Regular Family Meals Associated with Nutritional Status, Food Consumption, and Sedentary and Eating Behaviors of Brazilian Schoolchildren and Their Caregivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sampling
2.3. Inclusion and Exclusion Criteria
2.4. Data Collection
2.5. Questionnaire
2.6. Independent Variable
2.7. Outcomes
- (1)
- Nutritional Status: The nutritional status of both children and their caregivers was evaluated using body mass index (BMI). Multiple imputation by multinomial logistic regression was performed to handle data in which caregivers did not report the weight or height of the children (n = 439), which would represent a significant loss of data regarding the nutritional status of children (23.3%). This imputation was based on the child’s responses to the Body Silhouette Scale, gender, and date of birth [44,45,46].
- (2)
- Ultra-Processed Foods Score: The assessment of ultra-processed food consumption for both children and their caregivers used a score based on the original NOVA classification [20,49], designed to quantify the intake of ultra-processed foods [32,33]. The score ranges from 0 (indicating no consumption of ultra-processed foods) to 10 points, with each consumed ultra-processed food item contributing one point. For caregivers, the cutoff point to determine high consumption was set as proposed by the NOVA score [20,32], considering it reached when five or more of ten listed ultra-processed foods were consumed. For children, the score was divided into quintiles, with the first quintile representing low ultra-processed food consumption (used as the reference group) and the last quintile representing high consumption.
- (3)
- Dietary Diversity: The categorization of the dietary diversity score for caregivers followed the proposal by FAO [50,51]. Caregivers’ dietary diversity scores were divided into quintiles, with those in the last quintile indicating high dietary diversity and those in the first quintile reflecting low dietary diversity. The cutoff point validated for high dietary diversity was based on a national study in Brazil [32], considering adults who consumed five or more groups of natural foods as protectors against chronic diseases (reference group).
- (4)
- Eating and sedentary behaviors were classified as the presence or absence of these behaviors based on the response to the questionnaire.
2.8. Covariates
2.9. Data Analysis
3. Results
3.1. Descriptive Analysis
3.2. Approach 1
3.3. Approach 2
3.4. Approach 3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez-Escamilla, R.; Bermudez, O.; Buccini, G.S.; Kumanyika, S.; Lutter, C.K.; Monsivais, P.; Victora, C. Nutrition Disparities and the Global Burden of Malnutrition. BMJ 2018, 361, k2252. [Google Scholar] [CrossRef]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, S. Maternal and Child Undernutrition: Consequences for Adult Health and Human Capital. Lancet 2008, 371, 921–933. [Google Scholar] [CrossRef]
- Grantham-Mcgregor, S.; Cheung, Y.B.; Cueto, S.; Glewwe, P.; Richter, L.; Strupp, B. Developmental Potential in the First 5 Years for Children in Developing Countries. Lancet 2007, 369, 60–70. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Bixby, H.; Bentham, J.; Zhou, B.; Di Cesare, M.; Paciorek, C.J.; Bennett, J.E.; Taddei, C.; Stevens, G.A.; Rodriguez-Martinez, A.; Carrillo-Larco, R.M.; et al. Rising Rural Body-Mass Index Is the Main Driver of the Global Obesity Epidemic in Adults. Nature 2019, 569, 260–264. [Google Scholar] [CrossRef]
- Alvarenga, M.; Figueiredo, M.; Timerman, F.; Antonaccio, C. Nutrição Comportamental, 2nd ed.; Manole: Barueri, Brazil, 2019. [Google Scholar]
- Brasil Guia Alimentar Para a População Brasileira; Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica: Brasília, Brazil, 2014; 156p.
