The Effects of Daily Consumption of Functionalized Yogurts with Sacha Inchi Oil and Interspecific Hybrid Palm Oil on the Lipid Profile and ApoB/ApoA1 Ratio of Healthy Adult Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Interventions
2.4. Measurement of Anthropometric Parameters and Blood Pressure (BP)
2.5. Assessment of Dietary Intake and Physical Activity
2.6. Measurement of CVD Markers
2.7. Statistical Analyses
3. Results
3.1. Population Characteristics: Baseline and End Status after the Intervention
3.2. Cardiovascular Disease Risk Markers
3.2.1. Lipid Profile
3.2.2. Apolipoproteins A1, B and Their ApoB/ApoA1 Ratio
3.3. Dietary Intake
4. Discussion
4.1. Cardiovascular Disease Risk Markers: Lipid Profile
4.2. Apolipoproteins A1, B and Their ApoB/ApoA1 Ratio
4.3. Dietary Intake
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Yogurt | Storage Time (days) | Total LAB Count | Total Coliforms (g) | Fecal Coliforms (g) | Coagulase Staphylococcus (+) ufc/g | Mold and Yeast Count ufc/g |
---|---|---|---|---|---|---|
A | 1 | 2.3 × 107 | <10 | <1 | <10 | 100 |
21 | 4.3 × 107 | <10 | <1 | <10 | 300 | |
B | 1 | 2.8 × 107 | <10 | <1 | <10 | 100 |
21 | 2.0 ×107 | <10 | <1 | <10 | 100 | |
C | 1 | 6.8 × 107 | <10 | <1 | <10 | 50 |
21 | 3.0 × 107 | <10 | <1 | <10 | 80 | |
Normal range | 20–93 | <3 | - | 200–500 |
Appendix B
Variables | Months | Group A | Group B | Group C | |||
---|---|---|---|---|---|---|---|
Variation | Conf. Int. (95%) | Variation | Conf. Int. (95%) | Variation | Conf. Int. (95%) | ||
TC (mmol/L) | 1 | 1.6 | −1.28 to 4.60 | 3.6 | 0.80 to 6.39 | −1.4 | −5.46 to 2.74 |
2 | 1.2 | −1.76 to 4.12 | 5.9 | 3.08 to 8.66 | 4.8 | 0.71 to 8.92 | |
3 | −2.8 | −5.71 to 0.18 | −1.3 | −4.06 to 1.51 | −3.3 | −7.42 to 0.78 | |
LDL-C (mmol/L) | 1 | 2.0 | −3.34 to 7.31 | 2.1 | −2.34 to 6.49 | −2.5 | −9.54 to 4.41 |
2 | 4.2 | −1.12 to 9.52 | 8.0 | 3.61 to 12.44 | 8.8 | 1.85 to 15.81 | |
3 | −1.6 | −6.94 to 3.71 | −2.5 | −6.96 to 1.87 | −2.0 | −9.00 to 4.94 | |
HDL-C (mmol/L) | 1 | −4.3 | −6.95 to −1.69 | 0.0 | −3.62 to 3.66 | −2.3 | −6.12 to 1.58 |
2 | −4.1 | −6.69 to −1.43 | 1.6 | −2.01 to 5.27 | −2.9 | −6.79 to 0.91 | |
3 | −5.8 | −8.45 to −3.19 | −3.6 | −7.24 to 0.04 | −3.3 | −7.18 to 0.52 | |
TAG (mmol/L) | 1 | 11.1 | −0.63 to 22.72 | 14.9 | 3.11 to 26.73 | 3.1 | −7.46 to 13.68 |
2 | 4.9 | −6.82 to 16.54 | 9.4 | −2.43 to 21.188 | −2.2 | −12.81 to 8.33 | |
3 | 7.7 | −3.94 to 19.41 | 18.9 | 7.12 to 30.7435 | −1.6 | −12.21 to 8.93 | |
Apo A1 (g/L) | 1 | 6.9 | −3.4241 to 17.13 | 16.3 | −2.45 to 35.08 | 0.5 | −4.47 to 5.53 |
2 | 7.9 | −2.35 to 18.20 | 22.6 | 3.84 to 41.38 | 6.7 | 1.73 to 11.75 | |
3 | 8.4 | −1.88 to 18.67 | 20.8 | 2.02 to 39.57 | 6.6 | 1.64 to 11.66 | |
Apo B (g/L) | 1 | 2.5 | −13.01 to 18.04 | 11.1 | −8.97 to 31.24 | −5.1 | −12.50 to 2.30 |
2 | 11.4 | −4.13 to 26.92 | 14.3 | −5.81 to 34.41 | −2.7 | −10.14 to 4.66 | |
3 | −1.9 | −17.43 to 13.62 | 6.1 | −13.98 to 26.23 | −5.6 | −12.969 to 1.84 | |
ApoB/ApoA1 ratio | 1 | −4.2 | −17.36 to 9.04 | −3.5 | −7.48 to 0.51 | −5.2 | −10.76 to 0.45 |
2 | 5.3 | −7.86 to 18.54 | −10.8 | −14.81 to −6.82 | −8.6 | −14.27 to −3.05 | |
3 | −9.7 | −22.94 to 3.45 | −11.8 | −15.79 to −7.79 | −11.7 | −17.31 to −6.09 |
References
- Pan American Health Organization. Cardiovascular Disease Burden in the Region of the Americas, 2000–2019. ENLACE Data Portal. 2021. Available online: https://www.paho.org/en/enlace/cardiovascular-disease-burden (accessed on 1 October 2022).
