skip to main content
10.1145/3666025.3699318acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article
Open access

FireLoc: Low-latency Multi-modal Wildfire Geolocation

Published: 04 November 2024 Publication History

Abstract

Firefighters still rely on coarse remote sensing and inaccurate eyewitness reports to localize spreading wildfires. Despite advances in sensing, UAVs, and computer vision, the community has yet to combine the right modalities to achieve effective wildfire geolocalization and spotting. We present FireLoc, a fast and accurate wildfire crowdsensing system that localizes and maps wildfires combining ground cameras and landscape data.
Prior image-based localization techniques fail in vegetated areas as they are tuned for close-range human-built environments. Instead, FireLoc integrates monocular depth mapping models, topography models, and cross-camera methods to achieve over 1000m range in vegetated environments leveraging low-cost smartphones. Due to the paucity of historical wildfire data, we built a wildfire simulator to provide additional data for validation. We show that FireLoc surpasses prior wildfire mapping work and reduces wildfire mapping time from hours to seconds.

References

[1]
Alisal fire incident. https://www.fire.ca.gov/incidents/2021/10/11/alisal-fire/. Accessed: 2022-12-08.
[2]
Getty fire. https://en.wikipedia.org/wiki/Getty_Fire. Accessed: 2023-06-26.
[3]
Wfigs - current wildland fire perimters. https://data-nifc.opendata.arcgis.com/datasets/wfigs-current-wildland-fire-perimeters/. Accessed: 2022-12-08.
[4]
National interagency fire center. https://data-nifc.opendata.arcgis.com/, 2024. Accessed: 19-03-2024.
[5]
A. S. Aguiar, F. N. Dos Santos, J. B. Cunha, H. Sobreira, and A. J. Sousa. Localization and mapping for robots in agriculture and forestry: A survey. Robotics, 9(4):97, 2020.
[6]
F. Ahmad, H. Qiu, R. Eells, F. Bai, and R. Govindan. {CarMap}: Fast 3d feature map updates for automobiles. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pages 1063--1081, 2020.
[7]
AlertWildfire. Alertwildfire. https://www.alertwildfire.org/, 2022.
[8]
R. S. Allison, J. M. Johnston, G. Craig, and S. Jennings. Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors, 16(8):1310, 2016.
[9]
S. Anderson, C. Barford, and P. Barford. Five alarms: Assessing the vulnerability of us cellular communication infrastructure to wildfires. In Proceedings of the ACM Internet Measurement Conference, pages 162--175, 2020.
[10]
K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, and S. V. Krishnamurthy. Breaking edge shackles: Infrastructure-free collaborative mobile augmented reality. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, pages 1--15, 2022.
[11]
K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K. Roy-Chowdhury. Frugal following: Power thrifty object detection and tracking for mobile augmented reality. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, pages 96--109, 2019.
[12]
E. Ausonio, P. Bagnerini, and M. Ghio. Drone swarms in fire suppression activities: A conceptual framework. Drones, 5(1):17, 2021.
[13]
G. Baatz, O. Saurer, K. Köser, and M. Pollefeys. Large scale visual geo-localization of images in mountainous terrain. In Computer Vision---ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7--13, 2012, Proceedings, Part II 12, pages 517--530. Springer, 2012.
[14]
J. K. Balch, J. T. Abatzoglou, M. B. Joseph, M. J. Koontz, A. L. Mahood, J. McGlinchy, M. E. Cattau, and A. P. Williams. Warming weakens the night-time barrier to global fire. Nature, 602(7897):442--448, 2022.
[15]
J. K. Balch, L. A. St. Denis, A. L. Mahood, N. P. Mietkiewicz, T. M. Williams, J. McGlinchy, and M. C. Cook. Fired (fire events delineation): An open, flexible algorithm and database of us fire events derived from the modis burned area product (2001--2019). Remote Sensing, 12(21):3498, 2020.
[16]
M. Bansal and K. Daniilidis. Geometric urban geo-localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3978--3985, 2014.
[17]
P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, and N. Grammalidis. A review on early forest fire detection systems using optical remote sensing. Sensors, 20(22):6442, 2020.
[18]
L. Bertoni, S. Kreiss, and A. Alahi. Monoloco: Monocular 3d pedestrian localization and uncertainty estimation. In Proceedings of the IEEE/CVF international conference on computer vision, pages 6861--6871, 2019.
[19]
L. Bertoni, S. Kreiss, T. Mordan, and A. Alahi. Monstereo: When monocular and stereo meet at the tail of 3d human localization. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 5126--5132. IEEE, 2021.
