species
3.3.1. Virulome
3.3.2. Resistome: Heavy Metal and Biocide Genes
3.3.3. Resistome: Antibiotic Resistance Genes
4. Discussion
4.1. Evolutive and Taxonomic Aspects of Dickeya spp.
4.2. Virulome and Resistome: Navigating Pathogenic Landscapes
4.2.1. Dickeya dadantii Virulome
4.2.2. Dickeya dadantii: Heavy Metal, Biocide, and Antibiotics Resistance Profile
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samson, R.; Legendre, J.B.; Christen, R.; Saux, M.F.-L.; Achouak, W.; Gardan, L. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the Genus Dickeya Gen. Nov. as Dickeya chrysanthemi Comb. Nov. and Dickeya paradisiaca Comb. Nov. and Delineation of Four Novel Species, Dickeya dadantii Sp. Nov., Dickeya Dianthicola Sp. Nov., Dickeya dieffenbachiae Sp. Nov. and Dickeya zeae Sp. Nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- van der Wolf, J.M.; Acuña, I.; De Boer, S.H.; Brurberg, M.B.; Cahill, G.; Charkowski, A.O.; Coutinho, T.; Davey, T.; Dees, M.W.; Degefu, Y.; et al. Diseases Caused by Pectobacterium and Dickeya Species around the World. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 215–261. ISBN 978-3-030-61458-4. [Google Scholar]
- Charkowski, A.O. The Changing Face of Bacterial Soft-Rot Diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.L.; Cleenwerck, I.; Denman, S.; Venter, S.N.; Rodríguez-Palenzuela, P.; Coutinho, T.A.; De Vos, P. Proposal to Reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a New Genus, Lonsdalea Gen. Nov., as Lonsdalea Quercina Comb. Nov., Descriptions of Lonsdalea quercina Subsp. quercina Comb. Nov., Lonsdalea quercina Subsp. Iberica Subsp. Nov. and Lonsdalea quercina Subsp. Britannica Subsp. Nov., Emendation of the Description of the Genus Brenneria, Reclassification of Dickeya dieffenbachiae as Dickeya dadantii Subsp. Dieffenbachiae Comb. Nov., and Emendation of the Description of Dickeya dadantii. Int. J. Syst. Evol. Microbiol. 2012, 62, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Hugouvieux-Cotte-Pattat, N.; des-Combes, C.J.; Briolay, J.; Pritchard, L. Proposal for the Creation of a New Genus Musicola Gen. Nov., Reclassification of Dickeya paradisiaca (Samson et al. 2005) as Musicola paradisiaca Comb. Nov. and Description of a New Species Musicola Keenii Sp. Nov. Int. J. Syst. Evol. Microbiol. 2021, 71, 5037. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, S.; Muskhelisvili, G.; Nasser, W. Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 142, pp. 51–92. ISBN 978-0-12-809385-6. [Google Scholar]
- Curland, R.D.; Mainello, A.; Perry, K.L.; Hao, J.; Charkowski, A.O.; Bull, C.T.; McNally, R.R.; Johnson, S.B.; Rosenzweig, N.; Secor, G.A.; et al. Species of Dickeya and Pectobacterium Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States. Microorganisms 2021, 9, 1733. [Google Scholar] [CrossRef]
- Podridão Mole—Portal Embrapa. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/cebola/producao/doencas/pos-colheita/bacterianas/podridao-mole (accessed on 15 February 2023).