- Voulalas, G.; Tsui, J.; Candilio, L.; Baker, D. SARS-CoV-2 and Pre-Existing Vascular Diseases: Guilt by Association? Volume 15, Clinical Medicine Insights: Cardiology; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Nestel, P.J.; Beilin, L.J.; Clifton, P.M.; Watts, G.F.; Mori, T.A. Practical Guidance for Food Consumption to Prevent Cardiovascular Disease. Heart Lung Circ. 2021, 30, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Villamil, R.A.; Robelto, G.E.; Mendoza, M.C.; Guzmán, M.P.; Cortés, L.Y.; Méndez, C.A.; Giha, V. Development and health implications of functional dairy food products: A review. Rev. Chil. Nutr. 2020, 47, 1018–1028. [Google Scholar] [CrossRef]
- Mozzon, M.; Foligni, R.; Mannozzi, C. Current Knowledge on Interspecific Hybrid Palm Oils as Food and Food Ingredient. Foods 2020, 9, 631. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Gonzales, C. A randomized, double-blind placebo-controlled study on acceptability, safety and efficacy of oral administration of sacha inchi oil (Plukenetia volubilis L.) in adult human subjects. Food Chem. Toxicol. 2014, 65, 168–176. [Google Scholar] [CrossRef]
- Villamil, R.; Cortés, L.; Gutiérrez, L. Physicochemical and sensory properties of Sacha Inchi oil-functionalised stirred yogurt. Int. J. Food Sci. Technol. 2023, 58, 3681–3692. [Google Scholar] [CrossRef]
- Bork, C.S.; Lundbye-Christensen, S.; Venø, S.K.; Lasota, A.N.; Schmidt, E.B.; Overvad, K. Plant n-3 PUFA intake may lower the risk of atherosclerotic cardiovascular disease only among subjects with a low intake of marine n-3 PUFAs. Eur. J. Nutr. 2022, 61, 557–559. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Huth, P.J.; Fulgoni, V.L.; Larson, B.T. A Systematic Review of High-Oleic Vegetable Oil Substitutions for Other Fats and Oils on Cardiovascular Disease Risk Factors: Implications for Novel High-Oleic Soybean Oils. Adv. Nutr. 2015, 6, 674–693. [Google Scholar] [CrossRef]
- Ramanathan, N.; Tan, E.; Loh, L.J.; Soh, B.S.; Yap, W.N. Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities. Nutr. Metab. 2018, 15, 6. [Google Scholar] [CrossRef]
- Nyanzi, R.; Jooste, P.J.; Buys, E.M. Invited review: Probiotic yogurt quality criteria, regulatory framework, clinical evidence, and analytical aspects. J. Dairy Sci. 2021, 104, 1–19. [Google Scholar] [CrossRef]
- Babio, N. Más allá del valor nutricional del yogur, ¿un indicador de calidad de la dieta? Nutr. Hosp. 2017, 34, 26–30. [Google Scholar] [CrossRef]
- Cortés, L.N.; Villamil, R.A.; Cortés, L.Y. The impact of PUFA-enriched yogurt consumption on cardiovascular risk markers: A review. PharmaNutrition 2023, 23, 100330. [Google Scholar] [CrossRef]
- Deng, F.; Li, D.; Lei, L.; Yang, Q.; Li, Q.; Wang, H.; Deng, J.; Zheng, Q.; Jiang, W. Association between apolipoprotein B/A1 ratio and coronary plaque vulnerability in patients with atherosclerotic cardiovascular disease: An intravascular optical coherence tomography study. Cardiovasc. Diabetol. 2021, 20, 188. [Google Scholar] [CrossRef] [PubMed]
- FDA. 21CFR: Part 312 Investigational New Drug Application. Volume 5, Department of Health and Human Services; Code of Fegeral Regulations; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2022; pp. 56–57. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=312.21 (accessed on 20 December 2022).