[20]
M.J. Brewer and C. B. Clements. The 2018 camp fire: Meteorological analysis using in situ observations and numerical simulations. Atmosphere, 11(1):47, 2019.
[21]
K. Calders, J. Adams, J. Armston, H. Bartholomeus, S. Bauwens, L. P. Bentley, J. Chave, F. M. Danson, M. Demol, M. Disney, et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sensing of Environment, 251:112102, 2020.
[22]
T. Çelik, H. Özkaramanli, and H. Demirel. Fire and smoke detection without sensors: Image processing based approach. In 2007 15th European Signal Processing Conference, pages 1794--1798. IEEE, 2007.
[23]
J. Chase and P. Hansen. Displacement after the camp fire: Where are the most vulnerable? Society & Natural Resources, 34(12):1566--1583, 2021.
[24]
T.-H. Chen, P.-H. Wu, and Y.-C. Chiou. An early fire-detection method based on image processing. In 2004 International Conference on Image Processing, 2004. ICIP'04., volume 3, pages 1707--1710. IEEE, 2004.
[25]
T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse: Continuous, real-time object recognition on mobile devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, pages 155--168, 2015.
[26]
Y. Chen, S. Hantson, N. Andela, S. R. Coffield, C. A. Graff, D. C. Morton, L. E. Ott, E. Foufoula-Georgiou, P. Smyth, M. L. Goulden, et al. California wildfire spread derived using viirs satellite observations and an object-based tracking system. Scientific data, 9(1):1--15, 2022.
[27]
Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang. Aircloud: A cloud-based air-quality monitoring system for everyone. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pages 251--265, 2014.
[28]
S. Choi, T. Kim, and W. Yu. Performance evaluation of ransac family. Journal of Computer Vision, 24(3):271--300, 1997.
[29]
R. Collins, Y. Tsin, J. R. Miller, and A. Lipton. Using a dem to determine geospatial object trajectories. In DARPA Image Understanding Workshop, volume 1, pages 115--122. Citeseer, 1998.
[30]
F. Darmon, B. Bascle, J.-C. Devaux, P. Monasse, and M. Aubry. Deep multi-view stereo gone wild. In 2021 International Conference on 3D Vision (3DV), pages 484--493. IEEE, 2021.
[31]
I. Del Portillo, B. G. Cameron, and E. F. Crawley. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta astronautica, 159:123--135, 2019.
[32]
S. Demetri, G. P. Picco, and L. Bruzzone. Laps: Lidar-assisted placement of wireless sensor networks in forests. ACM Transactions on Sensor Networks (TOSN), 15(2):1--40, 2019.
[33]
A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. Carla: An open urban driving simulator. In Conference on robot learning, pages 1--16. PMLR, 2017.
[34]
Epic Games. Unreal Engine. https://www.unrealengine.com, 2021.
[35]
M. A. Finney. FARSITE, Fire Area Simulator-model development and evaluation. Number 4. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1998.
[36]
M. A. Finney, C. W. McHugh, I. C. Grenfell, K. L. Riley, and K. C. Short. A simulation of probabilistic wildfire risk components for the continental united states. Stochastic Environmental Research and Risk Assessment, 25:973--1000, 2011.
[37]
P. F. Fisher. First experiments in viewshed uncertainty: the accuracy of the viewshed area. Photogrammetric engineering and remote sensing, 57(10):1321--1327, 1991.
[38]
P. F. Fisher. Algorithm and implementation uncertainty in viewshed analysis. International Journal of Geographical Information Science, 7(4):331--347, 1993.
[39]
X. Fu, A. Lidar, M. Kantar, and B. Raghavan. Edible fire buffers: mitigation of wildfire with multifunctional landscapes. PNAS nexus, 2(10):pgad315, 2023.
[40]
R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: current state and future challenges. IEEE communications Magazine, 49(11):32--39, 2011.
[41]
gdal. gdal, 2023.
[42]
C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow. Digging into self-supervised monocular depth estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3828--3838, 2019.
[43]
K. Govil, M. L. Welch, J. T. Ball, and C. R. Pennypacker. Preliminary results from a wildfire detection system using deep learning on remote camera images. Remote Sensing, 12(1):166, 2020.
[44]
C. Hartung, R. Han, C. Seielstad, and S. Holbrook. Firewxnet: A multi-tiered portable wireless system for monitoring weather conditions in wildland fire environments. In Proceedings of the 4th international conference on Mobile systems, applications and services, pages 28--41, 2006.
[45]