- Biz, A.; Farias, F.C.; Motter, F.A.; de Paula, D.H.; Richard, P.; Krieger, N.; Mitchell, D.A. Pectinase Activity Determination: An Early Deceleration in the Release of Reducing Sugars Throws a Spanner in the Works! PLoS ONE 2014, 9, e109529. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology: Top 10 Plant Pathogenic Bacteria. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef]
- Takatsu, A.; Mello, S.C.M.; Garcia, E.S.O.B. Fruto de Pimentão Como Meio Parcialmente Seletivo Para Isolamento de Erwinia Carotovora. Fitopatologia Brasileira. Brasília 1981, 6, 550–551. [Google Scholar]
- Saettler, A.W.; Schaad, N.W.; Roth, D.A. (Eds.) Detection of Bacteria in Seed and Other Planting Material; The American Phytopathological Society: St. Paul, MN, USA, 1989; ISBN 978-0-89054-098-5. [Google Scholar]
- Moraes, A.J.G.; Souza, E.B.; Mariano, R.L.R.; Silva, A.M.F.; Lima, N.B.; Peixoto, A.R.; Gama, M.A.S. First Report of Pectobacterium aroidearum and Pectobacterium carotovorum Subsp. Brasiliensis Causing Soft Rot of Cucurbita pepo in Brazil. Plant Dis. 2017, 101, 379. [Google Scholar] [CrossRef]
- Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 22 November 2022).
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid Adapter Trimming, Identification, and Read Merging. BMC Res. Notes 2016, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Zdobnov, E.M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr. Protoc. 2021, 1, e323. [Google Scholar] [CrossRef] [PubMed]
- Lobb, B.; Tremblay, B.J.-M.; Moreno-Hagelsieb, G.; Doxey, A.C. An Assessment of Genome Annotation Coverage across the Bacterial Tree of Life. Microb. Genom. 2020, 6, 341. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R. Shifting the Genomic Gold Standard for the Prokaryotic Species Definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and Taxonomy in Diagnostics for Food Security: Soft-Rotting Enterobacterial Plant Pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Kelly, S.; Maini, P.K. DendroBLAST: Approximate Phylogenetic Trees in the Absence of Multiple Sequence Alignments. PLoS ONE 2013, 8, e58537. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL): An Online Tool for Phylogenetic Tree Display and Annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef] [PubMed]
- FigTree. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 14 May 2024).
- Rodrigues, D.L.N.; Ariute, J.C.; Rodrigues da Costa, F.M.; Benko-Iseppon, A.M.; Barh, D.; Azevedo, V.; Aburjaile, F. PanViTa: Pan Virulence and resisTance Analysis. Front. Bioinform. 2023, 3, 1070406. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D.G.J. BacMet: Antibacterial Biocide and Metal Resistance Genes Database. Nucleic Acids Res. 2014, 42, D737–D743. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A Reference Database for Bacterial Virulence Factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef]
- Glasner, J.D.; Yang, C.-H.; Reverchon, S.; Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Bohin, J.-P.; Van Gijsegem, F.; Yang, S.; Franza, T.; Expert, D.; et al. Genome Sequence of the Plant-Pathogenic Bacterium Dickeya dadantii 3937. J. Bacteriol. 2011, 193, 2076–2077. [Google Scholar] [CrossRef]
