Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of autoimmune disease

Abstract

Autoimmune diseases are a diverse group of conditions characterized by aberrant B cell and T cell reactivity to normal constituents of the host. These diseases occur widely and affect individuals of all ages, especially women. Among these diseases, the most prominent immunological manifestation is the production of autoantibodies, which provide valuable biomarkers for diagnosis, classification and disease activity. Although T cells have a key role in pathogenesis, they are technically more difficult to assay. In general, autoimmune disease results from an interplay between a genetic predisposition and environmental factors. Genetic predisposition to autoimmunity is complex and can involve multiple genes that regulate the function of immune cell populations. Less frequently, autoimmunity can result from single-gene mutations that affect key regulatory pathways. Infection seems to be a common trigger for autoimmune disease, although the microbiota can also influence pathogenesis. As shown in seminal studies, patients may express autoantibodies many years before the appearance of clinical or laboratory signs of disease — a period called pre-clinical autoimmunity. Monitoring autoantibody expression in at-risk populations may therefore enable early detection and the initiation of therapy to prevent or attenuate tissue damage. Autoimmunity may not be static, however, and remission can be achieved by some patients treated with current agents.

Key points

  • Autoimmune diseases lead to diverse patterns of inflammation and organ dysfunction.

  • Autoantibodies are valuable markers for diagnosis, classification and of disease activity.

  • Although T cells play a key part in disease, their assessment is challenging.

  • Autoimmune disease reflects the interplay of genetic and environmental factors.

  • Pre-clinical autoimmune disease provides a window of time for early or preventive treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of immune-mediated glomerulonephritis.
Fig. 2: The actions of autoantibodies in immunopathology.
Fig. 3: The stages of autoimmune disease.

Similar content being viewed by others

References

  1. Davidson, A. & Diamond, B. Autoimmune diseases. N. Engl. J. Med. 345, 340–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Slight-Webb, S., Bourn, R. L., Holers, V. M. & James, J. A. Shared and unique immune alterations in pre-clinical autoimmunity. Curr. Opin. Immunol. 61, 60–68 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sethi, S., De Vriese, A. S. & Fervenza, F. C. Acute glomerulonephritis. Lancet 399, 1646–1663 (2022).

    Article  PubMed  Google Scholar 

  4. Beck, L. H. Jr. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sethi, S. New ‘antigens’ in membranous nephropathy. J. Am. Soc. Nephrol. 32, 268–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Watts, A. J. B. et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J. Am. Soc. Nephrol. 33, 238–252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rose, N. R. & Bona, C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol. Today 14, 426–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Mecoli, C. A. & Casciola-Rosen, L. An update on autoantibodies in scleroderma. Curr. Opin. Rheumatol. 30, 548–553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. McHugh, N. J. & Tansley, S. L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 14, 290–302 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Lazaridis, K. & Tzartos, S. J. Autoantibody specificities in myasthenia gravis; implications for improved diagnostics and therapeutics. Front. Immunol. 11, 212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moore, E. et al. Promise and complexity of lupus mouse models. Nat. Immunol. 22, 683–686 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Moel, E. C. et al. In rheumatoid arthritis, changes in autoantibody levels reflect intensity of immunosuppression, not subsequent treatment response. Arth. Res. Ther. 21, 28 (2019).

    Article  Google Scholar 

  13. van de Logt, A. E. et al. Immunological remission in PLA2R-antibody-associated membranous nephropathy: cyclophosphamide versus rituximab. Kidney Int. 93, 1016–1017 (2018).

    Article  PubMed  Google Scholar 

  14. Wu, W. et al. The prognostic value of phospholipase A2 receptor autoantibodies on spontaneous remission for patients with idiopathic membranous nephropathy: a meta-analysis. Medicine 97, e11018 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goebel, A. et al. The autoimmune aetiology of unexplained chronic pain. Autoimmun. Rev. 21, 103015 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Goebel, A. et al. Passive transfer of fibromyalgia symptoms from patients to mice. J. Clin. Investig. https://doi.org/10.1172/jci144201 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pollak, T. A. et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiat. 7, 93–108 (2020).

    Article  Google Scholar 

  18. Larman, H. B. et al. Autoantigen discovery with a synthetic human peptidome. Nat. Biotechnol. 29, 535–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, E. Y. et al. High-throughput identification of autoantibodies that target the human exoproteome. Cell Rep. Meth. https://doi.org/10.1016/j.crmeth.2022.100172 (2022).