Y. He, L. Ma, J. Cui, Z. Yan, G. Xing, S. Wang, Q. Hu, and C. Pan. Automatch: Leveraging traffic camera to improve perception and localization of autonomous vehicles. 2022.
[46]
Y. Hu, X. Liu, S. Nath, and R. Govindan. Alps: Accurate landmark positioning at city scales. In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing, pages 1147--1158, 2016.
[47]
Y. Hu, X. Ye, Y. Liu, S. Kundu, G. Datta, S. Mutnuri, N. Asavisanu, N. Ayanian, K. Psounis, and P. Beerel. Firefly: A synthetic dataset for ember detection in wildfire. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3765--3769, 2023.
[48]
M. S. Innocente and P. Grasso. Self-organising swarms of firefighting drones: Harnessing the power of collective intelligence in decentralised multi-robot systems. Journal of Computational Science, 34:80--101, 2019.
[49]
A. Jadon, M. Omama, A. Varshney, M. S. Ansari, and R. Sharma. Firenet: a specialized lightweight fire & smoke detection model for real-time iot applications. arXiv preprint arXiv:1905.11922, 2019.
[50]
J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica. Chameleon: Scalable adaptation of video analytics. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM '18, page 253--266, New York, NY, USA, 2018. Association for Computing Machinery.
[51]
K. Jordahl, J. Van den Bossche, M. Fleischmann, J. Wasserman, J. McBride, J. Gerard, J. Tratner, M. Perry, A. Garcia Badaracco, C. Farmer, et al. geopandas/geopandas: v0. 8.1. Zenodo, 2020.
[52]
C. Justice, J. Townshend, E. Vermote, E. Masuoka, R. Wolfe, N. Saleous, D. Roy, and J. Morisette. An overview of modis land data processing and product status. Remote sensing of Environment, 83(1--2):3--15, 2002.
[53]
A. Khan, B. Hassan, S. Khan, R. Ahmed, and A. Abuassba. Deepfire: A novel dataset and deep transfer learning benchmark for forest fire detection. Mobile Information Systems, 2022, 2022.
[54]
M. N. H. Khan and C. Neustaedter. An exploratory study of the use of drones for assisting firefighters during emergency situations. In Proceedings of the 2019 CHI conference on human factors in computing systems, pages 1--14, 2019.
[55]
C. A. Kolden, J. A. Lutz, C. H. Key, J. T. Kane, and J. W. van Wagtendonk. Mapped versus actual burned area within wildfire perimeters: characterizing the unburned. Forest Ecology and Management, 286:38--47, 2012.
[56]
C. A. Kolden and P. J. Weisberg. Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas. Fire Ecology, 3:22--31, 2007.
[57]
H. A. Kramer, M. H. Mockrin, P. M. Alexandre, and V. C. Radeloff. High wildfire damage in interface communities in california. International journal of wildland fire, 28(9):641--650, 2019.
[58]
S. Krishnan, C. Crosby, V. Nandigam, M. Phan, C. Cowart, C. Baru, and R. Arrowsmith. Opentopography: a services oriented architecture for community access to lidar topography. In Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, pages 1--8, 2011.
[59]
Z. Li and N. Snavely. Megadepth: Learning single-view depth prediction from internet photos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2041--2050, 2018.
[60]
A. Lingua, D. Marenchino, and F. Nex. Performance analysis of the sift operator for automatic feature extraction and matching in photogrammetric applications. Sensors, 9(05):3745--3766, 2009.
[61]
N. Liu, N. Zhang, K. Wan, L. Shao, and J. Han. Visual saliency transformer. In Proceedings of the IEEE/CVF international conference on computer vision, pages 4722--4732, 2021.
[62]
S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui. Dist: Rendering deep implicit signed distance function with differentiable sphere tracing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2019--2028, 2020.
[63]
X. Liu, P. Ghosh, O. Ulutan, B. Manjunath, K. Chan, and R. Govindan. Caesar: cross-camera complex activity recognition. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, pages 232--244, 2019.
[64]
J. Lloret, M. Garcia, D. Bri, and S. Sendra. A wireless sensor network deployment for rural and forest fire detection and verification. sensors, 9(11):8722--8747, 2009.
[65]
A. L. Mahood, E. J. Lindrooth, M. C. Cook, and J. K. Balch. Country-level fire perimeter datasets (2001--2021). Scientific data, 9(1):1--8, 2022.
[66]
J. McLennan, B. Ryan, C. Bearman, and K. Toh. Should we leave now? behavioral factors in evacuation under wildfire threat. Fire technology, 55:487--516, 2019.
[67]
K. Merry and P. Bettinger. Smartphone gps accuracy study in an urban environment. PloS one, 14(7):e0219890, 2019.
[68]
B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):99--106, 2021.
[69]