- Mendez, I.; Fasano, M.V.; Orden, A.B. Exploring Factors Associated with Obesity in Argentinian Children Using Structural Equation Modeling. Cad. Saude Publica 2023, 39, e00087822. [Google Scholar] [CrossRef]
- Middleton, G.; Golley, R.K.; Patterson, K.A.; Coveney, J. The Family Meal Framework: A Grounded Theory Study Conceptualising the Work That Underpins the Family Meal. Appetite 2022, 175, 106071. [Google Scholar] [CrossRef]
- Snuggs, S.; Harvey, K. Family Mealtimes: A Systematic Umbrella Review of Characteristics, Correlates, Outcomes and Interventions. Nutrients 2023, 15, 2841. [Google Scholar] [CrossRef]
- Tosatti, A.M.; Ribeiro, L.W.; Machado, R.H.V.; Maximino, P.; Bozzini, A.B.; de Ramos, C.C.; Fisberg, M. Does Family Mealtime Have a Protective Effect on Obesity and Good Eating Habits in Young People? A 2000–2016 Review. Rev. Bras. Saude Matern. Infant. 2017, 17, 425–434. [Google Scholar] [CrossRef]
- Dallacker, M.; Hertwig, R.; Mata, J. The Frequency of Family Meals and Nutritional Health in Children: A Meta-Analysis. Obes. Rev. 2018, 19, 638–653. [Google Scholar] [CrossRef]
- Kameyama, N.; Morimoto, Y.; Hashimoto, A.; Inoue, H.; Nagaya, I.; Nakamura, K.; Kuwano, T. The Relationship between Family Meals and Mental Health Problems in Japanese Elementary School Children: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 9281. [Google Scholar] [CrossRef] [PubMed]
- Agathao, B.T.; Cunha, D.B.; Sichieri, R.; Lopes, C.S. The Role of Family Meal Frequency in Common Mental Disorders in Children and Adolescents over Eight Months of Follow-Up. PLoS ONE 2021, 16, e0243793. [Google Scholar] [CrossRef]
- Martins, B.G.; Ricardo, C.Z.; Machado, P.P.; Rauber, F.; Azeredo, C.M.; Levy, R.B. Eating Meals with Parents Is Associated with Better Quality of Diet for Brazilian Adolescents. Cad. Saude Publica 2019, 35, e00153918. [Google Scholar] [CrossRef]
- Da Silva, J.I.; De Souza Andrade, A.C.; Bloch, K.V.; Brunken, G.S. Association between Sharing Meals with Parents or Guardians and Obesity in Brazilian Adolescents. Cad. Saude Publica 2020, 36, e00153918. [Google Scholar] [CrossRef]
- De Oliveira, S.S.; Bauermann, G.M.; Alves, M.R.; Toral, N. Association of Dietary Intake with Eating Behavior, Screen Time, and Physical Activity among Brazilian Adolescents. Rev. Chil. Nutr. 2018, 45, 349–355. [Google Scholar] [CrossRef]
- Mollborn, S.; Lawrence, E. Family, Peer, and School Influences on Children’s Developing Health Lifestyles. J. Health Soc. Behav. 2018, 59, 133–150. [Google Scholar] [CrossRef] [PubMed]
- INEP Censo Escolar; Ministério da Educação, Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira: Brasília, Brazil, 2021.
- dos Costa, C.S.; de Faria, F.R.; Gabe, K.T.; Sattamini, I.F.; Khandpur, N.; Leite, F.H.M.; Steele, E.M.; Louzada, M.L. da C.; Levy, R.B.; Monteiro, C.A. Escore Nova de Consumo de Alimentos Ultraprocessados: Descrição e Avaliação de Desempenho No Brasil. Rev. Saude Publica 2021, 55, 13. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D.; Ricardo, C.; et al. NOVA. The Star Shine Bright. Food Classification. Public Health. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Brasil Sistema de Vigilância Alimentar e Nutricional—SISVAN Web: Relatório de Acesso Público. Available online: https://sisaps.saude.gov.br/sisvan/relatoriopublico/index (accessed on 17 January 2022).