- Hasaniani, N.; Rahimlou, M.; Ramezani Ahmadi, A.; Mehdizadeh Khalifani, A.; Alizadeh, M. The Effect of Flaxseed Enriched Yogurt on the Glycemic Status and Cardiovascular Risk Factors in Patients with Type 2 Diabetes Mellitus: Randomized, Open-labeled, Controlled Study. Clin. Nutr. Res. 2019, 8, 284. [Google Scholar] [CrossRef]
- Ahmad, N.; Manzoor, M.F.; Shabbir, U.; Ahmed, S.; Ismail, T.; Saeed, F.; Nisa, M.; Anjum, F.M.; Hussain, S. Hypocholesterolemic effect of designer yogurts fortified with omega fatty acids and dietary fibers in hypercholesterolemic subjects. Food Sci. Technol. 2021, 41, 1000–1008. [Google Scholar] [CrossRef]
- Lucci, P.; Borrero, M.; Ruiz, A.; Pacetti, D.; Frega, N.G.; Diez, O.; Ojeda, M.; Gagliardi, R.; Parra, L.; Angel, M. Palm oil and cardiovascular disease: A randomized trial of the effects of hybrid palm oil supplementation on human plasma lipid patterns. Food Funct. 2016, 7, 347–354. [Google Scholar] [CrossRef]
- Pourrajab, B.; Fatahi, S.; Dehnad, A.; Kord Varkaneh, H.; Shidfar, F. The impact of probiotic yogurt consumption on lipid profiles in subjects with mild to moderate hypercholesterolemia: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 11–22. [Google Scholar] [CrossRef]
- Dawczynski, C.; Massey, K.A.; Ness, C.; Kiehntopf, M.; Stepanow, S.; Platzer, M.; Grün, M.; Nicolaou, A.; Jahreis, G. Randomized placebo-controlled intervention with n-3 LC-PUFA-supplemented yoghurt: Effects on circulating eicosanoids and cardiovascular risk factors. Clin. Nutr. 2013, 32, 686–696. [Google Scholar] [CrossRef]
- Yanai, H.; Masui, Y.; Katsuyama, H.; Adachi, H.; Kawaguchi, A.; Hakoshima, M.; Waragai, Y.; Harigae, T.; Sako, A. An Improvement of Cardiovascular Risk Factors by Omega-3 Polyunsaturated Fatty Acids. J. Clin. Med. Res. 2018, 10, 281–289. [Google Scholar] [CrossRef]
- Palmisano, B.T.; Zhu, L.; Eckel, R.H.; Stafford, J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018, 15, 45. [Google Scholar] [CrossRef]
- Dawczynski, C.; Martin, L.; Wagner, A.; Jahreis, G. N-3 LC-PUFA-enriched dairy products are able to reduce cardiovascular risk factors: A double-blind, cross-over study. Clin. Nutr. 2010, 29, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Wurm, R.; Schrutka, L.; Hammer, A.; Moertl, D.; Berger, R.; Pavo, N.; Lang, I.M.; Goliasch, G.; Huelsmann, M.; Distelmaier, K. Polyunsaturated fatty acids supplementation impairs anti-oxidant high-density lipoprotein function in heart failure. Eur. J. Clin. Investig. 2018, 48, e12998. [Google Scholar] [CrossRef] [PubMed]