M. A. Moritz, E. Batllori, R. A. Bradstock, A. M. Gill, J. Handmer, P. F. Hessburg, J. Leonard, S. McCaffrey, D. C. Odion, T. Schoennagel, et al. Learning to coexist with wildfire. Nature, 515(7525):58--66, 2014.
[70]
S. Mukherjee, P. K. Joshi, S. Mukherjee, A. Ghosh, R. Garg, and A. Mukhopadhyay. Evaluation of vertical accuracy of open source digital elevation model (dem). International Journal of Applied Earth Observation and Geoinformation, 21:205--217, 2013.
[71]
M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, M. S. Palmer, C. Packer, and J. Clune. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proceedings of the National Academy of Sciences, 115(25):E5716--E5725, 2018.
[72]
H. Pan, F. Tan, Y.-C. Chen, G. Huang, Q. Li, W. Li, G. Xue, L. Qiu, and X. Ji. Docam: depth sensing with an optical image stabilization supported rgb camera. In Proceedings of the 28th Annual International Conference on Mobile Computing and Networking, pages 405--418, 2022.
[73]
S. A. Parks, L. M. Holsinger, M. A. Voss, R. A. Loehman, and N. P. Robinson. Mean composite fire severity metrics computed with google earth engine offer improved accuracy and expanded mapping potential. Remote Sensing, 10(6):879, 2018.
[74]
T. D. Penman, C. Eriksen, B. Horsey, and R. A. Bradstock. How much does it cost residents to prepare their property for wildfire? International Journal of Disaster Risk Reduction, 16:88--98, 2016.
[75]
W. M. Pitts. Wind effects on fires. Progress in Energy and Combustion Science, 17(2):83--134, 1991.
[76]
H. Qiu, X. Liu, S. Rallapalli, A. J. Bency, K. Chan, R. Urgaonkar, B. Manjunath, and R. Govindan. Kestrel: Video analytics for augmented multi-camera vehicle tracking. In 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), pages 48--59. IEEE, 2018.
[77]
V. C. Radeloff, D. P. Helmers, H. A. Kramer, M. H. Mockrin, P. M. Alexandre, A. Bar-Massada, V. Butsic, T. J. Hawbaker, S. Martinuzzi, A. D. Syphard, et al. Rapid growth of the us wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences, 115(13):3314--3319, 2018.
[78]
D. Radke, O. Abari, T. Brecht, and K. Larson. Can future wireless networks detect fires? In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys '20, page 286--289, New York, NY, USA, 2020. Association for Computing Machinery.
[79]
D. Radke, A. Hessler, and D. Ellsworth. Firecast: Leveraging deep learning to predict wildfire spread. In IJCAI, pages 4575--4581, 2019.
[80]
A. Rappold, M. Hano, S. Prince, L. Wei, S. Huang, C. Baghdikian, B. Stearns, X. Gao, S. Hoshiko, W. Cascio, et al. Smoke sense initiative leverages citizen science to address the growing wildfire-related public health problem. GeoHealth, 3(12):443--457, 2019.
[81]
P.J. Riggan and J. W. Hoffman. FiremapperTM: A thermal-imaging radiometer for wildfire research and operations. In Proceedings of the IEEE aerospace conference, 2003.
[82]
M. G. Rollins. Landfire: a nationally consistent vegetation, wildland fire, and fuel assessment. International Journal of Wildland Fire, 18(3):235--249, 2009.
[83]
E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative to sift or surf. In 2011 International conference on computer vision, pages 2564--2571. Ieee, 2011.
[84]
S. Sakellariou, A. Sfougaris, O. Christopoulou, and S. Tampekis. Spatial resilience to wildfires through the optimal deployment of firefighting resources: Impact of topography on initial attack effectiveness. International Journal of Disaster Risk Science, 14(1):98--112, 2023.
[85]
P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. Superglue: Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4938--4947, 2020.
[86]
E. Scaduto, B. Chen, and Y.Jin. Satellite-based fire progression mapping: A comprehensive assessment for large fires in northern california. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:5102--5114, 2020.
[87]
J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4104--4113, 2016.
[88]
J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise view selection for unstructured multi-view stereo. In European Conference on Computer Vision (ECCV), 2016.
[89]
W. Schroeder, P. Oliva, L. Giglio, and I. A. Csiszar. The new viirs 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143:85--96, 2014.
[90]
S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field and Service Robotics: Results of the 11th International Conference, pages 621--635. Springer, 2018.
[91]
M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga. A survey of online activity recognition using mobile phones. Sensors, 15(1):2059--2085, 2015.
[92]
M. J. Sousa, A. Moutinho, and M. Almeida. Wildfire detection using transfer learning on augmented datasets. Expert Systems with Applications, 142:112975, 2020.