- Costa, C.D.S.; Buffarini, R.; Flores, T.R.; Neri, D.; Freitas Silveira, M.; Monteiro, C.A. Consumption of Ultra-Processed Foods and Growth Outcomes in Early Childhood: 2015 Pelotas Birth Cohort. Br. J. Nutr. 2023, 129, 2153–2160. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Monteiro, J.S.; Nakano, E.Y.; Zandonadi, R.P.; Botelho, R.B.A.; Araujo, W.M.C. How Do Consumers Understand Food Processing? A Study on the Brazilian Population. Foods 2022, 11, 2396. [Google Scholar] [CrossRef]
- de Almeida, P.C.; Vasconcelos, I.A.L.; Zandonadi, R.P.; Nakano, E.Y.; Raposo, A.; Han, H.; Araya-Castillo, L.; Ariza-Montes, A.; Botelho, R.B.A. Food Neophobia among Brazilian Children: Prevalence and Questionnaire Score Development. Sustainability 2022, 14, 975. [Google Scholar] [CrossRef]
- IBGE. Pesquisa Nacional Por Amostra de Domicílios Contínua: Acesso à Internet e à Televisão e Posse de Telefone Móvel Celular Para Uso Pessoal 2022. In PNAD: Tecnologias de Informação e Comunicação (PNAD Contínua); Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2023. [Google Scholar]
- Biernacki, P.; Waldorf, D. Snowball Sampling: Problems and Techniques of Chainreferral Sampling. Sociol. Methods Res. 1981, 10, 141–163. [Google Scholar] [CrossRef]
- Brasil Guia Alimentar Para a População Brasileira (Versão Resumida); Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica: Brasília, Brazil, 2018; p. 49.
- Freire, S.C.; Fisberg, M. Adapting Brazilian Silhouette Scale for Digital Use. J. Bras. Psiquiatr. 2017, 66, 211–215. [Google Scholar] [CrossRef]
- Olid, A.O.; López, L.M.; Villares, J.M.M.; González, M.Á.M.; de la Pascual, V.O.; Calvo, N.M. Validación de Los Datos Antropométricos Declarados Por Padres de Participantes El Proyecto SENDO. Nutr. Hosp. 2021, 38, 1162–1168. [Google Scholar] [CrossRef]
- Brasil VIGITEL BRASIL 2021—Vigilância de Fatores de Risco e Proteção Para Doenças Crônicas Por Inquérito Telefônico: Estimativas Sobre Frequência e Distribuição Sociodemográfica de Fatores de Risco e Proteção Para Doenças Crônicas Nas Capitais Dos 26 Estados Brasileiros e No Distrito Federal Em 2021; Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Análise em Saúde e Vigilância de Doenças não Transmissíveis: Brasília, Brazil, 2022; pp. 1–131.
- Costa, C.D.S.; Sattamini, I.F.; Steele, E.M.; Louzada, M.L.D.C.; Claro, R.M.; Monteiro, C.A. Consumption of Ultra-Processed Foods and Its Association with Sociodemographic Factors in the Adult Population of the 27 Brazilian State Capitals (2019). Rev. Saude Publica 2021, 55, 55–57. [Google Scholar] [CrossRef]
- Moreira, C.A.; Moura, E.C.; Jaime, P.C.; Claro, R.M. Validity of Food and Beverage Intake Obtained by Telephone Survey. Rev. Saúde Pública 2008, 42, 582–591. [Google Scholar]
- Gabe, K.T.; Jaime, P.C. Development and Testing of a Scale to Evaluate Diet According to the Recommendations of the Dietary Guidelines for the Brazilian Population. Public Health Nutr. 2019, 22, 785–796. [Google Scholar] [CrossRef]
- Moreira, A.D.; Claro, R.M.; Felisbino-Mendes, M.S.; Velasquez-Melendez, G. Validity and Reliability of a Telephone Survey of Physical Activity in Brazil. Rev. Bras. Epidemiol. 2017, 20, 136–146. [Google Scholar] [CrossRef]