- Pédron, J.; Van Gijsegem, F. Diversity in the Bacterial Genus Dickeya Grouping Plant Pathogens and Waterways Isolates. OBM Genet. 2019, 3, 098. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Q.; Loria, R. A Re-Evaluation of the Taxonomy of Phytopathogenic Genera Dickeya and Pectobacterium Using Whole-Genome Sequencing Data. Syst. Appl. Microbiol. 2016, 39, 252–259. [Google Scholar] [CrossRef]
- Marrero, G.; Schneider, K.L.; Jenkins, D.M.; Alvarez, A.M. Phylogeny and Classification of Dickeya Based on Multilocus Sequence Analysis. Int. J. Syst. Evol. Microbiol. 2013, 63, 3524–3539. [Google Scholar] [CrossRef]
- Hugouvieux-Cotte-Pattat, N.; Van Gijsegem, F. Diversity within the Dickeya zeae complex, Identification of Dickeya zeae and Dickeya oryzae Members, Proposal of the Novel Species Dickeya parazeae Sp. Nov. Int. J. Syst. Evol. Microbiol. 2021, 71, 5059. [Google Scholar] [CrossRef]
- Altarriba, M.; Merino, S.; Gavín, R.; Canals, R.; Rabaan, A.; Shaw, J.G.; Tomás, J.M. A Polar Flagella Operon (Flg) of Aeromonas hydrophila Contains Genes Required for Lateral Flagella Expression. Microb. Pathog. 2003, 34, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.R.; Rhee, J.H. Flagellar Basal Body Flg Operon as a Virulence Determinant of Vibrio vulnificus. Biochem. Biophys. Res. Commun. 2003, 304, 405–410. [Google Scholar] [CrossRef]
- Armitage, J.P. Microbial Primer: The Bacterial Flagellum—How Bacteria Swim: This Article Is Part of the Microbial Primers Collection. Microbiology 2024, 170, 1406. [Google Scholar] [CrossRef]
- Macnab, R.M.; Parkinson, J.S. Genetic Analysis of the Bacterial Flagellum. Trends Genet. 1991, 7, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Jahn, C.E.; Willis, D.K.; Charkowski, A.O. The Flagellar Sigma Factor FliA Is Required for Dickeya dadantii Virulence. Mol. Plant Microbe Interact. 2008, 21, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Antúnez-Lamas, M.; Cabrera-Ordóñez, E.; López-Solanilla, E.; Raposo, R.; Trelles-Salazar, O.; Rodríguez-Moreno, A.; Rodríguez-Palenzuela, P. Role of motility and chemotaxis in the pathogenesis of Dickeya dadantii 3937 (ex Erwinia chrysanthemi 3937). Microbiology 2009, 155, 434–442. [Google Scholar] [CrossRef]
- Cotter, P. Molecular Syringes Scratch the Surface. Nature 2011, 475, 301–303. [Google Scholar] [CrossRef]
- Mosquito, S.; Bertani, I.; Licastro, D.; Compant, S.; Myers, M.P.; Hinarejos, E.; Levy, A.; Venturi, V. In Planta Colonization and Role of T6SS in Two Rice Kosakonia Endophytes. Mol. Plant Microbe Interact. 2020, 33, 349–363. [Google Scholar] [CrossRef]
- Yin, R.; Cheng, J.; Lin, J. The Role of the Type VI Secretion System in the Stress Resistance of Plant-Associated Bacteria. Stress Biol. 2024, 4, 16. [Google Scholar] [CrossRef]
- Hood, R.D.; Singh, P.; Hsu, F.; Güvener, T.; Carl, M.A.; Trinidad, R.R.S.; Silverman, J.M.; Ohlson, B.B.; Hicks, K.G.; Plemel, R.L.; et al. A Type VI Secretion System of Pseudomonas Aeruginosa Targets a Toxin to Bacteria. Cell Host Microbe 2010, 7, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Harvey, K.L.; Jarocki, V.M.; Charles, I.G.; Djordjevic, S.P. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front. Microbiol. 2019, 10, 2351. [Google Scholar] [CrossRef] [PubMed]