    Article  Google Scholar 

  20. Knight, J. S. et al. The intersection of COVID-19 and autoimmunity. J. Clin. Investig. https://doi.org/10.1172/jci154886 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shome, M. et al. Serum autoantibodyome reveals that healthy individuals share common autoantibodies. Cell Rep. 39, 110873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caza, T. N. et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int. 100, 171–181 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Ronco, P. & Debiec, H. Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization. J. Am. Soc. Nephrol. 16, 1205–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Graus, F., Saiz, A. & Dalmau, J. GAD antibodies in neurological disorders — insights and challenges. Nat. Rev. Neurol. 16, 353–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Buzzetti, R. et al. Management of latent autoimmune diabetes in adults: a consensus statement from an international expert panel. Diabetes 69, 2037–2047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rüster, M., Kiehntopf, M., Gröne, H. J. & Wolf, G. A Friday afternoon case of apparent anti-glomerular basement nephritis. Nephrol. Dial. Transplant. 21, 2328–2330 (2006).

    Article  PubMed  Google Scholar 

  27. Fritzler, M. J., Choi, M. Y., Satoh, M. & Mahler, M. Autoantibody discovery, assay development and adoption: death valley, the sea of survival and beyond. Front. Immunol. 12, 679613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pisetsky, D. S. & Lipsky, P. E. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 16, 565–579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosen, A. & Casciola-Rosen, L. Autoantigens as partners in initiation and propagation of autoimmune rheumatic diseases. Annu. Rev. Immunol. 34, 395–420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scherer, H. U., Huizinga, T. W. J., Krönke, G., Schett, G. & Toes, R. E. M. The B cell response to citrullinated antigens in the development of rheumatoid arthritis. Nat. Rev. Rheumatol. 14, 157–169 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell, A. M. et al. T-cell responses to hybrid insulin peptides prior to type 1 diabetes development. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2019129118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Poppelaars, F. & Thurman, J. M. Complement-mediated kidney diseases. Mol. Immunol. 128, 175–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Kant, S., Kronbichler, A., Sharma, P. & Geetha, D. Advances in understanding of pathogenesis and treatment of immune-mediated kidney disease: a review. Am. J. Kidney Dis. 79, 582–600 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Zykova, S. N., Tveita, A. A. & Rekvig, O. P. Renal Dnase1 enzyme activity and protein expression is selectively shut down in murine and human membranoproliferative lupus nephritis. PLoS One https://doi.org/10.1371/journal.pone.0012096 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jayne, D. R. W., Merkel, P. A., Schall, T. J. & Bekker, P. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Alba, M. A., Jennette, J. C. & Falk, R. J. Pathogenesis of ANCA-associated pulmonary vasculitis. Semin. Respir. Crit. Care Med. 39, 413–424 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saffarzadeh, M. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7, e32366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kasperkiewicz, M. et al. Pemphigus. Nat. Rev. Dis. Prim. 3, 17026 (2017).

    Article  PubMed  Google Scholar 

  39. Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Puel, A., Bastard, P., Bustamante, J. & Casanova, J. L. Human autoantibodies underlying infectious diseases. J. Exp. Med. https://doi.org/10.1084/jem.20211387 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Beurskens, F. J., van Schaarenburg, R. A. & Trouw, L. A. C1q, antibodies and anti-C1q autoantibodies. Mol. Immunol. 68, 6–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Bomback, A. S. et al. C3 glomerulonephritis and dense deposit disease share a similar disease course in a large United States cohort of patients with C3 glomerulopathy. Kidney Int. 93, 977–985 (2018).

    Article  PubMed  Google Scholar 

  43. Yoshitomi, H. & Ueno, H. Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases. Cell. Mol. Immunol. 18, 523–527 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. den Braanker, D. J. W. et al. Novel in vitro assays to detect circulating permeability factor(s) in idiopathic focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 36, 247–256 (2021).

    Article  Google Scholar 

  45. Sims, E. K., Mirmira, R. G. & Evans-Molina, C. The role of beta-cell dysfunction in early type 1 diabetes. Curr. Opin. Endocrinol. Diab. Obes. 27, 215–224 (2020).