- Kakeshita, I.S.; Silva, A.I.P.; Zanatta, D.P.; Almeida, S.S. A Figure Rating Scales for Brazilian Adults and Children: Development and Test-Retest Reliability. Psicol. Teor. Pesqui. 2009, 25, 263–270. [Google Scholar] [CrossRef]
- Oliveira, G.A.L.; Barrio, D.O.L.; Araújo, G.S.; Saldanha, M.P.; Schincaglia, R.M.; Gubert, M.B.; Toral, N. Validation of the Illustrated Questionnaire on Food Consumption for Brazilian Schoolchildren (QUACEB) for 6- to 10-Year-Old Children. Front. Public Health 2023, 11, 1051499. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.A.L.; Saldanha, M.P.; Araújo, G.S.; Barrio, D.O.L.; Gubert, M.B.; Toral, N. Validation of the Illustrated Questionnaire on Eating and Sedentary Behaviors (QUICAS) for Seven to Ten-Year-Old Children. Appetite 2023, 180, 106359. [Google Scholar] [CrossRef]
- SBP. Manual de Orientação: Grupo de Trabalho Saúde na Era Digital da Sociedade Brasileira de Pediatria; Sociedade Brasileira de Pediatria: Rio de Janeiro, Brazil, 2019; pp. 1–11. [Google Scholar]
- SBP. Manual de Orientação: Grupo de Trabalho em Atividade Física da Sociedade Brasileira de Pediatria; Sociedade Brasileira de Pediatria: Rio de Janeiro, Brazil, 2017; pp. 1–14. [Google Scholar]
- WHO. Guidelines on Physical Activity and Sedentary Behavior; World Health Organization: Geneve, Switzerland, 2020; pp. 1–104. [Google Scholar]
- Brasil Guia de Atividade Física Para a População Brasileira; Ministério da Saúde, Secretaria de Atenção Primária à Saúde, Departamento de Promoção da Saúde: Brasília, Brazil, 2021; pp. 1–52.
- Kontopantelis, E.; Parisi, R.; Springate, D.A.; Reeves, D. Longitudinal Multiple Imputation Approaches for Body Mass Index or Other Variables with Very Low Individual-Level Variability: The Mibmi Command in Stata. BMC Res. Notes 2017, 10, 41. [Google Scholar] [CrossRef]
- Sayon-Orea, C.; Moreno-Iribas, C.; Delfrade, J.; Sanchez-Echenique, M.; Amiano, P.; Ardanaz, E.; Gorricho, J.; Basterra, G.; Nuin, M.; Guevara, M. Inverse-Probability Weighting and Multiple Imputation for Evaluating Selection Bias in the Estimation of Childhood Obesity Prevalence Using Data from Electronic Health Records. BMC Med. Inform. Decis. Mak. 2020, 20, 9. [Google Scholar] [CrossRef]
- Aßmann, C. Multiple Imputation as One Tool to Provide Longitudinal Databases for Modelling Human Height and Weight Development. Eur. J. Clin. Nutr. 2016, 70, 653–655. [Google Scholar] [CrossRef]
- WHO. AnthroPlus Software; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Brasil Orientações Para a Coleta e Análise de Dados Antropométricos Em Serviços de Saúde: Norma Técnica Do Sistema de Vigilância Alimentar e Nutricional—SISVAN; Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica: Brasília, Brazil, 2011; pp. 1–76.
- Sattamini, I.F. Instrumentos de Avaliação Da Qualidade de Dietas: Desenvolvimento, Adaptação e Validação No Brasil. Doctoral Dissertation, Universidade de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- FAO. Nutrition and Consumer Protection Division, Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2010; pp. 1–60. [Google Scholar]