- Huffman, K.M.; Hawk, V.H.; Henes, S.T.; Ocampo, C.I.; Orenduff, M.C.; Slentz, C.A.; Johnson, J.L.; Houmard, J.A.; Samsa, G.P.; Kraus, W.E.; et al. Exercise effects on lipids in persons with varying dietary patterns—Does diet matter if they exercise? Responses in Studies of a Targeted Risk Reduction Intervention through Defined Exercise I. Am. Heart J. 2012, 164, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, A.; Taghizadeh, M.; Bahmani, F.; Badroj, N.; Asemi, Z. Metabolic response to omega-3 fatty acid supplementation in patients with diabetic nephropathy: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2015, 36, 79–84. [Google Scholar] [CrossRef]
- Garmendia, F.; Pando, R.; Ronceros, G. Efecto del aceite de sacha inchi (Plukenetia volúbilis L.) sobre el perfil lipídico en pacientes con hiperlipoproteinemia. Rev. Peru. Med. Exp. Salud Publica 2011, 28, 628–632. [Google Scholar] [CrossRef]
- Deng, Q.; Yu, X.; Xu, J.; Liu, C.; Huang, F.; Huang, Q.; Yang, J. Effect of Flaxseed Oil Fortified with Vitamin E and Phytosterols on Antioxidant Defense Capacities and Lipids Profile in Rats. J. Food Sci. 2012, 77, H135–H140. [Google Scholar] [CrossRef]
- Yuen, K.H.; Wong, J.W.; Lim, A.B.; Ng, B.H.; Choy, W.P. Effect of Mixed-Tocotrienols in Hypercholesterolemic Subjects. Funct. Foods Health Dis. 2011, 1, 106. [Google Scholar] [CrossRef]
- Gnoni, G.V.; Natali, F.; Geelen, M.J.H.; Siculella, L. Oleic Acid as an Inhibitor of Fatty Acid and Cholesterol Synthesis. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1365–1373. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780123744203001522 (accessed on 2 February 2023).
- Meganathan, P.; Fu, J.Y. Biological Properties of Tocotrienols: Evidence in Human Studies. Int. J. Mol. Sci. 2016, 17, 1682. [Google Scholar] [CrossRef]
- Zaiden, N.; Yap, W.; Ong, S.; Xu, C.; Teo, V.; Chang, C.; Zhang, X.W.; Nesaretnam, K.; Shiba, S.; Yap, Y.L. Gamma Delta Tocotrienols Reduce Hepatic Triglyceride Synthesis and VLDL Secretion. J. Atheroscler. Thromb. 2010, 17, 1019–1032. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, P.; Fu, X.; Ren, Z.; Cheng, J.; Lin, Z.; Tan, J.; Huang, B.; Huang, Z.; Xu, H.; et al. The effect of triglycerides in the associations between physical activity, sedentary behavior and depression: An interaction and mediation analysis. J. Affect. Disord. 2021, 295, 1377–1385. [Google Scholar] [CrossRef]
