skip to main content
research-article

Cognitive radio for M2M and Internet of Things

Published: 15 November 2016 Publication History

Abstract

Internet of things (IoT) paradigm poses new challenges to the communication technology as numerous heterogeneous objects will need to be connected. To address these issues new radio technologies and network architectures need to be designed to cater to several future devices having connectivity demands. For radio communications, the frequency spectrum allocation will have to be adapted for efficient spectrum utilization considering new bandwidth and application requirements. Novel research directions based on the use of opportunistic radio resource utilization such as those based on cognitive radio (CR) technology will have to be pursued for efficiency as well as reliability.Cognitive Radio is a promising enabler communication technology for IoT. Its opportunistic communication paradigm is suited to communicating objects having event driven nature, that generate bursty traffic. Cognitive Radio can help overcome the problems of collision and excessive contention in the wireless access network that will arise due to the deployment of several objects connected to infrastructure through radio links. However, there are several issues that need to be addressed before cognitive radio technology can be used for Internet of things.This paper surveys novel approaches and discusses research challenges related to the use of cognitive radio technology for Internet of things. In addition, the paper presents a general background on cognitive radio and Internet of Things with some potential applications. Our survey is different from existing surveys in that we focus on recent advances and ongoing research directions in cognitive radio in the context of Machine to Machine and Internet of Things. We review CR solutions that address generic problems of IoT including emerging challenges of autonomicity, scalability, energy efficiency, heterogeneity in terms of user equipment capabilities, complexity and environments, etc. The solutions are supported by our taxonomy of different CR approaches that are classified into two categories, flexible and efficient networking, and tackling heterogeneity. This paper intends to help new researchers entering the domain of CR and IoT by providing a comprehensive survey on recent advances.

References

[1]
D. Evans, The internet of things, How the Next Evolution of the Internet is Changing Everything, Whitepaper, Cisco Internet Business Solutions Group (2011) (2011).
[2]
J. Bradley, et al., Embracing the Internet of Everything To Capture Your Share of $14.4 Trillion, White Paper, Cisco (2013) (2013).
[3]
M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, L. Ladid, Internet of things in the 5G Era: enablers, architecture and business models, IEEE J. Selected Areas Commun. 34 (3) (2016) 510-527.
[4]
E. Borgia, The internet of things vision: Key features, applications and open issues, Comput. Commun. 54 (2014) 1-31.
[5]
R. Want, B.N. Schilit, S. Jenson, Enabling the internet of things, Computer (1) (2015) 28-35.
[6]
A. Al-Fuqaha, et al., Internet of things: A survey on enabling technologies, protocols, and applications, Commun. Surv. Tut. IEEE 17 (4) (2015) 2347-2376.
[7]
O. Vermesan, et al., Internet of Things Strategic Research Roadmap, published by The European Research Cluster on the Internet of Things (IERC), 2011.
[8]
M. Conti, et al., Research challenges towards the future internet, Comput. Commun. 34 (18) (2011) 2115-2134.
[9]
H. Sundmaeker, P. Guillemin, P. Friess, S. Woelfflé, Vision and challenges for realising the Internet of things, Cluster Eur. Res. Projects Internet of Things, European Commission (2010) (2010).
[10]
L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Comput. Netw. 54 (15) (2010) 2787-2805.
[11]
K. Ashton, That internet of things thing, RFID J. 22 (7) (2009) 97-114.
[12]
IoT Analytics. Market Insights for the Internet of Things. Available from: http://iot-analytics.com/markets/market-analysis/. Accessed 12 March 2016.
[13]
Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020 White Paper, 2016.
[14]
M.R. Palattella, et al., Lessons Learned from the 6TiSCH Plugtests, in: Proceedings of Conference on Interopersonal IoT, Rome, Italy, Oct, 2015, pp. 2013-2014.
[15]
Internet of Things World Forum 2015. Available from: http://iotinternetofthingsconference.com/. Accessed 12 March 2016.
[16]
IETF, IPv6 over Networks of Resource-constrained Nodes (6lo). Accessed 12 March 2016., 2016. http://tools.ietf.org/wg/6lo/charters
[17]
IETF, Routing Over Low power and Lossy networks (roll). Accessed 12 March 2016., 2016. http://tools.ietf.org/wg/roll/charters
[18]
IETF, IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch). Accessed 12 March 2016., 2016. http://tools.ietf.org/wg/6tisch/charters
[19]
IEEE, 802.11-2012-IEEE Standard Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2012.
[20]
E. Dahlman, S. Parkvall, J. Skold, P. Beming, 3G evolution: HSPA and LTE for mobile broadband, Academic press, 2010.
[21]
E. Dahlman, S. Parkvall, J. Skold, 4G: LTE/LTE-advanced for mobile broadband, Academic Press, 2013.
[22]
J.G. Andrews, et al., What will 5G be? Selected Areas Commun. IEEE J. 32 (6) (2014) 1065-1082.
[23]
B. Furht, S.A. Ahson, HSDPA/HSUPA Handbook, CRC Press, 2010.
[24]
Z. Alliance, Zigbee-2006 specification, 2006.
[25]
Z-Wave Alliance. http://www.z-wavealliance.com/technology/.
[26]
Bluetooth Low Energy. http://www.bluetooth.com/Pages/Low-Energy.aspx/.
[27]
Bluetooth Core Specification v4.0, Bluetooth SIG: San Jose, CA, USA (2010) (2010).
[28]
IEEE 802.15.4-2011 Standard for Information Technology Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard (2011).
[29]
IEEE 802.15.4e-2012 Standard for Local and metropolitan area networks Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer, IEEE Standard (2012).
[30]
M.A. McHenry, National Science Foundation (NSF) spectrum occupancy measurements project summary, 2005. Shared spectrum company report (2005). Available: http://www.sharedspectrum.com/
[31]
Federal Communications Commission (FCC). Spectrum policy task force, Rep. ET Docket (02-135) (2002) 215.
[32]
K. Patil, R. Prasad, K. Skouby, A survey of worldwide spectrum occupancy measurement campaigns for cognitive radio, in: Devices and Communications (ICDeCom), 2011 International Conference on, IEEE, 2011, pp. 1-5.
[33]
Federal Communications Commission (FCC). Second Memorandum Opinion and Order in the Matter of Unlicensed Operation in the TV Broadcast Bands (ET Docket No. 04-186) and Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band (ET Docket No. 02-380), 2010.
[34]
A.N. Mody, S.R. Blatt, D.G. Mills, T.P. McElwain, N.B. Thammakhoune, Cognitive radio methodology, physical layer policies and machine learning, 2015. US Patent 8,929,936
[35]
E. Sollenberger, F. Romano, C. Dietrich, Test & evaluation of cognitive and dynamic spectrum access radios using the cognitive radio test system, in: Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd, IEEE, 2015, pp. 1-2.
[36]
Mitola IIIJoseph and others, Cognitive radio: making software radios more personal, Personal Commun. IEEE 6 (4) (1999) 13-18.
[37]
J. Mitola III, Cognitive radio for flexible mobile multimedia communications, in: Mobile Multimedia Communications, 1999. (MoMuC'99) 1999 IEEE International Workshop on, IEEE, 1999, pp. 3-10.