- FAO. Minimum Dietary Diversity for Women: A Guide for Measurement; FAO: Rome, Italy, 2016; ISBN 9789251091531. [Google Scholar]
- UNICEF; WHO. Indicators for Assessing Infant and Young Child Feeding Practices: Definitions and Measurement Methods; WHO: Geneve, Switzerland, 2021. [Google Scholar]
- Berge, J.M.; Hazzard, V.M.; Larson, N.; Hahn, S.L.; Emery, R.L.; Neumark-Sztainer, D. Are There Protective Associations between Family/Shared Meal Routines during COVID-19 and Dietary Health and Emotional Well-Being in Diverse Young Adults? Prev. Med. Rep. 2021, 24, 101575. [Google Scholar] [CrossRef]
- do Melo, G.R.A.E.; Silva, P.O.; Nakabayashi, J.; Bandeira, M.V.; Toral, N.; Monteiro, R. Family Meal Frequency and Its Association with Food Consumption and Nutritional Status in Adolescents: A Systematic Review. PLoS ONE 2020, 15, e0239274. [Google Scholar] [CrossRef]
- Gazolla, M.; Viecelli, P.C. Meals and Table Behaviors: A Study from Urban Consumers. Redes 2020, 25, 482–505. [Google Scholar] [CrossRef]
- Onita, B.M.; Azeredo, C.M.; Jaime, P.C.; Levy, R.B.; Rauber, F. Eating Context and Its Association with Ultra-Processed Food Consumption by British Children. Appetite 2021, 157, 105007. [Google Scholar] [CrossRef]
- Martins, C.A.; Machado, P.P.; da Louzada, M.L.C.; Levy, R.B.; Monteiro, C.A. Parents’ Cooking Skills Confidence Reduce Children’s Consumption of Ultra-Processed Foods. Appetite 2020, 144, 104452. [Google Scholar] [CrossRef]
- Mazzonetto, A.C.; Le Bourlegat, I.S.; Guedes dos Santos, J.L.; Spence, M.; Dean, M.; Fiates, G.M.R. Finding My Own Way in the Kitchen from Maternal Influence and beyond—A Grounded Theory Study Based on Brazilian Women’s Life Stories. Appetite 2020, 1, 104677. [Google Scholar] [CrossRef]
- da Oliveira, M.S.S.; Fernandez Unsain, R.A.; de Morais Sato, P.; Ulian, M.D.; Scagliusi, F.B.; Cardoso, M.A. “Because I Saw My Mother Cooking”: The Sociocultural Process of Learning and Teaching Domestic Culinary Skills of the Western Brazilian Amazonian Women. Food Foodways 2022, 30, 310–330. [Google Scholar] [CrossRef]
- Raber, M.; Hooper, M.; Hughes, S.; Wood, A. Cooking with Kids: A Preliminary Conceptual Model of Child Involvement in Home Food Preparation and Diet Quality. Curr. Dev. Nutr. 2022, 6, 859. [Google Scholar] [CrossRef]
- Wang, L.C.; Chen, K.R.; Yang, F. Lo Intergenerational Comparison of Food Parenting of Home Eating Behaviors of Schoolchildren. J. Nutr. Educ. Behav. 2021, 53, 130–141. [Google Scholar] [CrossRef]
- Baltaci, A.; Alvarez de Davila, S.; Reyes Peralta, A.O.; Laska, M.N.; Larson, N.; Hurtado, G.A.; Reicks, M. Adolescent-Reported Latino Fathers’ Food Parenting Practices and Family Meal Frequency Are Associated with Better Adolescent Dietary Intake. Int. J. Environ. Res. Public Health 2021, 18, 8226. [Google Scholar] [CrossRef]
- Ghobadi, S.; Hassanzadeh-Rostami, Z.; Salehi-Marzijarani, M.; Bellissimo, N.; Brett, N.R.; Totosy de Zepetnek, J.O.; Faghih, S. Association of Eating While Television Viewing and Overweight/Obesity among Children and Adolescents: A Systematic Review and Meta-Analysis of Observational Studies. Obes. Rev. 2018, 19, 313–320. [Google Scholar] [CrossRef]