    Article  CAS  Google Scholar 

  46. Hogquist, K. A., Baldwin, T. A. & Jameson, S. C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Bluestone, J. A. & Anderson, M. Tolerance in the age of immunotherapy. N. Engl. J. Med. 383, 1156–1166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsubata, T. B-cell tolerance and autoimmunity. F1000 Res. 6, 391 (2017).

    Article  Google Scholar 

  49. Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17, 281–294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takaba, H. & Takayanagi, H. The mechanisms of T cell selection in the thymus. Trends Immunol. 38, 805–816 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Anderson, M. S. & Su, M. A. AIRE expands: new roles in immune tolerance and beyond. Nat. Rev. Immunol. 16, 247–258 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Takaba, H. et al. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163, 975–987 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Meffre, E. & O’Connor, K. C. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol. Rev. 292, 90–101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rawlings, D. J., Metzler, G., Wray-Dutra, M. & Jackson, S. W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 17, 421–436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mintz, M. A. & Cyster, J. G. T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol. Rev. 296, 48–61 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jamaly, S., Rakaee, M., Abdi, R., Tsokos, G. C. & Fenton, K. A. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun. Rev. 20, 102980 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. ElTanbouly, M. A. & Noelle, R. J. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat. Rev. Immunol. 21, 257–267 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Wing, J. B., Tanaka, A. & Sakaguchi, S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 50, 302–316 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Shevach, E. M. Foxp3+ T regulatory cells: still many unanswered questions — A perspective after 20 years of study. Front. Immunol. 9, 1048 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dasgupta, S., Dasgupta, S. & Bandyopadhyay, M. Regulatory B cells in infection, inflammation, and autoimmunity. Cell. Immunol. 352, 104076 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Criswell, L. A. et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet. 76, 561–571 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Iwamoto, T. & Niewold, T. B. Genetics of human lupus nephritis. Clin. Immunol. 185, 32–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Robertson, C. C. et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat. Genet. 53, 962–971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Goulielmos, G. N. et al. The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene 668, 59–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Estrada, K. et al. A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nat. Commun. 9, 1929 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47, 1085–1090 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Benaglio, P. et al. Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines. Cell Genom. 2, 100214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coit, P. et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J. Autoimmun. 43, 78–84 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Coit, P. et al. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-Th1 effector T cell immune response as an early event in lupus flares. Arth. Rheumatol. 68, 2200–2209 (2016).

    Article  CAS  Google Scholar 

  75. Stanford, S. M. & Bottini, N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat. Rev. Rheumatol. 10, 602–611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mustelin, T., Bottini, N. & Stanford, S. M. The contribution of PTPN22 to rheumatic disease. Arth. Rheumatol. 71, 486–495 (2019).

    Article  CAS  Google Scholar 

  77. Tizaoui, K. et al. The role of PTPN22 in the pathogenesis of autoimmune diseases: a comprehensive review. Semin. Arth. Rheum. 51, 513–522 (2021).

    Article  CAS  Google Scholar 

  78. Xie, J. et al. The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nat. Commun. 11, 1600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Catalina, M. D. et al. Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus. JCI Insight https://doi.org/10.1172/jci.insight.140380 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Menard, L. C. et al. B cells from African American lupus patients exhibit an activated phenotype. JCI Insight 1, e87310 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Owen, K. A. et al. Analysis of trans-ancestral SLE risk loci identifies unique biologic networks and drug targets in African and European ancestries. Am. J. Hum. Genet. 107, 864–881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tesar, V. & Hruskova, Z. Lupus nephritis: a different disease in European patients. Kidney Dis. 1, 110–118 (2015).