- Ahn, H.Y.; Kim, M.; Chae, J.S.; Ahn, Y.T.; Sim, J.H.; Choi, I.D.; Lee, S.H.; Lee, J.H. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia. Atherosclerosis 2015, 241, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Javia, H.N.; Bhavsar, M.H.; Sadariya, B.R.; Maheshwari, A.V.; Sharma, H. Role of Apo B and Apo A1 Levels in Relation to Conventional Lipid Profile in Patients of Ischaemic Heart Disease with or without Type II Diabetes Mellitus. J. Clin. Diagn. Res. 2021, 15, BC01–BC04. [Google Scholar] [CrossRef]
- Hilser, J.R.; Han, Y.; Biswas, S.; Gukasyan, J.; Cai, Z.; Zhu, R.; Tang, W.H.W.; Deb, A.; Lusis, A.J.; Hartiala, J.A.; et al. Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection. J. Lipid Res. 2021, 62, 100061. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wu, T.; Bai, C.; Guo, S.; Huang, W.; Pan, Y.; Zhang, H.; Wu, D.; Fu, Q.; Chen, Q.; et al. Serum apolipoprotein B/apolipoprotein A1 ratio in relation to intervertebral disk herniation: A cross-sectional frequency-matched case–control study. Lipids Health Dis. 2021, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.A.; Panahi, S.; Daniel, N.; Tremblay, A.; Marette, A. Yogurt and Cardiometabolic Diseases: A Critical Review of Potential Mechanisms. Adv. Nutr. Int. Rev. J. 2017, 8, 812–829. [Google Scholar] [CrossRef]
- Upadya, H.; Prabhu, S.; Prasad, A.; Subramanian, D.; Gupta, S.; Goel, A. A randomized, double blind, placebo controlled, multicenter clinical trial to assess the efficacy and safety of Emblica officinalis extract in patients with dyslipidemia 11 Medical and Health Sciences 1103 Clinical Sciences. BMC Complement Altern. Med. 2019, 19, 27. [Google Scholar] [CrossRef]
- Chen, T.; Yang, M. Apo A1/Apo B ratio and acute coronary syndrome among peritoneal dialysis patients. Ren. Fail. 2021, 43, 737–742. [Google Scholar] [CrossRef]
- Zhang, X.; Nie, Y.; Gong, Z.; Zhu, M.; Qiu, B.; Wang, Q. Plasma Apolipoproteins Predicting the Occurrence and Severity of Diabetic Retinopathy in Patients with Type 2 Diabetes Mellitus. Front. Endocrinol. 2022, 13, 915575. [Google Scholar] [CrossRef]
- Zong, G.; Li, Y.; Sampson, L.; Dougherty, L.W.; Willett, W.C.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Hu, F.B.; Sun, Q. Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. Am. J. Clin. Nutr. 2018, 107, 445–453. [Google Scholar] [CrossRef]
- McCullough, R.S.; Edel, A.L.; Bassett, C.M.C.; LaVallée, R.K.; Dibrov, E.; Blackwood, D.P.; Ander, B.P.; Pierce, G.N. The Alpha Linolenic Acid Content of Flaxseed is Associated with an Induction of Adipose Leptin Expression. Lipids 2011, 46, 1043–1052. [Google Scholar] [CrossRef]