- Mills, S.; White, M.; Brown, H.; Wrieden, W.; Kwasnicka, D.; Halligan, J.; Robalino, S.; Adams, J. Health and Social Determinants and Outcomes of Home Cooking: A Systematic Review of Observational Studies. Appetite 2017, 111, 116134. [Google Scholar] [CrossRef]
- Costa, C.S.; Del-Ponte, B.; Assunção, M.C.F.; Santos, I.S. Consumption of Ultra-Processed Foods and Body Fat during Childhood and Adolescence: A Systematic Review. Public Health Nutr. 2017, 21, 148–159. [Google Scholar] [CrossRef]
- Wil, R. Family Food Fights. Appetite 2006, 47, 401. [Google Scholar]
- Boutelle, K.N.; Fulkerson, J.A.; Neumark-Sztainer, D.; Story, M.; French, S.A. French Fast Food for Family Meals: Relationships with Parent and Adolescent Food Intake, Home Food Availability and Weight Status. Public Health Nutr. 2007, 10, 16–23. [Google Scholar] [CrossRef]
- Menegassi, B. Eat Regularly and Carefully, in Appropriate Environments and in Company”: A Brief Analysis of This Recommendation of the Brazilian Food Guide. Appetite 2020, 149, 104619. [Google Scholar] [CrossRef] [PubMed]
- DeCator, D.D.; Carter, J.S.; Schneider, K.L. Brief Report: Family Meals, Obesogenic Factors, and Depressive Symptoms in Youth. Ment. Health Phys. Act. 2016, 10, 1–3. [Google Scholar] [CrossRef]
Variables | Schoolchildren Population Estimated by School Census 2021 n (%) | Calculated Sample n (%) | Sample Adequacy for 30% Less or More | |
---|---|---|---|---|
n | % | |||
Brazil | 14,533,651 (100) | 1885 (100) | 1320–2451 | 70.0–130.0 |
Geographical regions | ||||
North | 1,616,919 (11.12) | 210 (11.12) | 147–274 | 7.8–14.6 |
Northeast | 4,132,922 (28.44) | 536 (28.44) | 375–697 | 19.9–36.9 |
Central-West | 1,167,389 (8.03) | 151 (8.03) | 106–198 | 5.6–10.5 |
Southeast | 5,660,515 (38.95) | 734 (38.95) | 514–954 | 27.3–50.6 |
South | 1,955,906 (13.46) | 254 (13.46) | 178–330 | 9.4–17.5 |
Type of school | ||||
Public | 11,919,578 (82.01) | 1546 (82.01) | 1082–2010 | 57.4–106.6 |
Private | 2,614,073 (17.99) | 339 (17.99) | 237–441 | 12.6–23.4 |
Variables | Prevalence | |||||
---|---|---|---|---|---|---|
Child | Caregiver | |||||
n | % | 95%CI | n | % | 95%CI | |
Regular family meals (5 times or more/week) | ||||||
Yes | 1634 | 86.6 | 84.9–88.1 | |||
No | 253 | 13.4 | 11.9–15.0 | |||
Outcomes | ||||||
Nutritional status (BMI) | ||||||
Healthy | 1002 | 53.1 | 50.8–55.3 | 682 | 36.1 | 3.4–3.8 |
Unhealthy | ||||||
Underweight | 75 | 4.0 | 3.1–4.9 | 35 | 1.9 | 1.3–2.6 |
Overweight/obese | 810 | 42.9 | 40.7–45.2 | 1170 | 62.0 | 5.9–6.4 |
Ultra-processed food score | ||||||
Low | 637 | 35.7 | 33.5–37.8 | 1048 | 55.5 | 53.3–57.8 |
High | 300 | 15.9 | 14.3–17.6 | 839 | 44.5 | 42.2–46.7 |
Dietary diversity | ||||||
Low | 762 | 40.4 | 38.2–42.6 | 299 | 15.8 | 14.3–17.6 |
High | 1124 | 59.6 | 57.4–61.8 | 1588 | 84.2 | 82.4–85.7 |
High dietary diversity + low ultra-processed food | ||||||
No | 1518 | 80.5 | 78.6–82.2 | 1798 | 95.3 | 94.2–96.1 |
Yes | 369 | 19.5 | 17.8–21.4 | 89 | 4.7 | 3.8–5.7 |