[38]
J. Mitola, et al., Cognitive radio: An integrated agent architecture for software defined radio, Doctor of Technology, Royal Inst. Technol. (KTH), Stockholm, Sweden (2000) 271-350.
[39]
S. Haykin, Cognitive radio: brain-empowered wireless communications, Selected Areas Commun. IEEE J. 23 (2) (2005) 201-220.
[40]
I.F. Akyildiz, W.-Y. Lee, M.C. Vuran, S. Mohanty, Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey, Comput. Netw. 50 (13) (2006) 2127-2159.
[41]
C. Stevenson, et al., IEEE 802.22: The first cognitive radio wireless regional area network standard, Commun. Mag. IEEE 47 (1) (2009) 130-138.
[42]
IEEE 802.22 Working Group on Wireless Regional Area Networks. [Online] Available: http://www.ieee802.org/22/.
[43]
M. Nekovee, A survey of cognitive radio access to TV white spaces, in: Ultra Modern Telecommunications & Workshops, 2009. ICUMT'09. International Conference on, IEEE, 2009, pp. 1-8.
[44]
Internet of Things. IERC Position Paper on Standardization for IoT technologies published by IoT European Research Cluster (IERC) (2015).
[45]
RERUM, Reliable, Resilient and secure IoT for smart city applications. [Online]. Available from: https://ict-rerum.eu/. (2015).
[46]
Smart networked objects and Internet of Things, white paper published by Association Instituts Carnot, Jan. 2011.
[47]
P. Rawat, K.D. Singh, H. Chaouchi, J.M. Bonnin, Wireless sensor networks: a survey on recent developments and potential synergies, J. Supercomput. 68 (1) (2014) 1-48.
[48]
E. Welbourne, et al., Building the internet of things using RFID: the RFID ecosystem experience, Internet Comput. IEEE 13 (3) (2009) 48-55.
[49]
R. Want, An introduction to RFID technology, Perv. Comput. IEEE 5 (1) (2006) 25-33.
[50]
Near Field Communication (NFC). http://nfc-forum.org/what-is-nfc/.
[51]
R. Ahlswede, N. Cai, S.-Y. Li, R.W. Yeung, Network information flow, Inf. Theor. IEEE Trans. 46 (4) (2000) 1204-1216.
[52]
D. Petrovic, K. Ramchandran, J. Rabaey, Overcoming untuned radios in wireless networks with network coding, IEEE/ACM Trans. Netw. (TON) 14 (SI) (2006) 2649-2657.
[53]
A.L. Toledo, X. Wang, Efficient multipath in sensor networks using diffusion and network coding, in: Information Sciences and Systems, 2006 40th Annual Conference on, IEEE, 2006, pp. 87-92.
[54]
A. Newell, H. Yao, A. Ryker, T. Ho, C. Nita-Rotaru, Node-capture resilient key establishment in sensor networks: design space and new protocols, ACM Comput. Surv. (CSUR) 47 (2) (2015) 24.
[55]
A.G. Dimakis, V. Prabhakaran, K. Ramchandran, Decentralized erasure codes for distributed networked storage, IEEE/ACM Trans. Netw. (TON) 14 (SI) (2006) 2809-2816.
[56]
D. Wang, et al., Partial network coding: Theory and application for continuous sensor data collection, in: Quality of Service, 2006. IWQoS 2006. 14th IEEE International Workshop on, IEEE, 2006, pp. 93-101.
[57]
B. Gong, et al., Spatiotemporal compressive network coding for energy-efficient distributed data storage in wireless sensor networks, Commun. Lett. IEEE 19 (5) (2015) 803-806.
[58]
M2M device connections and revenue: worldwide trends and forecasts 2015-2025 (2016) [Online]. Available from: http://www.analysysmason.com/ Research/Content/Reports/cellular-M2M-connections-Feb2016-RDME0/
[59]
OneM2M Alliance. Standards for M2M and the Internet of Things. [Online]. http://www.onem2m.org/.
[60]
oneM2M Release 1 specifications. [Online]. Available from: http://www.onem2m.org/technical/published-documents.
[61]
J. Swetina, G. Lu, P. Jacobs, F. Ennesser, J. Song, Toward a standardized common m2m service layer platform: Introduction to onem2m, Wireless Communications, IEEE 21 (3) (2014) 20-26.
[62]
OpenMTC. The Open Machine Type Communications platform. [Online]. Available from: http://www.openmtc.org/.
[63]
A. Krylovskiy, M. Jahn, E. Patti, Designing a smart city internet of things platform with microservice architecture, in: Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on, IEEE, 2015, pp. 25-30.
[64]
S. Ziegler, A. Skarmeta, P. Kirstein, L. Ladid, Evaluation and recommendations on IPv6 for the Internet of Things, in: Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on, IEEE, 2015, pp. 548-552.
[65]
G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, IPv6 over Low Power Wireless Personal Area Networks (6LowPAN), Technical Report, The Internet Engineering Task Force (IETF), 2007.
[66]
M. Durvy, et al., Making sensor networks IPv6 ready, in: Proceedings of the 6th ACM conference on Embedded network sensor systems, ACM, 2008, pp. 421-422.
[67]
T. Winter, et al., Rpl: Ipv6 routing protocol for low-power and lossy networks, IETF RFC 6550 (2012) (2012).
[68]
M. Zorzi, A. Gluhak, S. Lange, A. Bassi, From today's intranet of things to a future internet of things: a wireless-and mobility-related view, Wireless Commun. IEEE 17 (6) (2010) 44-51.
[69]
N. Honle, U.-P. Kappeler, D. Nicklas, T. Schwarz, M. Grossmann, Benefits of integrating meta data into a context model, in: Pervasive Computing and Communications Workshops, 2005. PerCom 2005 Workshops. Third IEEE International Conference on, IEEE, 2005, pp. 25-29.
[70]
F. Ganz, D. Puschmann, P. Barnaghi, F. Carrez, A practical evaluation of information processing and abstraction techniques for the internet of things, Internet Things J. IEEE 2 (4) (2015) 340-354.
[71]
F. Chen, et al., Data mining for the internet of things: literature review and challenges, Int. J. Distrib. Sensor Netw. 2015 (2015) 12.
[72]
A. Botta, W. de Donato, V. Persico, A. Pescapé, Integration of cloud computing and internet of things: a survey, Future Generation Comput. Syst. 56 (2016) 684-700.
[73]
J. Mitola, The software radio architecture, Commun. Mag. IEEE 33 (5) (1995) 26-38.
[74]
J. Mitola, Software Radio, Wiley Online Library, 2000.
[75]
W.H. Tuttlebee, J. Wiley, Software defined radio: origins, drivers, and international perspectives, John Wiley, 2002.
[76]
M. Dillinger, K. Madani, N. Alonistioti, Software defined radio: Architectures, systems and functions, Wiley. com, 2005.
[77]
F.K. Jondral, Software-defined radio: basics and evolution to cognitive radio, EURASIP J. Wireless Commun. Netw. 2005 (3) (2005) 275-283.