    Article  Google Scholar 

  85. Isenberg, D. et al. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology 49, 128–140 (2010).

    Article  PubMed  Google Scholar 

  86. Yusuf, A. A., Govender, M. A., Brandenburg, J. T. & Winkler, C. A. Kidney disease and APOL1. Hum. Mol. Genet. 30, R129–r137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Omarjee, O. et al. Monogenic lupus: dissecting heterogeneity. Autoimmun. Rev. 18, 102361 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Zipfel, P. F., Wiech, T., Stea, E. D. & Skerka, C. CFHR gene variations provide insights in the pathogenesis of the kidney diseases atypical hemolytic uremic syndrome and C3 glomerulopathy. J. Am. Soc. Nephrol. 31, 241–256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Crow, Y. J. & Stetson, D. B. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22, 471–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Husebye, E. S., Anderson, M. S. & Kämpe, O. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 378, 1132–1141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ferre, E. M. et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. JCI Insight https://doi.org/10.1172/jci.insight.88782 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Barzaghi, F. & Passerini, L. IPEX syndrome: improved knowledge of immune pathogenesis empowers diagnosis. Front. Pediatr. 9, 612760 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cepika, A. M. et al. Tregopathies: monogenic diseases resulting in regulatory T-cell deficiency. J. Allergy Clin. Immunol. 142, 1679–1695 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Lundtoft, C. et al. Complement C4 copy number variation is linked to SSA/Ro and SSB/La autoantibodies in systemic inflammatory autoimmune diseases. Arth. Rheumatol. 74, 1440–1450 (2022).

    Article  CAS  Google Scholar 

  95. Hoshino, A. et al. Identification of autoantibodies using human proteome microarrays in patients with IPEX syndrome. Clin. Immunol. 203, 9–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Lampasona, V. et al. Autoantibodies to harmonin and villin are diagnostic markers in children with IPEX syndrome. PLoS One 8, e78664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Souyris, M., Mejía, J. E., Chaumeil, J. & Guéry, J. C. Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin. Immunopathol. 41, 153–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Nusbaum, J. S. et al. Sex differences in systemic lupus erythematosus: epidemiology, clinical considerations, and disease pathogenesis. Mayo Clin. Proc. 95, 384–394 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Webb, K. et al. Sex and pubertal differences in the type 1 interferon pathway associate with both X chromosome number and serum sex hormone concentration. Front. Immunol. 9, 3167 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl Acad. Sci. Usa. 111, 869–874 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Fischinger, S., Boudreau, C. M., Butler, A. L., Streeck, H. & Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 41, 239–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Scofield, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome. Arth. Rheum. 58, 2511–2517 (2008).

    Article  Google Scholar 

  103. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bergstra, S. A. et al. Sex-associated treatment differences and their outcomes in rheumatoid arthritis: results from the METEOR register. J. Rheumatol. 45, 1361–1366 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Warram, J. H., Krolewski, A. S., Gottlieb, M. S. & Kahn, C. R. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N. Engl. J. Med. 311, 149–152 (1984).

    Article  CAS  PubMed  Google Scholar 

  106. Bonifacio, E., Warncke, K., Winkler, C., Wallner, M. & Ziegler, A. G. Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetes risk. Diabetes 60, 3300–3306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dinse, G. E. et al. Increasing prevalence of antinuclear antibodies in the United States. Arth. Rheumatol. 72, 1026–1035 (2020).

    Article  CAS  Google Scholar 

  108. Hermann, R. et al. Temporal changes in the frequencies of HLA genotypes in patients with type 1 diabetes — indication of an increased environmental pressure? Diabetologia 46, 420–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Gillespie, K. M. et al. The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes. Lancet 364, 1699–1700 (2004).

    Article  PubMed  Google Scholar 

  110. Miller, A. L., Bessho, S., Grando, K. & Tükel, Ç. Microbiome or infections: amyloid-containing biofilms as a trigger for complex human diseases. Front. Immunol. 12, 638867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Ogunrinde, E. et al. A link between plasma microbial translocation, microbiome, and autoantibody development in first-degree relatives of systemic lupus erythematosus patients. Arth. Rheumatol. 71, 1858–1868 (2019).

    Article  CAS  Google Scholar 

  113. Jog, N. R. & James, J. A. Epstein Barr virus and autoimmune responses in systemic lupus erythematosus. Front. Immunol. 11, 623944 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Manasson, J., Blank, R. B. & Scher, J. U. The microbiome in rheumatology: where are we and where should we go? Ann. Rheum. Dis. 79, 727–733 (2020).

    Article  PubMed  Google Scholar 

  115. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Artacho, A. et al. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis. Arth. Rheumatol. 73, 931–942 (2021).

    Article  CAS  Google Scholar 

  117. Azzouz, D. et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann. Rheum. Dis. 78, 947–956 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Pianta, A. et al. Identification of novel, immunogenic HLA-DR-presented Prevotella copri peptides in patients with rheumatoid arthritis. Arth. Rheumatol. 73, 2200–2205 (2021).

    Article  CAS  Google Scholar 

  119. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Yang, Y. et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 607, 563–570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mariño, E. et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol. 18, 552–562 (2017).