Low dietary diversity + high ultra-processed food | ||||||
No | 1791 | 94.9 | 93.8–95.8 | 1654 | 87.7 | 86.1–89.1 |
Yes | 96 | 5.1 | 4.2–6.2 | 233 | 13.3 | 10.9–13.9 |
Healthy BMI + high dietary diversity | ||||||
No | 1274 | 67.5 | 65.4–69.6 | 1812 | 96.1 | 95.0–96.8 |
Yes | 613 | 32.5 | 30.4–34.6 | 75 | 3.9 | 3.2–4.9 |
Unhealthy BMI + high ultra-processed food | ||||||
No | 1737 | 92.1 | 90.7–93.2 | 1310 | 69.4 | 67.3–71.4 |
Yes | 150 | 7.9 | 6.8–9.2 | 577 | 30.6 | 28.5–32.7 |
Covariates | ||||||
Gender | ||||||
Male | 974 | 51.6 | 49.4–53.9 | 118 | 6.3 | 5.2–7.4 |
Female | 912 | 48.4 | 46.1–50.6 | 1766 | 93.7 | 92.5–94.7 |
Age (n = mean/% = Std. Dev.) | 8 | 1.49 | 7.9–8.1 | 36 | 7.35 | 35.9–36.5 |
Educational level | ||||||
Elementary school | 491 | 26.2 | 24.2–28.2 | |||
High school | 810 | 43.2 | 40.9–45.4 | |||
Undergraduate or higher | 575 | 30.6 | 28.6–32.8 | |||
Geographical region | ||||||
North | 274 | 14.5 | 13.0–16.2 | |||
Northeast | 464 | 24.6 | 22.7–26.6 | |||
Central-West | 198 | 10.5 | 9.2–11.9 | |||
Southeast | 667 | 35.4 | 33.2–37.5 | |||
South | 284 | 15.0 | 13.5–16.7 | |||
Type of school | ||||||
Public | 1636 | 86.7 | 85.1–88.2 | |||
Private | 254 | 13.3 | 11.8–14.9 |
Regular Family Meals (5 Times or More/Week) | Unhealthy BMI | High Dietary Diversity | High Ultra-Processed Food Scores | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Child | Caregiver | Child | Caregiver | Child | Caregiver | |||||||
OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | |
Yes | 0.79 (0.6–1.0) | 0.79 (0.6–1.0) | 0.76 (0.6–1.0) | 0.74 ↓ (0.5–0.9) * | 1.74 (1.3–2.3) ** | 1.78 ↑ (1.4–2.3) * | 1.69 (1.0–2.7) * | 1.66 ↑ (1.0–2.7) * | 0.80 (0.6–1.1) | b | 0.84 (0.6–1.1) | 0.79 (0.6–1.0) |
No | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) |
Protective Factors for Malnutrition | Risk Factors for Malnutrition | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Regular Family Meals | High Dietary Diversity + Low Ultra-Processed Food | Healthy BMI + High Dietary Diversity | Low Dietary Diversity + High Ultra-Processed Food | Unhealthy BMI + High Ultra-Processed Food | ||||||||||||
Child | Caregiver | Child | Caregiver | Child | Caregiver | Child | Caregiver | |||||||||
OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | OR (95%CI) | AOR a (95%CI) | |
Yes | 1.39 (0.9–1.9) | 1.45 ↑ (1.0–2.1) * | 1.60 (0.8–3.3) | 1.61 (0.8–3.4) | 1.39 (1.0–1.9) | 1.41 ↑ (1.0–1.9) * | 2.22 (0.9–5.5) | 2.19 (0.9–5.5) | 0.83 (0.5–1.5) | b | 0.71 (0.5–1.0) | 0.69 (0.5–10) | 0.72 (0.4–1.1) | 0.71 (0.4–1.1) | 0.82 (0.6–1.0) | 0.78 (0.6–1.0) |
No | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) | (ref) |
Sedentary and Eating Behaviors | Regular Family Meals | p-Value | |||||
---|---|---|---|---|---|---|---|
0–4 Days | 5 or More | ||||||
n | % | 95%CI | n | % | 95%CI | ||
Caregiver | |||||||
Planning: “I try to eat slowly.” | |||||||
No | 105 | 41.5 | 35.5–47.7 | 460 | 28.2 | 26.0–30.4 | <0.001 * |
Yes | 148 | 58.5 | 52.3–64.4 | 1174 | 71.8 | 69.6–73.9 | |
Eating modes: “I usually skip at least one of the main meals.” | |||||||
No | 172 | 68.0 | 61.9–73.5 | 1356 | 82.9 | 81.0–84.7 | <0.001 * |