[78]
H. Arslan, Cognitive radio, software defined radio, and adaptive wireless systems, Springer London, Limited, 2007.
[79]
D. Raychaudhuri, N.B. Mandayam, J.B. Evans, B.J. Ewy, S. Seshan, P. Steenkiste, Cognet: an architectural foundation for experimental cognitive radio networks within the future internet, in: Proceedings of first ACM/IEEE international workshop on Mobility in the evolving internet architecture, ACM, 2006, pp. 11-16.
[80]
B. Wang, K.R. Liu, Advances in cognitive radio networks: A survey, Selected Top. Sig. Process. IEEE J. 5 (1) (2011) 5-23.
[81]
S. Bhattacharjee, S. Sengupta, M. Chatterjee, Vulnerabilities in cognitive radio networks: A survey, Comput. Commun. 36 (13) (2013) 1387-1398.
[82]
D. Wilkins, G. Denker, M.-O. Stehr, D. Elenius, R. Senanayake, C. Talcott, Policy-based cognitive radios, Wireless Commun. IEEE 14 (4) (2007) 41-46.
[83]
1900.1a: IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management Amendment: Addition of New Terms and Associated Definitions. Available Online: http://standards.ieee.org/findstds/standard/1900.1a-2012.html (2013).
[84]
L. Berlemann, S. Mangold, B.H. Walke, Policy-based reasoning for spectrum sharing in radio networks, in: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, IEEE, 2005, pp. 1-10.
[85]
T.W. Rondeau, B. Le, C.J. Rieser, C.W. Bostian, Cognitive radios with genetic algorithms: Intelligent control of software defined radios, in: Software defined radio forum technical conference, Citeseer, 2004, pp. C3-C8.
[86]
A. He, et al., A survey of artificial intelligence for cognitive radios, Vehicular Technol. IEEE Trans. 59 (4) (2010) 1578-1592.
[87]
K. Baclawski, D. Brady, M. Kokar, Achieving dynamic interoperability of communication at the data link layer through ontology based reasoning, in: 2005 SDR Forum Technical Conference, Nov, 2005, pp. 14-17.
[88]
I.F. Akyildiz, W.-Y. Lee, K.R. Chowdhury, Crahns: Cognitive radio ad hoc networks, Ad Hoc Networks 7 (5) (2009) 810-836.
[89]
I.F. Akyildiz, X. Wang, W. Wang, Wireless mesh networks: a survey, Computer networks 47 (4) (2005) 445-487.
[90]
D. Cabric, S.M. Mishra, R.W. Brodersen, Implementation issues in spectrum sensing for cognitive radios, in: Signals, systems and computers, 2004. Conference record of the thirty-eighth Asilomar conference on, volume 1, IEEE, 2004, pp. 772-776.
[91]
I.F. Akyildiz, B.F. Lo, R. Balakrishnan, Cooperative spectrum sensing in cognitive radio networks: A survey, Phys. Commun. 4 (1) (2011) 40-62.
[92]
G. Ganesan, Y. Li, Cooperative spectrum sensing in cognitive radio networks, in: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, IEEE, 2005, pp. 137-143.
[93]
A. Ghasemi, E.S. Sousa, Collaborative spectrum sensing for opportunistic access in fading environments, in: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, IEEE, 2005, pp. 131-136.
[94]
W. Zhang, R. Mallik, K. Letaief, Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks, Wireless Commun. IEEE Trans. 8 (12) (2009) 5761-5766.
[95]
D. Grandblaise, W. Hu, Inter base stations adaptive on demand channel contention for IEEE 802.22 WRAN self coexistence, IEEE docs (2007). 802-22
[96]
J. Wang, M. Ghosh, K. Challapali, Emerging cognitive radio applications: A survey, Commun. Mag. IEEE 49 (3) (2011) 74-81.
[97]
IEEE, 802.11af-2013 IEEE Standard Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Television White Spaces (TVWS) Operation, IEEE standard (2014) 1-198.
[98]
Standard ECMA-392. MAC and PHY for Operation in TV White Space. http://www.ecma-international.org/publications/standards/Ecma-392.htm.
[99]
M. Mueck, et al., ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards, Commun. Mag. IEEE 48 (9) (2010) 78-86.
[100]
M.A. Shah, et al., Cognitive radio networks for internet of things: Applications, challenges and future, in: Automation and Computing (ICAC), 2013 19th International Conference on, IEEE, 2013, pp. 1-6.
[101]
K.D. Singh, P. Rawat, J.-M. Bonnin, Cognitive radio for vehicular ad hoc networks (CR-VANETs): approaches and challenges, EURASIP J. Wireless Commun. Netw. 2014 (1) (2014) 1-22.
[102]
Y. Yan, Y. Qian, H. Sharif, D. Tipper, A survey on smart grid communication infrastructures: Motivations, requirements and challenges, Commun. Surv. Tut. IEEE 15 (1) (2013) 5-20.
[103]
D. Niyato, X. Lu, P. Wang, Adaptive power management for wireless base stations in a smart grid environment, Wireless Commun. IEEE 19 (6) (2012) 44-51.
[104]
V.C. Gungor, D. Sahin, Cognitive radio networks for smart grid applications: a promising technology to overcome spectrum inefficiency, Vehicular Technol. Mag. IEEE 7 (2) (2012) 41-46.
[105]
R.C. Qiu, et al., Cognitive radio network for the smart grid: Experimental system architecture, control algorithms, security, and microgrid testbed, Smart Grid IEEE Trans. 2 (4) (2011) 724-740.
[106]
R. Deng, J. Chen, X. Cao, Y. Zhang, S. Maharjan, S. Gjessing, Sensing-performance tradeoff in cognitive radio enabled smart grid, Smart Grid IEEE Trans. 4 (1) (2013) 302-310.
[107]
R. Yu, Y. Zhang, S. Gjessing, C. Yuen, S. Xie, M. Guizani, Cognitive radio based hierarchical communications infrastructure for smart grid, Netw. IEEE 25 (5) (2011) 6-14.
[108]
A. Ghassemi, S. Bavarian, L. Lampe, Cognitive radio for smart grid communications, in: Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, IEEE, 2010, pp. 297-302.
[109]
Y. Zhang, R. Yu, M. Nekovee, Y. Liu, S. Xie, S. Gjessing, Cognitive machine-to-machine communications: visions and potentials for the smart grid, Netw. IEEE 26 (3) (2012) 6-13.
[110]
A.A. Khan, M.H. Rehmani, M. Reisslein, Cognitive radio for smart grids: Survey of architectures, spectrum sensing mechanisms, and networking protocols, IEEE Commun. Surv. Tut. 18 (1) (2016) 860-898.
[111]
S. Kawade, M. Nekovee, Can cognitive radio access to TV white spaces support future home network¿ in: New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, IEEE, 2010, pp. 1-8.
[112]
M. Nekovee, Cognitive radio access to TV white spaces: Spectrum opportunities, commercial applications and remaining technology challenges, in: New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, IEEE, 2010, pp. 1-10.
[113]
T. Sudha, K. Selvan, V. Anand, K. Anilkumar, V. Kavya, K. Madhav, Cognitive radio for smart home environment, in: Proceedings of the Third International Symposium on Women in Computing and Informatics, ACM, 2015, pp. 629-634.