- Cepas, V.; Soto, S.M. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics 2020, 9, 719. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, S.; Nasser, W. Dickeya Ecology, Environment Sensing and Regulation of Virulence Programme. Environ. Microbiol. Rep. 2013, 5, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Hugouvieux-Cotte-Pattat, N.; Condemine, G.; Shevchik, V.E. Bacterial Pectate Lyases, Structural and Functional Diversity. Environ. Microbiol. Rep. 2014, 6, 427–440. [Google Scholar] [CrossRef]
- Manmohit Kalia, P.K. Pectin Methylesterases: A Review. J. Bioprocess Biotech. 2015, 5, 227. [Google Scholar] [CrossRef]
- Van Gijsegem, F.; Toth, I.K.; van der Wolf, J.M. Soft Rot Pectobacteriaceae: A Brief Overview. In Plant Diseases Caused by Dickeya and Pectobacterium Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–11. ISBN 978-3-030-61458-4. [Google Scholar]
- Kersey, C.M.; Agyemang, P.A.; Dumenyo, C.K. CorA, the Magnesium/Nickel/Cobalt Transporter, Affects Virulence and Extracellular Enzyme Production in the Soft Rot Pathogen Pectobacterium carotovorum. Mol. Plant Pathol. 2012, 13, 58–71. [Google Scholar] [CrossRef]
- Thekkiniath, J.; Ravirala, R.; San Francisco, M. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 142, pp. 131–149. ISBN 978-0-12-809385-6. [Google Scholar]
- Kaur, S.; Kamli, M.R.; Ali, A. Role of Arsenic and Its Resistance in Nature. Can. J. Microbiol. 2011, 57, 769–774. [Google Scholar] [CrossRef]
- Aguilar-Barajas, E.; Ramírez-Díaz, M.I.; Riveros-Rosas, H.; Cervantes, C. Heavy Metal Resistance in Pseudomonads. In Pseudomonas; Ramos, J.L., Filloux, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 255–282. ISBN 978-90-481-3908-8. [Google Scholar]
- Kumar, A.; Worobec, E.A. Cloning, Sequencing, and Characterization of the SdeAB Multidrug Efflux Pump of Serratia Marcescens. Antimicrob. Agents Chemother. 2005, 49, 1495–1501. [Google Scholar] [CrossRef]
- Begic, S.; Worobec, E.A. The Role of the Serratia marcescens SdeAB Multidrug Efflux Pump and TolC Homologue in Fluoroquinolone Resistance Studied via Gene-Knockout Mutagenesis. Microbiology 2008, 154, 454–461. [Google Scholar] [CrossRef]
- Barabote, R.D.; Johnson, O.L.; Zetina, E.; San Francisco, S.K.; Fralick, J.A.; San Francisco, M.J.D. Erwinia Chrysanthemi tolC Is Involved in Resistance to Antimicrobial Plant Chemicals and Is Essential for Phytopathogenesis†. J. Bacteriol. 2003, 185, 5772–5778. [Google Scholar] [CrossRef] [PubMed]
- Tettelin, H.; Medini, D. (Eds.) The Pangenome: Diversity, Dynamics and Evolution of Genomes; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-38280-3. [Google Scholar]
- Li, J.; Zhang, H.; Ning, J.; Sajid, A.; Cheng, G.; Yuan, Z.; Hao, H. The Nature and Epidemiology of OqxAB, a Multidrug Efflux Pump. Antimicrob. Resist. Infect. Control 2019, 8, 44. [Google Scholar] [CrossRef] [PubMed]
Species | Strain | Family | Z-Score CCRMP144 | Z-Score CCRMP250 |
---|---|---|---|---|
Dickeya spp. | CCRMP144 | Pectobacteriaceae | 1 | 1 |
Dickeya spp. | CCRMP250 | Pectobacteriaceae | 1 | 1 |
Dickeya dadantii | 3937 | Pectobacteriaceae | 0.99980 | 0.99980 |
Dickeya dadantii subsp. dieffenbachiae | NCPPB 2976 | Pectobacteriaceae | 0.99966 | 0.99965 |
Dickeya fangzhongdai | M005 | Pectobacteriaceae | 0.99905 | 0.99904 |
Dickeya fangzhongdai | M074 | Pectobacteriaceae | 0.99903 | 0.99903 |