- Pintus, S.; Murru, E.; Carta, G.; Cordeddu, L.; Batetta, B.; Accossu, S.; Pistis, D.; Uda, S.; Elena Ghiani, M.; Mele, M.; et al. Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br. J. Nutr. 2013, 109, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
Composition (200 g) | Yogurt | ||
---|---|---|---|
Control * | SIO * | HPO ** | |
Energy (kJ) | 542.6 ± 27.06 | 554.98 ± 6.86 | 576.16 ± 31.6 |
Protein (g) | 7.48 ± 0.30 | 9.18 ± 0.64 | 7.66 ± 0.64 |
Carbohydrates (g) | 10.18 ± 1.19 | 8.66 ± 1.00 | 11.24 ± 1.88 |
Total lipids (g) | 6.58 ± 0.14 | 6.82 ± 0.38 | 6.90 ± 0.34 |
SFA (g) | 4.72 ± 0.14 | 0.68 ± 0.02 | 2.48 ± 0.07 |
MUFA (g) | 1.78 ± 0.05 | 0.58 ± 0.01 | 3.22 ± 0.06 |
OA (g) | 1.66 ± 0.07 | 0.57 ± 0.01 | 3.21 ± 0.09 |
PUFA (g) | 0.08 ± 0.00 | 5.57 ± 0.02 | 0.70 ± 0.01 |
ALA (g) | 0.00 | 3.10 ± 0.05 | 0.00 |
Vitamin E (mg) | 0.66 ± 0.01 | 0.42 ± 0.16 | 2.44 ± 0.02 |
Group | A | B | C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Males | Females | Total 3 | p Value 1 | Males | Females | Total 3 | p Value 1 | Males | Females | Total 3 | p Value 1 | p Value 2 | |
Sex (n) | 8 | 7 | 15 | 9 | 9 | 18 | 8 | 6 | 14 | |||||
Age (years) | 25.9 ± 9.6 | 22.4 ± 6.9 | 24.3 ± 8.7 | 31.3 ± 8.1 | 24.8 ± 8.6 | 27.9 ± 8.9 | 28.3 ± 7.7 | 21.7 ± 3.9 | 25.4 ± 7.1 | 0.20 | ||||
Weight (kg) | Baseline | 75.0 ± 8.7 | 62.8 ± 6.6 | 69.0 ± 9.8 | 0.46 | 72.6 ± 4.2 | 58.9 ± 8.1 | 65.7 ± 9.4 | 1.00 | 75.3 ± 12.1 | 58.0 ± 9.6 | 66.7 ± 14.0 | 0.78 | 0.64 |
3 Mos. | 74.9 ± 9.0 | 62.5 ± 6.5 | 68.7 ± 10.1 | 72.6 ± 4.0 | 58.8 ± 8.5 | 65.7 ± 9.4 | 74.8 ± 11.9 | 58.4 ± 10.1 | 66.6 ± 13.8 | |||||
WC (cm) | Baseline | 84.8 ± 6.3 | 75.2 ± 5.9 | 80.3 ± 7.7 | 0.43 | 82.4 ± 3.2 | 74.2 ± 5.6 | 78.3 ± 6.2 | 0.36 | 84.9 ± 9.5 | 71.1 ± 9.7 | 79.0 ± 11.8 | 0.39 | 0.62 |
3 Mos. | 84.5 ± 6.5 | 74.9 ± 5.9 | 80.0 ± 7.8 | 83.0 ± 3.7 | 73.4 ± 5.1 | 78.2 ± 6.5 | 84.7 ± 9.0 | 70.6 ± 9.7 | 78.6 ± 11.7 | |||||
BMI (kg/m2) | Baseline | 25.0 ± 2.3 | 23.4 ± 2.3 | 24.3 ± 2.4 | 0.48 | 24.0 ± 1.6 | 23.6 ± 3.4 | 23.8 ± 2.6 | 0.48 | 25.2 ± 3.5 | 22.4 ± 3.3 | 24.0 ± 3.7 | 0.87 | 0.88 |
3 Mos. | 25.0 ± 2.4 | 23.2 ± 2.3 | 24.2 ± 2.5 | 24.0 ± 1.3 | 23.5 ± 3.3 | 23.7 ± 2.6 | 25.1 ± 3.4 | 22.5 ± 3.5 | 24.0 ± 3.7 | |||||
FMI (kg/m2) | Baseline | 6.6 ± 1.4 | 7.9 ± 1.3 | 7.2 ± 1.5 | 0.71 | 5.6 ± 1.0 | 7.6 ± 2.4 | 6.6 ± 2.1 | 0.25 | 6.3 ± 2.2 | 6.6 ± 2.3 | 6.5 ± 2.2 | 0.69 | 0.30 |
3 Mos. | 6.5 ± 1.5 | 7.9 ± 1.3 | 7.2 ± 1.5 | 5.4 ± 1.0 | 7.5 ± 2.3 | 6.5 ± 2.1 | 6.3 ± 2.1 | 6.6 ± 2.3 | 6.4 ± 2.2 | |||||
FFMI (kg/m2) | Baseline | 18.6 ± 1.2 | 15.5 ± 1.1 | 17.1 ± 1.9 | 0.35 | 18.5 ± 1.2 | 16.0 ± 1.2 | 17.2 ± 1.7 | 0.40 | 18.9 ± 1.5 | 15.7 ± 1.2 | 17.5 ± 2.1 | 0.83 | 0.64 |