[114]
M. Patel, J. Wang, Applications, challenges, and prospective in emerging body area networking technologies, Wireless Commun. IEEE 17 (1) (2010) 80-88.
[115]
IEEE 802.15 WPAN Task Group 6 (TG6) Body Area Networks, IEEE 802.15 WPAN Task Group 6. [Online]. Available: http://www.ieee802.org/15/pub/TG6.html/.
[116]
A.R. Syed, K.-L.A. Yau, On cognitive radio-based wireless body area networks for medical applications, in: Computational Intelligence in Healthcare and e-health (CICARE), 2013 IEEE Symposium on, IEEE, 2013, pp. 51-57.
[117]
K. Chowdhury, et al., Transforming healthcare and medical telemetry through cognitive radio networks, Wireless Commun. IEEE 19 (4) (2012) 67-73.
[118]
A. Chavez, et al., Using tv white space spectrum to practise telemedicine: A promising technology to enhance broadband internet connectivity within healthcare facilities in rural regions of developing countries, J. Telemed. Telecare (2015). 1357633X15595324
[119]
R. Chávez-Santiago, I. Balasingham, Cognitive radio for medical wireless body area networks, in: Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2011 IEEE 16th International Workshop on, IEEE, 2011, pp. 148-152.
[120]
R. Chávez-Santiago, et al., Cognitive radio for medical body area networks using ultra wideband, Wireless Commun. IEEE 19 (4) (2012) 74-81.
[121]
Amendment of the commission's rules to provide spectrum for the operation of medical body area networks, notice of proposed rulemaking. FCC 12-54, ET Docket No. 08-59. [Online]. Available: http://www.fcc.gov/document/medical-body-area-networks/ (2012)
[122]
T.L. Doumi, Spectrum considerations for public safety in the united states, Commun. Mag. IEEE 44 (1) (2006) 30-37.
[123]
N. Jesuale, B.C. Eydt, A policy proposal to enable cognitive radio for public safety and industry in the land mobile radio bands, in: New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, IEEE, 2007, pp. 66-77.
[124]
A. Gorcin, H. Arslan, Public safety and emergency case communications: Opportunities from the aspect of cognitive radio, in: New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE Symposium on, IEEE, 2008, pp. 1-10.
[125]
M. Moriyama, T. Fujii, Novel timing synchronization technique for public safety communication systems employing heterogeneous cognitive radio, in: Computing, Networking and Communications (ICNC), 2015 International Conference on, IEEE, 2015, pp. 325-330.
[126]
IEEE, Amendment 6: Wireless access in vehicular environments (wave), part 11, ieee standard 802.11p, 2010. IEEE Standard 802.11p. [Online]. Available: http://standards.ieee.org/findstds/standard/802.11p-2010.html/
[127]
A.J. Ghandour, K. Fawaz, H. Artail, Data delivery guarantees in congested vehicular ad hoc networks using cognitive networks, in: Wireless Communications and Mobile Computing Conference (IWCMC), 2011 7th International, IEEE, 2011, pp. 871-876.
[128]
M. Di Felice, R. Doost-Mohammady, K.R. Chowdhury, L. Bononi, Smart radios for smart vehicles: cognitive vehicular networks, Vehicular Technol. Mag. IEEE 7 (2) (2012) 26-33.
[129]
A.J. Ghandour, K. Fawaz, H. Artail, M. Di Felice, L. Bononi, Improving vehicular safety message delivery through the implementation of a cognitive vehicular network, Ad Hoc Netw. 11 (8) (2013) 2408-2422.
[130]
R. Doost-Mohammady, K.R. Chowdhury, Design of spectrum database assisted cognitive radio vehicular networks, in: Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2012 7th International ICST Conference on, IEEE, 2012, pp. 1-5.
[131]
M. Di Felice, K.R. Chowdhury, L. Bononi, Cooperative spectrum management in cognitive vehicular ad hoc networks, in: Vehicular Networking Conference (VNC), 2011 IEEE, IEEE, 2011, pp. 47-54.
[132]
M. Di Felice, K.R. Chowdhury, L. Bononi, Analyzing the potential of cooperative cognitive radio technology on inter-vehicle communication, in: Wireless Days (WD), 2010 IFIP, IEEE, 2010, pp. 1-6.
[133]
W. Kim, M. Gerla, S.Y. Oh, K. Lee, A. Kassler, Coroute: A new cognitive anypath vehicular routing protocol, Wireless Commun. Mob. Comput. 11 (12) (2011) 1588-1602.
[134]
X.Y. Wang, P.-H. Ho, A novel sensing coordination framework for cr-vanets, Vehicular Technol. IEEE Trans. 59 (4) (2010) 1936-1948.
[135]
Z. Wei, F.R. Yu, A. Boukerche, Cooperative spectrum sensing with trust assistance for cognitive radio vehicular ad hoc networks, in: Proceedings of the 5th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, ACM, 2015, pp. 27-33.
[136]
C. Yang, Y. Fu, Y. Zhang, S. Xie, R. Yu, Energy-efficient hybrid spectrum access scheme in cognitive vehicular ad hoc networks, Commun. Lett. IEEE 17 (2) (2013) 329-332.
[137]
R. Yu, et al., Toward cloud-based vehicular networks with efficient resource management, Netw. IEEE 27 (5) (2013) 48-55.
[138]
M. Gerla, E.-K. Lee, G. Pau, U. Lee, Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds, in: Internet of Things (WF-IoT), 2014 IEEE World Forum on, IEEE, 2014, pp. 241-246.
[139]
W. He, G. Yan, L. Da Xu, Developing vehicular data cloud services in the iot environment, Ind. Inf. IEEE Trans. 10 (2) (2014) 1587-1595.
[140]
D. Maldonado, B. Le, A. Hugine, T.W. Rondeau, C.W. Bostian, Cognitive radio applications to dynamic spectrum allocation: a discussion and an illustrative example, in: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, IEEE, 2005, pp. 597-600.
[141]
L. Lu, X. Zhou, U. Onunkwo, G.Y. Li, Ten years of research in spectrum sensing and sharing in cognitive radio, EURASIP J. Wireless Commun. Netw. 2012 (1) (2012) 1-16.
[142]
Y. Saleem, M.H. Rehmani, S. Zeadally, Integration of cognitive radio technology with unmanned aerial vehicles: issues, opportunities, and future research challenges, J. Netw. Comput. Appl. 50 (2015) 15-31.
[143]
L. Yushi, J. Fei, Y. Hui, Study on application modes of military internet of things (miot), in: Computer Science and Automation Engineering (CSAE), 2012 IEEE International Conference on, volume 3, IEEE, 2012, pp. 630-634.
[144]
C. Lever, The Military Internet Of Things, 2014. [Online]. Available: http://eecatalog.com/military/2014/05/09/the-military-internet-of-things/
[145]
Z. Zhang, K. Long, J. Wang, Self-organization paradigms and optimization approaches for cognitive radio technologies: a survey, Wireless Commun. IEEE 20 (2) (2013) 36-42.
[146]
X. Liu, J. Xie, A practical self-adaptive rendezvous protocol in cognitive radio ad hoc networks, in: INFOCOM, 2014 Proceedings IEEE, IEEE, 2014, pp. 2085-2093.