Yes | 81 | 32.0 | 26.5–38.0 | 278 | 17.0 | 15.3–18.9 | |
Food choices: “I usually take sandwiches, savory snacks, or pizza for lunch or dinner instead of freshly prepared dishes.” | |||||||
No | 188 | 74.3 | 68.5–79.3 | 1346 | 82.4 | 80.4–84.1 | 0.002 * |
Yes | 65 | 25.7 | 20.6–31.5 | 288 | 17.6 | 15.8–19.5 | |
Domestic organization: “I usually engage in meal preparation at home.” | |||||||
No | 102 | 40.3 | 34.4–46.5 | 486 | 29.7 | 27.6–32.0 | 0.001 * |
Yes | 151 | 59.7 | 53.5–65.6 | 1148 | 70.3 | 67.9–72.4 | |
Sedentary behavior: using screen | |||||||
Less than 3 h | 87 | 34.5 | 28.9–40.6 | 691 | 42.3 | 39.9–44.7 | 0.019 * |
More than 3 h | 165 | 65.5 | 59.4–71.1 | 941 | 57.7 | 55.2–60.0 | |
Child | |||||||
Eating behavior: “eating with distractions” | |||||||
Without watching television and using cell phones | 109 | 43.1 | 37.1–49.3 | 890 | 54.5 | 52.0–56.9 | 0.001 * |
Watching TV or using a cell phone | 144 | 56.9 | 50.7–62.9 | 744 | 45.5 | 43.1–47.9 | |
Eating behavior: “eating at regular times” | |||||||
At the usual time | 185 | 73.1 | 67.3–78.2 | 1423 | 87.1 | 85.4–88.6 | <0.001 * |
At a different time than usual | 68 | 26.9 | 21.7–32.7 | 211 | 12.9 | 11.4–14.6 | |
Eating behavior: “type of food” | |||||||
Real food (rice, beans, beef, and salad) | 230 | 90.9 | 86.7–93.9 | 1564 | 95.7 | 94.6–96.6 | 0.001 * |
Fast or industrialized food | 23 | 9.1 | 6.1–13.3 | 70 | 4.3 | 3.4–5.4 | |
Eating behavior: “participation in household activities involving meal preparation.” | <0.001 * | ||||||
Yes | 56 | 22.1 | 17.4–27.7 | 590 | 36.1 | 33.8–38.5 | |
No | 197 | 77.9 | 72.3–82.6 | 1044 | 63.9 | 61.5–66.2 | |
Sedentary behavior: using screen | |||||||
Tolerable | 56 | 22.1 | 17.4–27.7 | 410 | 25.1 | 23.0–27.2 | 0.310 |
Excessive | 197 | 77.9 | 72.3–82.6 | 1224 | 74.9 | 72.7–76.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, G.A.L.; Buccini, G.; Gonçalves, V.S.S.; Gubert, M.B.; Toral, N. Regular Family Meals Associated with Nutritional Status, Food Consumption, and Sedentary and Eating Behaviors of Brazilian Schoolchildren and Their Caregivers. Foods 2024, 13, 3975. https://doi.org/10.3390/foods13233975
Oliveira GAL, Buccini G, Gonçalves VSS, Gubert MB, Toral N. Regular Family Meals Associated with Nutritional Status, Food Consumption, and Sedentary and Eating Behaviors of Brazilian Schoolchildren and Their Caregivers. Foods. 2024; 13(23):3975. https://doi.org/10.3390/foods13233975
Chicago/Turabian StyleOliveira, Giovanna Angela Leonel, Gabriela Buccini, Vivian S. S. Gonçalves, Muriel Bauermann Gubert, and Natacha Toral. 2024. "Regular Family Meals Associated with Nutritional Status, Food Consumption, and Sedentary and Eating Behaviors of Brazilian Schoolchildren and Their Caregivers" Foods 13, no. 23: 3975. https://doi.org/10.3390/foods13233975
APA StyleOliveira, G. A. L., Buccini, G., Gonçalves, V. S. S., Gubert, M. B., & Toral, N. (2024). Regular Family Meals Associated with Nutritional Status, Food Consumption, and Sedentary and Eating Behaviors of Brazilian Schoolchildren and Their Caregivers. Foods, 13(23), 3975. https://doi.org/10.3390/foods13233975