3 Mos. | 18.5 ± 1.2 | 15.4 ± 1.1 | 17.0 ± 1.9 | 18.6 ± 1.1 | 16.0 ± 1.4 | 17.3 ± 1.8 | 18.8 ± 1.6 | 16.0 ± 1.3 | 17.6 ± 2.0 | |||||
SysP (mmHg) | Baseline | 128.3 ± 11.6 | 123.6 ± 6.5 | 126.1 ± 9.9 | 0.48 | 124.6 ± 7.3 | 118.7 ± 12.3 | 121.5 ± 10.5 | 0.66 | 125.6 ± 9.1 | 119.3 ± 5.2 | 122.9 ± 8.3 | 0.01 | 0.11 |
3 Mos. | 125.9 ± 8.8 | 122.3 ± 11.2 | 124.2 ± 10.2 | 129.1 ± 9.9 | 111.1 ± 10.2 | 120.1 ± 13.5 | 117.8 ± 10.3 | 112.3 ± 10.1 | 115.4 ± 10.6 | |||||
DiaP (mmHg) | Baseline | 72.6 ± 5.9 | 67.3 ± 5.5 | 70.1 ± 6.3 | 0.85 | 73.9 ± 9.4 | 71.1 ± 6.5 | 72.4 ± 8.2 | 0.20 | 74.5 ± 10.0 | 63.8 ± 6.6 | 69.9 ± 10.2 | 0.53 | 0.58 |
3 Mos. | 72.5 ± 4.0 | 66.9 ± 6.7 | 69.9 ± 6.1 | 66.2 ± 9.2 | 66.4 ± 6.2 | 69.4 ± 6.9 | 70.9 ± 7.3 | 65.2 ± 7.2 | 68.4 ± 7.8 |
Months | 0 | 1 | 2 | 3 | |||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Group | Mean Sd | p Value | Mean Sd | p Value | Mean Sd | p Value | Mean Sd | p Value |
Energy (kcal) | A | 1771.0 ± 593.9 | 0.632 | 1964.1 ± 660.5 | 0.768 | 1829.7 ± 708.1 | 0.018 | 1820.6 ± 588.6 | 0.290 |
B | 1850.4 ± 652.9 | 2073.1 ± 668.5 | 2118.1 ± 737.7 | 2027.1 ± 618.0 | |||||
C | 2056.3 ± 619.7 | 2055.3 ± 736.9 | 1837.7 ± 775.7 | 2042.4 ± 791.1 | |||||
Protein (g) | A | 74.2 ± 30.5 | 0.836 | 84.9 ± 31.1 | 0.007 | 79.7 ± 30.4 | 0.003 | 81.8 ± 28.0 | 0.293 |
B | 79.2 ± 29.4 | 96.3 ± 35.9 | 94.8 ± 35.1 | 90.6 ± 26.5 | |||||
C | 80.6 ± 28.5 | 96.9 ± 34.1 | 83.9 ± 32.7 | 101.5 ± 46.0 | |||||
Total lipids (g) | A | 67.9 ± 24.6 | 0.914 | 76.8 ± 34.1 | 0.410 | 72.5 ± 36.2 | 0.004 | 73.9 ± 35.3 | 0.273 |
B | 73.7 ± 36.6 | 81.3 ± 38.4 | 88.6 ± 39.5 | 84.1 ± 30.5 | |||||
C | 77.4 ± 39.1 | 84.3 ± 38.7 | 73.5 ± 35.5 | 90.3 ± 40.1 | |||||
SFA (g) | A | 18.4 ± 7.5 | 0.904 | 19.7 ± 9.5 | 0.001 | 19.3 ± 11.1 | 0.002 | 17.6 ± 8.4 | <0.001 |
B | 17.5 ± 6.9 a | 23.1 ± 11.3 ab | 25.1 ± 12.8 ab | 27.9 ± 15.9 b | |||||
C | 19.7 ± 10.3 | 25.9 ± 11.3 | 22.4 ± 11.9 | 29.1 ± 10.5 | |||||
MUFA (g) | A | 18.3 ± 9.8 | 0.881 | 21.4 ± 13.7 | 0.004 | 19.8 ± 12.0 | 0.092 | 18.7 ± 9.7 | 0.002 |
B | 22.1 ± 15.3 a | 27.2 ± 18.6 ab | 30.6 ± 15.8 ab | 28.0 ± 11.8 b | |||||
C | 21.2 ± 15.8 | 25.8 ± 17.4 | 22.5 ± 13.9 | 28.3 ± 15.5 | |||||
PUFA (g) | A | 9.7 ± 7.6 a | 0.450 | 14.9 ± 8.5 b | 0.037 | 16.6 ± 10.1 b | 0.003 | 14.4 ± 6.4 b | 0.413 |
B | 14.7 ± 14.8 | 13.8 ± 10.8 | 16.6 ± 11.1 | 13.3 ± 7.1 | |||||
C | 10.6 ± 13.0 | 13.7 ± 10.9 | 11.3 ± 11.0 | 16.3 ± 13.6 | |||||
Cholesterol (mg) | A | 517.3 ± 414.9 | 0.379 | 462.5 ± 281.3 | 0.582 | 468.4 ± 339.7 | 0.790 | 349.9 ± 287.2 | 0.011 |
B | 393.1 ± 268.3 | 467.1 ± 364.5 | 451.5 ± 319.6 | 469.3 ± 213.2 | |||||