[147]
S. Liu, L. Lazos, M. Krunz, Cluster-based control channel allocation in opportunistic cognitive radio networks, Mob. Comput. IEEE Trans. 11 (10) (2012) 1436-1449.
[148]
Y.R. Kondareddy, P. Agrawal, Synchronized mac protocol for multi-hop cognitive radio networks, in: Communications, 2008. ICC'08. IEEE International Conference on, IEEE, 2008, pp. 3198-3202.
[149]
M. Timmers, et al., A distributed multichannel MAC protocol for multi-hop cognitive radio networks, Vehicular Technol. IEEE Trans. 59 (1) (2010) 446-459.
[150]
Y. Song, J. Xie, Prospect: A proactive spectrum handoff framework for cognitive radio ad hoc networks without common control channel, Mob. Comput. IEEE Trans. 11 (7) (2012) 1127-1139.
[151]
B.F. Lo, A survey of common control channel design in cognitive radio networks, Phys. Commun. 4 (1) (2011) 26-39.
[152]
N. Hoven, R. Tandra, A. Sahai, Some fundamental limits on cognitive radio, Wireless Foundations EECS, University of California, Berkeley (2005) (2005).
[153]
A. Fehske, J. Gaeddert, J.H. Reed, A new approach to signal classification using spectral correlation and neural networks, in: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, IEEE, 2005, pp. 144-150.
[154]
P.J. Kolodzy, Interference temperature: a metric for dynamic spectrum utilization, Int. J. Netw. Manage. 16 (2) (2006) 103-113.
[155]
H. Shokri-Ghadikolaei, et al., Green sensing and access: energy-throughput trade-offs in cognitive networking, Commun. Mag. IEEE 53 (11) (2015) 199-207.
[156]
Z. Shi, K.C. Teh, K.H. Li, Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems, IEEE Commun. Lett. 17 (3) (2013) 565-568.
[157]
S. Atapattu, C. Tellambura, H. Jiang, Energy detection based cooperative spectrum sensing in cognitive radio networks, Wireless Commun. IEEE Trans. 10 (4) (2011) 1232-1241.
[158]
S. Xie, Y. Liu, Y. Zhang, R. Yu, A parallel cooperative spectrum sensing in cognitive radio networks, Vehicular Technol. IEEE Trans. 59 (8) (2010) 4079-4092.
[159]
R. Fan, H. Jiang, Q. Guo, Z. Zhang, Joint optimal cooperative sensing and resource allocation in multichannel cognitive radio networks, Vehicular Technol. IEEE Trans. 60 (2) (2011) 722-729.
[160]
T. Wang, L. Song, Z. Han, W. Saad, Distributed cooperative sensing in cognitive radio networks: An overlapping coalition formation approach, Commun. IEEE Trans. 62 (9) (2014) 3144-3160.
[161]
P.C. Sofotasios, et al., Energy detection based spectrum sensing over ¿-μ and ¿-μ extreme fading channels, Vehicular Technol. IEEE Trans. 62 (3) (2013) 1031-1040.
[162]
T. Zhang, D.H. Tsang, Optimal cooperative sensing scheduling for energy-efficient cognitive radio networks, in: INFOCOM, 2011 Proceedings IEEE, IEEE, 2011, pp. 2723-2731.
[163]
S. Maleki, S.P. Chepuri, G. Leus, Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks, Phys. Commun. 9 (2013) 193-198.
[164]
H.N. Pham, Y. Zhang, P.E. Engelstad, T. Skeie, F. Eliassen, Energy minimization approach for optimal cooperative spectrum sensing in sensor-aided cognitive radio networks, in: Wireless Internet Conference (WICON), 2010 The 5th Annual ICST, IEEE, 2010, pp. 1-9.
[165]
R. Deng, J. Chen, C. Yuen, P. Cheng, Y. Sun, Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks, Vehicular Technol. IEEE Trans. 61 (2) (2012) 716-725.
[166]
X. Sun, L. Chen, D.H. Tsang, Energy-efficient cooperative sensing scheduling for heterogeneous channel access in cognitive radio, in: Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, IEEE, 2012, pp. 145-150.
[167]
W. Ren, Q. Zhao, A. Swami, Power control in cognitive radio networks: how to cross a multi-lane highway, Selected Areas Commun. IEEE J. 27 (7) (2009) 1283-1296.
[168]
K. Hamdi, et al., Power control in cognitive radio systems based on spectrum sensing side information, in: Communications, 2007. ICC'07. IEEE International Conference on, IEEE, 2007, pp. 5161-5165.
[169]
C. Xu, L. Ping, P. Wang, S. Chan, X. Lin, Decentralized power control for random access with successive interference cancellation, IEEE J. Selected Areas Commun. 31 (8) (2013) 1.
[170]
S. Sorooshyari, C.W. Tan, M. Chiang, Power control for cognitive radio networks: Axioms, algorithms, and analysis, IEEE/ACM Trans. Netw. (TON) 20 (3) (2012) 878-891.
[171]
Y. Xiao, M. van der Schaar, Dynamic spectrum sharing among repeatedly interacting selfish users with imperfect monitoring, Selected Areas Commun. IEEE J. 30 (10) (2012) 1890-1899.
[172]
Q. Ni, C.C. Zarakovitis, Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems, Selected Areas Commun. IEEE J. 30 (1) (2012) 70-81.
[173]
P. Zhou, Y. Chang, J.A. Copeland, Reinforcement learning for repeated power control game in cognitive radio networks, Selected Areas Commun. IEEE J. 30 (1) (2012) 54-69.
[174]
T. Nadkar, V. Thumar, G.P. Tej, S.N. Merchant, U.B. Desai, Distributed power allocation for secondary users in a cognitive radio scenario, Wireless Commun. IEEE Trans. 11 (4) (2012) 1576-1586.
[175]
X. Huang, et al., Quasi-nash equilibria for non-convex distributed power allocation games in cognitive radios, Wireless Commun. IEEE Trans. 12 (7) (2013) 3326-3337.
[176]
M. Le Treust, S. Lasaulce, A repeated game formulation of energy-efficient decentralized power control, Wireless Commun. IEEE Trans. 9 (9) (2010) 2860-2869.
[177]
J.-H. Noh, S.-J. Oh, Beamforming in a multi-user cognitive radio system with partial channel state information, IEEE Trans. Wireless Communications 12 (2) (2013) 616-625.
[178]
J. Liu, W. Chen, Z. Cao, Y.J.A. Zhang, Cooperative beamforming for cognitive radio networks: a cross-layer design, Commun. IEEE Trans. 60 (5) (2012) 1420-1431.
[179]
D.N. Nguyen, M. Krunz, Power minimization in MIMO cognitive networks using beamforming games, IEEE J. Selected Areas Commun. 31 (5) (2013) 916-925.
[180]
C. Cormio, K.R. Chowdhury, A survey on mac protocols for cognitive radio networks, Ad Hoc Netw. 7 (7) (2009) 1315-1329.
[181]
A. De Domenico, E.C. Strinati, M.-G. Di Benedetto, A survey on mac strategies for cognitive radio networks, Commun. Surv. Tut. IEEE 14 (1) (2012) 21-44.