Dickeya fangzhongdai | ND14b | Pectobacteriaceae | 0.99903 | 0.99903 |
Dickeya fangzhongdai | CGMCC1.15464 | Pectobacteriaceae | 0.99894 | 0.99894 |
Dickeya fangzhongdai | DSM101947 | Pectobacteriaceae | 0.99893 | 0.99893 |
Dickeya solani | Ds0432-1 | Pectobacteriaceae | 0.99887 | 0.99887 |
Dickeya solani | IPO2222 | Pectobacteriaceae | 0.99881 | 0.99881 |
Dickeya solani | IPO2222 | Pectobacteriaceae | 0.99879 | 0.99879 |
Dickeya dianthicola | NCPPB453 | Pectobacteriaceae | 0.99681 | 0.99682 |
Strains | CCRMP144 | CCRMP250 | D. dadantii | D. solani | D. fangzhongdai | D. dianthicola | D. undicola | D. chrysanthemi | D. poaceiphila | D. zeae | D. parazeae | D. oryzae | D. lacustris |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCRMP144 | 1.000 | ||||||||||||
CCRMP250 | 1.000 | 1.000 | |||||||||||
D. dadantii | 0.976 | 0.976 | 1.000 | ||||||||||
D. solani | 0.942 | 0.942 | 0.942 | 1.000 | |||||||||
D. fangzhongdai | 0.925 | 0.925 | 0.925 | 0.927 | 1.000 | ||||||||
D. dianthicola | 0.922 | 0.922 | 0.922 | 0.922 | 0.922 | 1.000 | |||||||
D. undicola | 0.896 | 0.896 | 0.893 | 0.896 | 0.918 | 0.893 | 1.000 | ||||||
D. chrysanthemi | 0.881 | 0.881 | 0.880 | 0.877 | 0.877 | 0.880 | 0.866 | 1.000 | |||||
D. poaceiphila | 0.872 | 0.872 | 0.873 | 0.871 | 0.873 | 0.874 | 0.863 | 0.872 | 1.000 | ||||
D. zeae | 0.865 | 0.865 | 0.864 | 0.863 | 0.864 | 0.865 | 0.859 | 0.873 | 0.870 | 1.000 | |||
D. parazeae | 0.865 | 0.865 | 0.865 | 0.863 | 0.864 | 0.866 | 0.859 | 0.874 | 0.870 | 0.955 | 1.000 | ||
D. oryzae | 0.864 | 0.864 | 0.873 | 0.862 | 0.863 | 0.866 | 0.860 | 0.872 | 0.871 | 0.957 | 0.945 | 1.000 | |
D. lacustris | 0.849 | 0.848 | 0.848 | 0.845 | 0.847 | 0.848 | 0.845 | 0.851 | 0.848 | 0.850 | 0.852 | 0.850 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.S.; Rodrigues, D.L.N.; Ariute, J.C.; Carneiro, D.V.D.; Sodrzeieski, P.A.; Gama, M.A.S.; de Souza, E.B.; Azevedo, V.; Brenig, B.; Benko-Iseppon, A.M.; et al. Beyond the Basics: Taxonomic Classification and Pathogenomics in Recently Discovered Dickeya dadantii Isolates. Taxonomy 2024, 4, 696-712. https://doi.org/10.3390/taxonomy4040036
Pereira MS, Rodrigues DLN, Ariute JC, Carneiro DVD, Sodrzeieski PA, Gama MAS, de Souza EB, Azevedo V, Brenig B, Benko-Iseppon AM, et al. Beyond the Basics: Taxonomic Classification and Pathogenomics in Recently Discovered Dickeya dadantii Isolates. Taxonomy. 2024; 4(4):696-712. https://doi.org/10.3390/taxonomy4040036
Chicago/Turabian StylePereira, Mateus Sudario, Diego Lucas Neres Rodrigues, Juan Carlos Ariute, Douglas Vinícius Dias Carneiro, Pedro Alexandre Sodrzeieski, Marco Aurélio Siqueira Gama, Elineide Barbosa de Souza, Vasco Azevedo, Bertram Brenig, Ana Maria Benko-Iseppon, and et al. 2024. "Beyond the Basics: Taxonomic Classification and Pathogenomics in Recently Discovered Dickeya dadantii Isolates" Taxonomy 4, no. 4: 696-712. https://doi.org/10.3390/taxonomy4040036
APA StylePereira, M. S., Rodrigues, D. L. N., Ariute, J. C., Carneiro, D. V. D., Sodrzeieski, P. A., Gama, M. A. S., de Souza, E. B., Azevedo, V., Brenig, B., Benko-Iseppon, A. M., & Aburjaile, F. F. (2024). Beyond the Basics: Taxonomic Classification and Pathogenomics in Recently Discovered Dickeya dadantii Isolates. Taxonomy, 4(4), 696-712. https://doi.org/10.3390/taxonomy4040036