C | 371.6 ± 207.1 | 430.7 ± 311.8 | 427.8 ± 254.1 | 593.0 ± 246.6 | |||||
Carbohydrates (g) | A | 209.4 ± 74.3 | 0.274 | 222.3 ± 78.5 | 0.573 | 201.5 ± 79.2 | 0.104 | 198.6 ± 64.9 | 0.471 |
B | 207.7 ± 93.6 | 227.9 ± 87.8 | 223.1 ± 94.5 | 218.1 ± 80.7 | |||||
C | 252.1 ± 69.8 | 217.4 ± 85.5 | 198.3 ± 98.9 | 192.5 ± 73.1 | |||||
Dietary fiber (g) | A | 9.9 ± 5.4 | 0.059 | 14.0 ± 9.8 | 0.267 | 11.2 ± 6.5 | 0.026 | 11.9 ± 5.3 | 0.035 |
B | 16.3 ± 11.4 | 16.3 ± 9.7 | 15.2 ± 11.1 | 16.9 ± 8.1 | |||||
C | 18.4 ± 10.2 | 15.8 ± 10.1 | 13.2 ± 6.1 | 14.1 ± 7.2 | |||||
Vitamin E (mg) | A | 0.05 ± 0.14 a | 0.912 | 0.67± 0.64 b | <0.001 | 0.53 ± 0.52 b | <0.001 | 0.45 ± 0.36 b | <0.001 |
B | 0.18 ± 0.04 a | 2.44 ± 0.00 b | 2.38 ± 0.37 b | 2.38 ± 0.34 b | |||||
C | 0.26 ± 0.15 | 0.32 ± 0.11 | 0.34 ± 0.28 | 0.38 ± 0.19 | |||||
Sodium (mg) | A | 1746.7 ± 938.5 | 0.093 | 2255.0 ± 1347.0 | 0.068 | 2372.1 ± 1572.0 | 0.004 | 2003.6 ± 933.0 | 0.015 |
B | 1955.0 ± 990.8 | 2581.2 ± 1681.6 | 2928.6 ± 1655.6 | 2833.5 ± 1411.9 | |||||
C | 2481.3 ± 879.5 | 2187.1 ± 1021.4 | 2036.3 ± 1027.1 | 2692.2 ± 1050.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villamil, R.-A.; Romero, L.-N.; Ruiz, J.-P.; Patiño, D.-C.; Gutiérrez, L.-F.; Cortés, L.-Y. The Effects of Daily Consumption of Functionalized Yogurts with Sacha Inchi Oil and Interspecific Hybrid Palm Oil on the Lipid Profile and ApoB/ApoA1 Ratio of Healthy Adult Subjects. Foods 2024, 13, 3973. https://doi.org/10.3390/foods13233973
Villamil R-A, Romero L-N, Ruiz J-P, Patiño D-C, Gutiérrez L-F, Cortés L-Y. The Effects of Daily Consumption of Functionalized Yogurts with Sacha Inchi Oil and Interspecific Hybrid Palm Oil on the Lipid Profile and ApoB/ApoA1 Ratio of Healthy Adult Subjects. Foods. 2024; 13(23):3973. https://doi.org/10.3390/foods13233973
Chicago/Turabian StyleVillamil, Ruby-Alejandra, Laura-Natalia Romero, Juan-Pablo Ruiz, Diana-Cristina Patiño, Luis-Felipe Gutiérrez, and Lilia-Yadira Cortés. 2024. "The Effects of Daily Consumption of Functionalized Yogurts with Sacha Inchi Oil and Interspecific Hybrid Palm Oil on the Lipid Profile and ApoB/ApoA1 Ratio of Healthy Adult Subjects" Foods 13, no. 23: 3973. https://doi.org/10.3390/foods13233973
APA StyleVillamil, R. -A., Romero, L. -N., Ruiz, J. -P., Patiño, D. -C., Gutiérrez, L. -F., & Cortés, L. -Y. (2024). The Effects of Daily Consumption of Functionalized Yogurts with Sacha Inchi Oil and Interspecific Hybrid Palm Oil on the Lipid Profile and ApoB/ApoA1 Ratio of Healthy Adult Subjects. Foods, 13(23), 3973. https://doi.org/10.3390/foods13233973