[182]
J. Misic, Cooperative sensing at the mac level in simple cognitive personal area networks, Selected Areas Commun. IEEE J. 30 (9) (2012) 1711-1718.
[183]
S. Agarwal, R.K. Shakya, Y.N. Singh, A. Roy, DSAT-MAC: Dynamic slot allocation based TDMA MAC protocol for cognitive radio networks, in: Wireless and Optical Communications Networks (WOCN), 2012 Ninth International Conference on, IEEE, 2012, pp. 1-6.
[184]
L. Ma, X. Han, C.-C. Shen, Dynamic open spectrum sharing mac protocol for wireless ad hoc networks, in: New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, IEEE, 2005, pp. 203-213.
[185]
J. Jia, Q. Zhang, X. Shen, HC-MAC: a hardware-constrained cognitive MAC for efficient spectrum management, Selected Areas Commun. IEEE J. 26 (1) (2008) 106-117.
[186]
C. Cordeiro, K. Challapali, C-MAC: A cognitive MAC protocol for multi-channel wireless networks, in: New Frontiers in Dynamic Spectrum Access Networks, 2007. DySPAN 2007. 2nd IEEE International Symposium on, IEEE, 2007, pp. 147-157.
[187]
C. Xin, M. Song, L. Ma, C.-C. Shen, Rop: Near-optimal rendezvous for dynamic spectrum access networks, Vehicular Technol. IEEE Trans. 62 (7) (2013) 3383-3391.
[188]
Q. Zhao, et al., Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework, Selected Areas Commun. IEEE J. 25 (3) (2007) 589-600.
[189]
A. Chatterjee, S. Deb, K. Nagaraj, V. Srinivasan, Low delay mac scheduling for frequency-agile multi-radio wireless networks, IEEE J. Selected Areas Commun. 31 (11) (2013) 2262-2275.
[190]
Y. Zhao, M. Song, C. Xin, FMAC: A fair MAC protocol for coexisting cognitive radio networks, in: INFOCOM, 2013 Proceedings IEEE, 2013, pp. 1474-1482.
[191]
A. Lam, V. Li, J. Yu, Power-controlled cognitive radio spectrum allocation with chemical reaction optimization, Wireless Commun. IEEE Trans. 12 (7) (2013) 3180-3190.
[192]
R. Yu, C. Zhang, X. Zhang, L. Zhou, K. Yang, Hybrid spectrum access in cognitive-radio-based smart-grid communications systems, Syst. J. IEEE PP (99) (2013) 1-11.
[193]
P. Ren, Y. Wang, Q. Du, CAD-MAC: A channel-aggregation diversity based MAC protocol for spectrum and energy efficient cognitive ad hoc networks, Selected Areas Commun. IEEE J. 32 (2) (2014) 237-250.
[194]
R.E. Ali, et al., A probabilistic mac for cognitive radio systems with energy harvesting nodes, in: Signal and Information Processing (GlobalSIP), 2014 IEEE Global Conference on, IEEE, 2014, pp. 143-147.
[195]
A.M. Wyglinski, M. Nekovee, T. Hou, Cognitive radio communications and networks: principles and practice, Access Online via Elsevier, 2009.
[196]
F.H. Fitzek, M.D. Katz, Cooperation in wireless networks: principles and applications, Springer, 2006.
[197]
Q. Zhang, J. Jia, J. Zhang, Cooperative relay to improve diversity in cognitive radio networks, Commun. Mag. IEEE 47 (2) (2009) 111-117.
[198]
X. Gong, T. Chandrashekhar, J. Zhang, H.V. Poor, Opportunistic cooperative networking: To relay or not to relay? Selected Areas Commun. IEEE J. 30 (2) (2012) 307-314.
[199]
J.-C. Liang, J.-C. Chen, Resource allocation in cognitive radio relay networks, Selected Areas Commun. IEEE J. 31 (3) (2013) 476-488.
[200]
Y. Zou, Y.-D. Yao, B. Zheng, A cooperative sensing based cognitive relay transmission scheme without a dedicated sensing relay channel in cognitive radio networks, Sig. Process. IEEE Trans. 59 (2) (2011) 854-858.
[201]
T. Nadkar, V. Thumar, G. Shenoy, A. Mehta, U. Desai, S. Merchant, A cross-layer framework for symbiotic relaying in cognitive radio networks, in: New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2011 IEEE Symposium on, IEEE, 2011, pp. 498-509.
[202]
T. Nadkar, V. Thumar, G. Shenoy, U.B. Desai, S. Merchant, Cognitive relaying with time incentive: protocol design for multiple primary users, in: Personal Indoor and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd International Symposium on, IEEE, 2011, pp. 577-582.
[203]
M. Cesana, F. Cuomo, E. Ekici, Routing in cognitive radio networks: Challenges and solutions, Ad Hoc Netw. 9 (3) (2011) 228-248.
[204]
K.R. Chowdhury, I.F. Akyildiz, Cognitive wireless mesh networks with dynamic spectrum access, Selected Areas Commun. IEEE J. 26 (1) (2008) 168-181.
[205]
P. Rawat, M. Haddad, E. Altman, Towards efficient disaster management: 5g and device to device communication, in: 2015 2nd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), IEEE, 2015, pp. 79-87.
[206]
M. Youssef, et al., Routing metrics of cognitive radio networks: A survey, Commun. Surv. Tut. IEEE 16 (1) (2014) 92-109.
[207]
C. Xin, L. Ma, C.-C. Shen, A path-centric channel assignment framework for cognitive radio wireless networks, Mob. Netw. Appl. 13 (5) (2008) 463-476.
[208]
Y.T. Hou, Y. Shi, H.D. Sherali, Spectrum sharing for multi-hop networking with cognitive radios, Selected Areas Commun. IEEE J. 26 (1) (2008) 146-155.
[209]
C. Gao, Y. Shi, Y.T. Hou, H.D. Sherali, H. Zhou, Multicast communications in multi-hop cognitive radio networks, Selected Areas Commun. IEEE J. 29 (4) (2011) 784-793.
[210]
C. Jiang, Y. Shi, Y.T. Hou, W. Lou, Cherish every joule: Maximizing throughput with an eye on network-wide energy consumption, in: INFOCOM, 2012 Proceedings IEEE, IEEE, 2012, pp. 1934-1941.
[211]
C. Jiang, et al., Throughput maximization for multi-hop wireless networks with network-wide energy constraint, Wireless Commun. IEEE Trans. 12 (3) (2013) 1255-1267.
[212]
H. Ma, L. Zheng, X. Ma, et al., Spectrum aware routing for multi-hop cognitive radio networks with a single transceiver, in: Cognitive Radio Oriented Wireless Networks and Communications, 2008. CrownCom 2008. 3rd International Conference on, IEEE, 2008, pp. 1-6.
[213]
K.R. Chowdhury, I.F. Akyildiz, Crp: A routing protocol for cognitive radio ad hoc networks, Selected Areas Commun. IEEE J. 29 (4) (2011) 794-804.
[214]
Z. Yang, G. Cheng, W. Liu, W. Yuan, W. Cheng, Local coordination based routing and spectrum assignment in multi-hop cognitive radio networks, Mob. Netw. Appl. 13 (1-2) (2008) 67-81.