    Article  PubMed  Google Scholar 

  122. Zegarra-Ruiz, D. F. et al. A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 25, 113–127.e116 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. McPherson, A. C., Pandey, S. P., Bender, M. J. & Meisel, M. Systemic immunoregulatory consequences of gut commensal translocation. Trends Immunol. 42, 137–150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Milligan, G., Shimpukade, B., Ulven, T. & Hudson, B. D. Complex pharmacology of free fatty acid receptors. Chem. Rev. 117, 67–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Brown, J., Robusto, B. & Morel, L. Intestinal dysbiosis and tryptophan metabolism in autoimmunity. Front. Immunol. 11, 1741 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thorburn, A. N., Macia, L. & Mackay, C. R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40, 833–842 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Meier, H. C. S. et al. Hygiene hypothesis indicators and prevalence of antinuclear antibodies in US adolescents. Front. Immunol. 13, 789379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arth. Rheum. 54, 38–46 (2006).

    Article  CAS  Google Scholar 

  129. Tiniakou, E. & Christopher-Stine, L. Immune-mediated necrotizing myopathy associated with statins: history and recent developments. Curr. Opin. Rheumatol. 29, 604–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Mérida, E. & Praga, M. NSAIDs and nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 14, 1280–1282 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Burkett, J. B., Doran, A. C. & Gannon, M. Harnessing prostaglandin E(2) signaling to ameliorate autoimmunity. Trends Immunol. 44, 162–171 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Graus, F. & Dalmau, J. Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 16, 535–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Graus, F. & Dalmau, J. Paraneoplastic neurological syndromes. Curr. Opin. Neurol. 25, 795–801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Weinmann, S. C. & Pisetsky, D. S. Mechanisms of immune-related adverse events during the treatment of cancer with immune checkpoint inhibitors. Rheumatology 58, vii59–vii67 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Olsen, N. J., Okuda, D. T., Holers, V. M. & Karp, D. R. Editorial: Understanding the concept of pre-clinical autoimmunity. Front. Immunol. 13, 983310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Choi, M. Y. & Costenbader, K. H. Understanding the concept of pre-clinical autoimmunity: prediction and prevention of systemic lupus erythematosus: identifying risk factors and developing strategies against disease development. Front. Immunol. 13, 890522 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Sosenko, J. M. et al. The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care 36, 2615–2620 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jacobsen, L. M. et al. The risk of progression to type 1 diabetes is highly variable in individuals with multiple autoantibodies following screening. Diabetologia 63, 588–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Haville, S. & Deane, K. D. Pre-RA: can early diagnosis lead to prevention? Best. Pract. Res. Clin. Rheumatol. 36, 101737 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Munroe, M. E. et al. Discerning risk of disease transition in relatives of systemic lupus erythematosus patients utilizing soluble mediators and clinical features. Arth. Rheumatol. 69, 630–642 (2017).

    Article  CAS  Google Scholar 

  143. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Slight-Webb, S. et al. Autoantibody-positive healthy individuals with lower lupus risk display a unique immune endotype. J. Allergy Clin. Immunol. 146, 1419–1433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. So, M., O’Rourke, C., Bahnson, H. T., Greenbaum, C. J. & Speake, C. Autoantibody reversion: changing risk categories in multiple-autoantibody-positive individuals. Diab. Care 43, 913–917 (2020).

    Article  CAS  Google Scholar 

  146. Powers, A. C. Type 1 diabetes mellitus: much progress, many opportunities. J. Clin. Investig. https://doi.org/10.1172/jci142242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dayan, C. M., Korah, M., Tatovic, D., Bundy, B. N. & Herold, K. C. Changing the landscape for type 1 diabetes: the first step to prevention. Lancet 394, 1286–1296 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Perdigoto, A. L. et al. Treatment of type 1 diabetes with teplizumab: clinical and immunological follow-up after 7 years from diagnosis. Diabetologia 62, 655–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Hirsch, J. S. FDA approves teplizumab: a milestone in type 1 diabetes. Lancet Diab. Endocrinol. 11, 18 (2023).

    Article  CAS  Google Scholar 

  152. Deane, K. D. & Holers, V. M. Rheumatoid arthritis pathogenesis, prediction, and prevention: an emerging paradigm shift. Arth. Rheumatol. 73, 181–193 (2021).