[93]
S. I. Stewart, V. C. Radeloff, R. B. Hammer, and T. J. Hawbaker. Defining the wildland-urban interface. Journal of Forestry, 105(4):201--207, 2007.
[94]
A. L. Sullivan. Wildland surface fire spread modelling, 1990--2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire, 18(4):387--403, 2009.
[95]
X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B. Tenenbaum, and W. T. Freeman. Pix3d: Dataset and methods for single-image 3d shape modeling. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2974--2983, 2018.
[96]
M. P. Thompson, F. R. y Silva, D. E. Calkin, and M. S. Hand. A review of challenges to determining and demonstrating efficiency of large fire management. International Journal of Wildland Fire, 26(7):562--573, 2017.
[97]
H. Turki, D. Ramanan, and M. Satyanarayanan. Mega-nerf: Scalable construction of large-scale nerfs for virtual fly-throughs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12922--12931, 2022.
[98]
USGS. Usgs 1 meter digital elevation models, 2023.
[99]
D. Vasisht, J. Shenoy, and R. Chandra. L2d2: Low latency distributed downlink for leo satellites. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages 151--164, 2021.
[100]
A.-L. K. Vélez, J. M. Díaz, and T. U. Wall. Public information seeking, place-based risk messaging and wildfire preparedness in southern california. International journal of wildland fire, 26(6):469--477, 2017.
[101]
Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger. Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8445--8453, 2019.
[102]
H. Wu, C. Wen, S. Shi, X. Li, and C. Wang. Virtual sparse convolution for multimodal 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21653--21662, 2023.
[103]
B. Xie, M. Cui, D. Ganesan, X. Chen, and J. Xiong. Boosting the long range sensing potential of lora. In Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services, pages 177--190, 2023.
[104]
Z. Xie, X. Ouyang, L. Pan, W. Lu, G. Xing, and X. Liu. Mozart: A mobile tof system for sensing in the dark through phase manipulation. In Proceedings of the 21st Annual International Conference on Mobile Systems, Applications and Services, pages 163--176, 2023.
[105]
J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu. {SwarmMap}: Scaling up real-time collaborative visual {SLAM} at the edge. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI22), pages 977--993, 2022.
[106]
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang, and D. Cai. Mononerd: Nerf-like representations for monocular 3d object detection. arXiv preprint arXiv:2308.09421, 2023.
[107]
J. Yi, S. Choi, and Y. Lee. Eagleeye: Wearable camera-based person identification in crowded urban spaces. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pages 1--14, 2020.
[108]
T. Yin, X. Zhou, and P. Krahenbuhl. Center-based 3d object detection and tracking. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11784--11793, 2021.
[109]
Z. Yin and J. Shi. Geonet: Unsupervised learning of dense depth, optical flow and camera pose. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1983--1992, 2018.
[110]
J. Zhang, H. Yang, J. Ren, D. Zhang, B. He, T. Cao, Y. Li, Y. Zhang, and Y. Liu. Mobidepth: real-time depth estimation using on-device dual cameras. In Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, pages 528--541, 2022.
[111]
T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee. The design and implementation of a wireless video surveillance system. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pages 426--438, 2015.
[112]
Y. Zhao, J. Ma, X. Li, and J. Zhang. Saliency detection and deep learning-based wildfire identification in uav imagery. Sensors, 18(3):712, 2018.
[113]
X. Zhong, M. Duckham, D. Chong, and K. Tolhurst. Real-time estimation of wildfire perimeters from curated crowdsourcing. Scientific reports, 6(1):1--10, 2016.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SenSys '24: Proceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems
November 2024
950 pages
ISBN:9798400706974
DOI:10.1145/3666025
This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 November 2024

Check for updates

Author Tags

  1. wildfire
  2. mobile sensing
  3. geolocation
  4. multi-modal

Qualifiers

  • Research-article

Conference

Acceptance Rates

Overall Acceptance Rate 174 of 867 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 407
    Total Downloads
  • Downloads (Last 12 months)407
  • Downloads (Last 6 weeks)158
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media