[215]
A.S. Cacciapuoti, M. Caleffi, L. Paura, Reactive routing for mobile cognitive radio ad hoc networks, Ad Hoc Netw. 10 (5) (2012) 803-815.
[216]
E. Dall'Anese, G. Giannakis, Statistical routing for multihop wireless cognitive networks, Selected Areas Commun. IEEE J. 30 (10) (2012) 1983-1993.
[217]
A. Sampath, L. Yang, L. Cao, H. Zheng, B.Y. Zhao, High throughput spectrum-aware routing for cognitive radio networks, Proceedings of IEEE Crowncom (2008) (2008).
[218]
I. Filippini, E. Ekici, M. Cesana, A new outlook on routing in cognitive radio networks: Minimum-maintenance-cost routing, Netw. IEEE/ACM Trans. PP (99) (2013). 1-1
[219]
L. Ding, et al., Rosa: distributed joint routing and dynamic spectrum allocation in cognitive radio ad hoc networks, in: Proceedings of the 12th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, ACM, 2009, pp. 13-20.
[220]
M. Caleffi, I. Akyildiz, L. Paura, OPERA: Optimal routing metric for cognitive radio ad hoc networks, Wireless Commun. IEEE Trans. 11 (8) (2012) 2884-2894.
[221]
K.R. Chowdhury, M.D. Felice, Search: A routing protocol for mobile cognitive radio ad-hoc networks, Comput. Commun. 32 (18) (2009) 1983-1997.
[222]
B. Karp, H.-T. Kung, GPSR: Greedy perimeter stateless routing for wireless networks, in: Proceedings of the 6th annual international conference on Mobile computing and networking, ACM, 2000, pp. 243-254.
[223]
X. Jin, R. Zhang, J. Sun, Y. Zhang, TIGHT: a geographic routing protocol for cognitive radio mobile ad hoc networks, Wireless Commun. IEEE Trans. 13 (8) (2014) 4670-4681.
[224]
W.-Y. Lee, I.F. Akyildiz, Spectrum-aware mobility management in cognitive radio cellular networks, Mob. Comput. IEEE Trans. 11 (4) (2012) 529-542.
[225]
L. De Nardis, M.-D. Guirao, Mobility-aware design of cognitive radio networks: Challenges and opportunities, in: Cognitive Radio Oriented Wireless Networks & Communications (CROWNCOM), 2010 Proceedings of the Fifth International Conference on, IEEE, 2010, pp. 1-5.
[226]
M. Di Felice, K.R. Chowdhury, L. Bononi, Modeling and performance evaluation of transmission control protocol over cognitive radio ad hoc networks, in: Proceedings of the 12th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, ACM, 2009, pp. 4-12.
[227]
T. Issariyakul, L.S. Pillutla, V. Krishnamurthy, Tuning radio resource in an overlay cognitive radio network for TCP: greed isn't good, Commun. Mag. IEEE 47 (7) (2009) 57-63.
[228]
Y.R. Kondareddy, P. Agrawal, Effect of dynamic spectrum access on transport control protocol performance, in: Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, IEEE, 2009, pp. 1-6.
[229]
C. Luo, F.R. Yu, H. Ji, V.C. Leung, Cross-layer design for TCP performance improvement in cognitive radio networks, Vehicular Technol. IEEE Trans. 59 (5) (2010) 2485-2495.
[230]
K.R. Chowdhury, M. Di Felice, I.F. Akyildiz, TP-CRAHN: A transport protocol for cognitive radio ad-hoc networks, in: INFOCOM 2009, IEEE, IEEE, 2009, pp. 2482-2490.
[231]
K.D. Singh, J.-M. Bonnin, D. Ros, Optimising TCP over cognitive radio networks for trains, in: ITS Telecommunications (ITST), 2012 12th International Conference on, IEEE, 2012, pp. 678-682.
[232]
T. Goff, J. Moronski, D.S. Phatak, V. Gupta, Freeze-TCP: A true end-to-end TCP enhancement mechanism for mobile environments, in: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 3, IEEE, 2000, pp. 1537-1545.
[233]
C. Yu-Chun, C.-F. Chou, E.H. Wu, G.-H. Chen, A cognitive tcp design for a cognitive radio network with an unstable-bandwidth link, Comput. IEEE Trans. 64 (10) (2015) 2730-3740.
[234]
X. Zhong, Y. Qin, L. Li, Transport protocols in cognitive radio networks: A survey, arXiv preprint arXiv:1501.02869(2015).
[235]
O.G. Aliu, A. Imran, M.A. Imran, B. Evans, A survey of self organisation in future cellular networks, Commun. Surv. Tut. IEEE 15 (1) (2013) 336-361.
[236]
K. Sohrabi, J. Gao, V. Ailawadhi, G.J. Pottie, Protocols for self-organization of a wireless sensor network, Personal Commun. IEEE 7 (5) (2000) 16-27.
[237]
F. Dressler, Self-organization in sensor and actor networks, John Wiley & Sons, 2008.
[238]
F. Dressler, O.B. Akan, A survey on bio-inspired networking, Comput. Netw. 54 (6) (2010) 881-900.
[239]
F. Dressler, O.B. Akan, Bio-inspired networking: from theory to practice, Commun. Mag. IEEE 48 (11) (2010) 176-183.
[240]
F.R. Yu, M. Huang, H. Tang, Biologically inspired consensus-based spectrum sensing in mobile ad hoc networks with cognitive radios, Netw. IEEE 24 (3) (2010) 26-30.
[241]
P. Lorenzo, S. Barbarossa, Swarming algorithms for distributed radio resource allocation: A further step in the direction of an ever-deeper synergism between biological mathematical modeling and signal processing, Sig. Process. Mag. IEEE 30 (3) (2013) 144-154.
[242]
P. Di Lorenzo, S. Barbarossa, A bio-inspired swarming algorithm for decentralized access in cognitive radio, Sig. Process. IEEE Trans. 59 (12) (2011) 6160-6174.
[243]
C. Jiang, Y. Chen, Y. Gao, K. Liu, Joint spectrum sensing and access evolutionary game in cognitive radio networks, Wireless Communications, IEEE Transactions on 12 (5) (2013) 2470-2483.
[244]
G. Scutari, J.-S. Pang, Joint sensing and power allocation in nonconvex cognitive radio games: Nash equilibria and distributed algorithms, IEEE Trans. Inf. Theor. 59 (7) (2013) 4626-4661.
[245]
L. Yang, H. Kim, J. Zhang, M. Chiang, C.W. Tan, Pricing-based decentralized spectrum access control in cognitive radio networks, IEEE/ACM Trans. Netw. (TON) 21 (2) (2013) 522-535.
[246]
B. Varan, A. Yener, Incentivizing signal and energy cooperation in wireless networks, Selected Areas Commun. IEEE J. 33 (12) (2015) 2554-2566.
[247]
Y. Xiao, et al., Dynamic energy trading for energy harvesting communication networks: A stochastic energy trading game, Selected Areas Commun. IEEE J. 33 (12) (2015) 2718-2734.