    Article  Google Scholar 

  153. Krijbolder, D. I. et al. Intervention with methotrexate in patients with arthralgia at risk of rheumatoid arthritis to reduce the development of persistent arthritis and its disease burden (TREAT EARLIER): a randomised, double-blind, placebo-controlled, proof-of-concept trial. Lancet 400, 283–294 (2022).

    Article  PubMed  Google Scholar 

  154. Arroyo, H. A. & Torres, A. R. Spontaneous remission in juvenile myasthenia gravis: a cohort of 13 cases and review of the literature. Neuromuscul. Disord. 32, 213–219 (2022).

    Article  PubMed  Google Scholar 

  155. Watanabe, S. et al. Spontaneous remission of thrombospondin type-1 domain-containing-associated membranous nephropathy. Intern. Med. 60, 3125–3128 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Dörner, T. & Lipsky, P. E. B cells: depletion or functional modulation in rheumatic diseases. Curr. Opin. Rheumatol. 26, 228–236 (2014).

    Article  PubMed  Google Scholar 

  157. Phalke, S. & Marrack, P. Age (autoimmunity) associated B cells (ABCs) and their relatives. Curr. Opin. Immunol. 55, 75–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Mouat, I. C., Goldberg, E. & Horwitz, M. S. Age-associated B cells in autoimmune diseases. Cell. Mol. Life Sci. 79, 402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Vidal-Pedrola, G. et al. Characterization of age-associated B cells in early drug-naïve rheumatoid arthritis patients. Immunology https://doi.org/10.1111/imm.13598 (2022).

    Article  PubMed  Google Scholar 

  160. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Smith, M. J., Cambier, J. C. & Gottlieb, P. A. Endotypes in T1D: B lymphocytes and early onset. Curr. Opin. Endocrinol. Diab. Obes. 27, 225–230 (2020).

    Article  CAS  Google Scholar 

  162. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 15, 160–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Amanna, I. J. & Slifka, M. K. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol. Rev. 236, 125–138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hale, M., Rawlings, D. J. & Jackson, S. W. The long and the short of it: insights into the cellular source of autoantibodies as revealed by B cell depletion therapy. Curr. Opin. Immunol. 55, 81–88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chang, H. D. et al. Pathogenic memory plasma cells in autoimmunity. Curr. Opin. Immunol. 61, 86–91 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 74, 1474–1478 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Ostendorf, L. et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N. Engl. J. Med. 383, 1149–1155 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Morris, A. D., Rowbottom, A. W., Martin, F. L., Woywodt, A. & Dhaygude, A. P. Biomarkers in ANCA-associated vasculitis: potential pitfalls and future prospects. Kidney360 2, 586–597 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Schur, P. H. & Sandson, J. Immunologic factors and clinical activity in systemic lupus erythematosus. N. Engl. J. Med. 278, 533–538 (1968).

    Article  CAS  PubMed  Google Scholar 

  171. McCarty, G. A., Rice, J. R., Bembe, M. L. & Pisetsky, D. S. Independent expression of autoantibodies in systemic lupus erythematosus. J. Rheumatol. 9, 691–695 (1982).

    CAS  PubMed  Google Scholar 

  172. Schett, G. et al. Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann. Rheum. Dis. 75, 1428–1437 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arth. Rheum. 61, 1168–1178 (2009).

    Article  CAS  Google Scholar 

  174. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arth. Rheum. 63, 3918–3930 (2011).

    Article  CAS  Google Scholar 

  175. Pisetsky, D. S., Rovin, B. H. & Lipsky, P. E. New perspectives in rheumatology: biomarkers as entry criteria for clinical trials of new therapies for systemic lupus erythematosus: the example of antinuclear antibodies and anti-DNA. Arth. Rheumatol. 69, 487–493 (2017).

    Article  Google Scholar 

  176. Ludwig, R. J. et al. Mechanisms of autoantibody-induced pathology. Front. Immunol. 8, 603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Barrat, F. J., Crow, M. K. & Ivashkiv, L. B. Interferon target-gene expression and epigenomic signatures in health and disease. Nat. Immunol. 20, 1574–1583 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Pisetsky.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Philip Cohen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisetsky, D.S. Pathogenesis of autoimmune disease. Nat Rev Nephrol 19, 509–524 (2023). https://doi.org/10.1038/s41581-023-00720-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00720-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing