skip to main content
10.1007/978-3-030-58568-6_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Rethinking Few-Shot Image Classification: A Good Embedding is All You Need?

Published: 23 August 2020 Publication History

Abstract

The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of self-distillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms. Code: http://github.com/WangYueFt/rfs/.

References

[1]
[2]
Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for few-shot learning. In: ICML (2019)
[3]
Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136 (2018)
[4]
Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: SIGKDD (2006)
[5]
Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)
[6]
Chen, Y., Wang, X., Liu, Z., Xu, H., Darrell, T.: A new meta-baseline for few-shot learning. ArXiv abs/2003.04390 (2020)
[7]
Clark, K., Luong, M.T., Manning, C.D., Le, Q.V.: Bam! born-again multi-task networks for natural language understanding. In: ACL (2019)
[8]
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)
[9]
Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. In: ICLR (2020)
[10]
Dvornik, N., Schmid, C., Mairal, J.: Diversity with cooperation: ensemble methods for few-shot classification. In: ICCV (2019)
[11]
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)
[12]
Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born-again neural networks. In: ICML (2018)
[13]
Gan, C., Gong, B., Liu, K., Su, H., Guibas, L.J.: Geometry guided convolutional neural networks for self-supervised video representation learning. In: CVPR (2018)
[14]
Gan, C., Zhao, H., Chen, P., Cox, D., Torralba, A.: Self-supervised moving vehicle tracking with stereo sound. In: ICCV (2019)
[15]
Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR (2018)
[16]
Hao, F., He, F., Cheng, J., Wang, L., Cao, J., Tao, D.: Collect and select: semantic alignment metric learning for few-shot learning. In: ICCV (2019)
[17]
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. ArXiv abs/1911.05722 (2019)
[18]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
[19]
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)
[20]
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)
[21]
Huang, S., Tao, D.: All you need is a good representation: A multi-level and classifier-centric representation for few-shot learning. ArXiv abs/1911.12476 (2019)
[22]
Jamal, M.A., Qi, G.J.: Task agnostic meta-learning for few-shot learning. In: CVPR (2019)
[23]
Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop (2015)
[24]
Lake BM, Salakhutdinov R, and Tenenbaum JB Human-level concept learning through probabilistic program induction Science 2015 350 6266 1332-1338
[25]
Lake BM, Salakhutdinov R, and Tenenbaum JB The Omniglot challenge: a 3-year progress report Curr. Opin. Behav. Sci. 2019 29 97-104
[26]
Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR (2019)
[27]
Li, A., Luo, T., Xiang, T., Huang, W., Wang, L.: Few-shot learning with global class representations. In: ICCV (2019)
[28]
Li, H., Eigen, D., Dodge, S., Zeiler, M., Wang, X.: Finding task-relevant features for few-shot learning by category traversal. In: CVPR (2019)
[29]
Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017)
[30]
Mobahi, H., Farajtabar, M., Bartlett, P.L.: Self-distillation amplifies regularization in hilbert space. arXiv preprint arXiv:2002.05715 (2020)
[31]
Munkhdalai, T., Yuan, X., Mehri, S., Trischler, A.: Rapid adaptation with conditionally shifted neurons. arXiv preprint arXiv:1712.09926 (2017)
[32]
Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. ArXiv abs/1803.02999 (2018)
[33]
Oreshkin, B., López, P.R., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: NIPS (2018)
[34]
Peng, Z., Li, Z., Zhang, J., Li, Y., Qi, G.J., Tang, J.: Few-shot image recognition with knowledge transfer. In: ICCV (2019)
[35]
Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., Tian, Y.: Transductive episodic-wise adaptive metric for few-shot learning. In: ICCV (2019)
[36]
Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: CVPR (2018)
[37]
Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature reuse? towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157 (2019)
[38]
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)
[39]
Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: ICCV (2019)
[40]
Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)
[41]
Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Hadsell, R.: Meta-learning with latent embedding optimization. In: ICLR (2019)
[42]
Scott, T., Ridgeway, K., Mozer, M.C.: Adapted deep embeddings: a synthesis of methods for k-shot inductive transfer learning. In: NIPS (2018)
[43]
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)
[44]
Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: CVPR (2019)
[45]
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: CVPR (2018)
[46]
Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint arXiv:1906.05849 (2019)
[47]
Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)
[48]
Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? arXiv preprint arXiv:2005.10243 (2020)
[49]
Triantafillou, E., Zemel, R.S., Urtasun, R.: Few-shot learning through an information retrieval lens. In: NIPS (2017)
[50]
Triantafillou, E., et al.: Meta-dataset: a dataset of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096 (2019)
[51]
Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016)
[52]
Wang, Y.X., Girshick, R.B., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR (2018)
[53]
Wang YX and Hebert M Learning from small sample sets by combining unsupervised meta-training with CNNs Adv. Neural Inform. Process. Syst. 2016 29 244-252
[54]
Wang, Y., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: ECCV (2016)
[55]
Weng, L.: Meta-learning: Learning to learn fast. lilianweng.github.io/lil-log (2018). http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html
[56]
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)
[57]
Wu, Z., Li, Y., Guo, L., Jia, K.: Parn: position-aware relation networks for few-shot learning. In: ICCV (2019)
[58]
Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Learning embedding adaptation for few-shot learning. CoRR abs/1812.03664 (2018)
[59]
Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: CVPR (2017)
[60]
Zhang, J., Zhao, C., Ni, B., Xu, M., Yang, X.: Variational few-shot learning. In: ICCV (2019)

Cited By

View all
  • (2025)TsCANet: Three-stream contrastive adaptive network for cross-domain few-shot learningThe Journal of Supercomputing10.1007/s11227-024-06482-281:1Online publication date: 1-Jan-2025
  • (2024)One meta-tuned transformer is what you need for few-shot learningProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694409(56681-56703)Online publication date: 21-Jul-2024
  • (2024)MOKDProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694038(48154-48185)Online publication date: 21-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV
Aug 2020
842 pages
ISBN:978-3-030-58567-9
DOI:10.1007/978-3-030-58568-6

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 23 August 2020

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)TsCANet: Three-stream contrastive adaptive network for cross-domain few-shot learningThe Journal of Supercomputing10.1007/s11227-024-06482-281:1Online publication date: 1-Jan-2025
  • (2024)One meta-tuned transformer is what you need for few-shot learningProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694409(56681-56703)Online publication date: 21-Jul-2024
  • (2024)MOKDProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694038(48154-48185)Online publication date: 21-Jul-2024
  • (2024)A Robust Few-shot Learning Framework via Dual-branch Adversarial Noise PretrainingProceedings of the 6th ACM International Conference on Multimedia in Asia10.1145/3696409.3700245(1-8)Online publication date: 3-Dec-2024
  • (2024)Feature-weighted Multi-stage Bayesian Prototype for Few-shot ClassificationProceedings of the 6th ACM International Conference on Multimedia in Asia10.1145/3696409.3700244(1-7)Online publication date: 3-Dec-2024
  • (2024)Learning Task-Specific Embeddings for Few-Shot Classification via Local Weight AdaptationProceedings of the 2024 16th International Conference on Machine Learning and Computing10.1145/3651671.3651746(485-491)Online publication date: 2-Feb-2024
  • (2024)A two-stage spiking meta-learning method for few-shot classificationKnowledge-Based Systems10.1016/j.knosys.2023.111220284:COnline publication date: 25-Jan-2024
  • (2024)Residual Spatio-Temporal Attention Based Prototypical Network for Rare Arrhythmia ClassificationBioinformatics Research and Applications10.1007/978-981-97-5087-0_8(89-101)Online publication date: 19-Jul-2024
  • (2024)A-FSL: Adaptive Few-Shot Learning via Task-Driven Context Aggregation and Attentive Feature RefinementPattern Recognition10.1007/978-3-031-78395-1_7(97-113)Online publication date: 1-Dec-2024
  • (2024)Image Domain Translation for Few-Shot LearningPattern Recognition10.1007/978-3-031-78183-4_20(313-329)Online publication date: 1-Dec-2024
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media