[248]
B. Wang, Y. Wu, K. Liu, Game theory for cognitive radio networks: An overview, Comput. Netw. 54 (14) (2010) 2537-2561.
[249]
M. Bkassiny, Y. Li, S. Jayaweera, A survey on machine-learning techniques in cognitive radios, Commun. Surv. Tut. IEEE 15 (3) (2013) 1136-1159.
[250]
V.K. Tumuluru, P. Wang, D. Niyato, Channel status prediction for cognitive radio networks, Wireless Commun. Mob. Comput. 12 (10) (2012) 862-874.
[251]
Y.-J. Tang, Q.-Y. Zhang, W. Lin, Artificial neural network based spectrum sensing method for cognitive radio, in: Wireless Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on, IEEE, 2010, pp. 1-4.
[252]
X. He, Z. Zeng, C. Guo, Signal classification based on cyclostationary spectral analysis and hmm/svm in cognitive radio, in: Measuring Technology and Mechatronics Automation, 2009. ICMTMA '09. International Conference on, 3, 2009, pp. 309-312.
[253]
S. Hou, R.C. Qiu, Spectrum sensing for cognitive radio using kernel-based learning (2011), arXiv preprint arXiv:1105.2978(2011).
[254]
C. Guo, et al., Cooperative spectrum sensing with cluster-based architecture in cognitive radio networks, in: Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th, IEEE, 2009, pp. 1-5.
[255]
D.T. Hoang, D. Niyato, P. Wang, D.I. Kim, Opportunistic channel access and rf energy harvesting in cognitive radio networks, Selected Areas Commun. IEEE J. 32 (11) (2014) 2039-2052.
[256]
M. Usman, I. Koo, Access strategy for hybrid underlay-overlay cognitive radios with energy harvesting, Sensors J. IEEE 14 (9) (2014) 3164-3173.
[257]
J. Jeya Pradha, S.S. Kalamkar, A. Banerjee, Energy harvesting cognitive radio with channel-aware sensing strategy, Commun. Lett. IEEE 18 (7) (2014) 1171-1174.
[258]
P. Dutta, Y.-S. Kuo, A. Ledeczi, T. Schmid, P. Volgyesi, Putting the software radio on a low-calorie diet, in: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, ACM, 2010, p. 20.
[259]
M.C. Oto, O.B. Akan, Energy-efficient packet size optimization for cognitive radio sensor networks, Wireless Commun. IEEE Trans. 11 (4) (2012) 1544-1553.
[260]
J. Palicot, Cognitive radio: an enabling technology for the green radio communications concept, in: Proceedings of the 2009 International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly, ACM, 2009, pp. 489-494.
[261]
L. Mohjazi, et al., RF-powered cognitive radio networks: technical challenges and limitations, Commun. Mag. IEEE 53 (4) (2015) 94-100.
[262]
D. Mishra, S. De, S. Jana, S. Basagni, K. Chowdhury, W. Heinzelman, Smart RF energy harvesting communications: challenges and opportunities, Communications Magazine, IEEE 53 (4) (2015) 70-78.
[263]
S. Ulukus, et al., Energy harvesting wireless communications: A review of recent advances, Selected Areas Commun. IEEE J. 33 (3) (2015) 360-381.
[264]
I. Ahmed, et al., Survey on energy harvesting wireless communications: Challenges and opportunities for radio resource allocation, Comput. Netw. 88 (2015) 234-248.
[265]
S. Lee, R. Zhang, K. Huang, Opportunistic wireless energy harvesting in cognitive radio networks, Wireless Commun. IEEE Trans. 12 (9) (2013) 4788-4799.
[266]
S. Yin, Z. Qu, S. Li, Achievable throughput optimization in energy harvesting cognitive radio systems, Selected Areas Commun. IEEE J. 33 (3) (2015) 407-422.
[267]
S. Gong, L. Duan, P. Wang, Robust optimization of cognitive radio networks powered by energy harvesting, in: 2015 IEEE Conference on Computer Communications (INFOCOM), IEEE, 2015, pp. 612-620.
[268]
S. Park, D. Hong, Achievable throughput of energy harvesting cognitive radio networks, Wireless Commun. IEEE Trans. 13 (2) (2014) 1010-1022.
[269]
S. Yin, E. Zhang, Z. Qu, L. Yin, S. Li, Optimal cooperation strategy in cognitive radio systems with energy harvesting, Wireless Commun. IEEE Trans. 13 (9) (2014) 4693-4707.
[270]
Cognitive Radio-When IoT Gets Intelligent, 2011. Available Online: http://techie2020.blogspot.fr/2011/08/cognitive-radio-when-iot-gets.html
[271]
O. Akan, O. Karli, O. Ergul, Cognitive radio sensor networks, Netw. IEEE 23 (4) (2009) 34-40.
[272]
IEEE, IEEE 802.19.1-2014 IEEE Standard. Local and metropolitan area networks. Specific requirements Part 19: TV White Space Coexistence Methods, 2014. [Online] Available: http://standards.ieee.org/develop/wg/WG802.19.html

Cited By

View all
  1. Cognitive radio for M2M and Internet of Things

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Computer Communications
    Computer Communications  Volume 94, Issue C
    November 2016
    125 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 15 November 2016

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 05 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A novel selfish node detection based on reputation and game theory in Internet of ThingsComputing10.1007/s00607-023-01184-8106:1(81-107)Online publication date: 1-Jan-2024
    • (2023)Deep learning based relay selection and precoders design for IoT cognitive relay networksPhysical Communication10.1016/j.phycom.2023.10219561:COnline publication date: 1-Dec-2023
    • (2023)Internet of Thing (IoT) review of reviewFuture Generation Computer Systems10.1016/j.future.2023.01.016143:C(361-377)Online publication date: 1-Jun-2023
    • (2021)Energy Efficiency Optimization of Cognitive UAV-Assisted Edge Communication for Semantic Internet of ThingsWireless Communications & Mobile Computing10.1155/2021/66823402021Online publication date: 1-Jan-2021
    • (2021)A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicineComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2021.106357209:COnline publication date: 1-Sep-2021
    • (2021)Short and Long Multi-frames Based Multiple Access Control for Cognitive Machine Type Communication with Full-Duplex GatewayWireless Personal Communications: An International Journal10.1007/s11277-021-08153-4118:4(2749-2764)Online publication date: 1-Jun-2021
    • (2021)Multiple Access Control in a Centralized Full-Duplex Cognitive Machine Type Network with RF Energy HarvestingWireless Personal Communications: An International Journal10.1007/s11277-020-08053-z118:2(949-960)Online publication date: 1-May-2021
    • (2021)Wireless energy transfer policies for cognitive radio based MAC in energy-constrained IoT networksTelecommunications Systems10.1007/s11235-021-00771-477:3(435-449)Online publication date: 1-Jul-2021
    • (2021)RETRACTED ARTICLE: Crypto-Stegno based model for securing medical information on IOMT platformMultimedia Tools and Applications10.1007/s11042-021-11125-280:21-23(31705-31727)Online publication date: 1-Sep-2021
    • (2020)Energy Harvesting and Information Transmission Mode Design for Cooperative EH-Abled IoT Applications in beyond 5G NetworksWireless Communications & Mobile Computing10.1155/2020/61362982020Online publication date: 1-Jan-2020
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media