Stirred Not Shaken: A Longitudinal Pilot Study of Head Kinematics and Cognitive Changes in Horseracing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
Procedure
2.3. Data Processing
2.3.1. Head Kinematics
2.3.2. Cognitive
2.4. Data Analysis
3. Results
3.1. Head Kinematics
3.1.1. Variables That Affect Head Kinematic Levels
Individual Differences
Variation Through the Year
Other Variables
3.2. Cognitive Function After Riding
Variation in Cognitive Results Through the Year
4. Discussion
4.1. Head Kinematics
4.1.1. Linear Acceleration
4.1.2. Rotational Velocity and Acceleration
4.1.3. Acceleration Duration
4.2. Cognition
Visual Function
4.3. Variation
4.4. Future Research Lines
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Data Collection Period: | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Participant ID: | Date: | |||||||||
Any falls (past month) | ||||||||||
Any recent injuries (past month) | ||||||||||
Any medically diagnosed concussion (recent) | ||||||||||
Any undiagnosed concussion | ||||||||||
Any new medication | ||||||||||
Other (travel, bans, etc) | ||||||||||
Day 1 | ||||||||||
Date: | ||||||||||
Weight today: | ||||||||||
For the following 3 categories tick the number that best describes your current status | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Hydration (1 = dehydrated; 10 = fully hydrated) | ||||||||||
Fatigue (1 = exhausted; 10 = well rested) | ||||||||||
Mood (1 = poor mood; 10 = excellent mood) | ||||||||||
Any injury/falls past 24 h: | ||||||||||
Day 2 | ||||||||||
Date: | ||||||||||
Weight today: | ||||||||||
For the following 3 categories tick the number that best describes your current status | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Hydration (1 = dehydrated; 10 = fully hydrated) | ||||||||||
Fatigue (1 = exhausted; 10 = well rested) | ||||||||||
Mood (1 = poor mood; 10 = excellent mood) | ||||||||||
Any injury/falls past 24 h: | ||||||||||
Day 3 | ||||||||||
Date: | ||||||||||
Weight today: | ||||||||||
For the following 3 categories tick the number that best describes your current status | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Hydration (1 = dehydrated; 10 = fully hydrated) | ||||||||||
Fatigue (1 = exhausted; 10 = well rested) | ||||||||||
Mood (1 = poor mood; 10 = excellent mood) | ||||||||||
Any injury/falls past 24 h: | ||||||||||
Day 4 | ||||||||||
Date: | ||||||||||
Weight today: | ||||||||||
For the following 3 categories tick the number that best describes your current status | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Hydration (1 = dehydrated; 10 = fully hydrated) | ||||||||||
Fatigue (1 = exhausted; 10 = well rested) | ||||||||||
Mood (1 = poor mood; 10 = excellent mood) | ||||||||||
Any injury/falls past 24 h: |
Appendix B
Metric | Age Horse | Surface | Sex of Jockey | |||||
---|---|---|---|---|---|---|---|---|
Under 5 | Over 5 | Woodchip | Carpet Fibre | Sand | Grass | Male | Female | |
PRLA (g) | 4.90 | 4.83 | 4.84 | 4.99 | 4.87 | 4.91 | 5.02 | 4.88 |
MRLA (g) | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 |
PRRV (rad/s) | 8.51 | 7.27 | 8.59 | 8.18 | 8.30 | 8.63 | 8.52 | 8.49 |
MRRV (rad/s) | 0.87 | 0.83 | 0.89 | 0.84 | 0.87 | 0.82 | 0.85 | 0.87 |
PRRA (rad/s2) | 1224 | 1099 | 1234 | 1160 | 1198 | 1284 | 1180 | 1209 |
MRRA (rad/s2) | 96.19 | 83.02 | 99.45 | 85.26 | 95.85 | 86.50 | 85.97 | 96.61 |
LAC > 3 g | 292.5 | 142.1 | 153.6 | 176.2 | 190.8 | 177.5 | 172.9 | 186.9 |
LAC > 3 g/min | 3.81 | 1.98 | 3.35 | 3.26 | 3.88 | 2.49 | 3.21 | 3.78 |
RAC > 400 rad/s2 | 313.5 | 247.1 | 335.9 | 356.9 | 306.5 | 412.7 | 245.5 | 305.8 |
RAC > 400 rad/s2/min | 10.20 | 8.30 | 9.67 | 9.22 | 10.40 | 11.83 | 6.70 | 9.90 |
References
- Stewart, W.; Buckland, M.E.; Abdolmohammadi, B.; Affleck, A.J.; Alvarez, V.E.; Gilchrist, S.; Huber, B.R.; Lee, E.B.; Lyall, D.M.; Nowinski, C.J.; et al. Risk of Chronic Traumatic Encephalopathy in Rugby Union Is Associated with Length of Playing Career. Acta Neuropathol. 2023, 146, 829–832. [Google Scholar] [CrossRef]
- Schwab, N.; Wennberg, R.; Grenier, K.; Tartaglia, C.; Tator, C.; Hazrati, L.-N. Association of Position Played and Career Duration and Chronic Traumatic Encephalopathy at Autopsy in Elite Football and Hockey Players. Neurology 2021, 96, e1835–e1843. [Google Scholar] [CrossRef]
- Nowinski, C.J.; Bureau, S.C.; Buckland, M.E.; Curtis, M.A.; Daneshvar, D.H.; Faull, R.L.M.; Grinberg, L.T.; Hill-Yardin, E.L.; Murray, H.C.; Pearce, A.J.; et al. Applying the Bradford Hill Criteria for Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Front. Neurol. 2022, 13, 938163. [Google Scholar] [CrossRef]
- Griffin, M.J. Predicting and Controlling Risks from Human Exposures to Vibration and Mechanical Shock: Flag Waving and Flag Weaving. Ergonomics 2015, 58, 1063–1070. [Google Scholar] [CrossRef]
- Halmai, B.; Holsgrove, T.P.; Vine, S.J.; Harris, D.J.; Williams, G.K.R. The After-Effects of Occupational Whole-Body Vibration on Human Cognitive, Visual, and Motor Function: A Systematic Review. Appl. Ergon. 2024, 118, 104264. [Google Scholar] [CrossRef]
- Mainwaring, L.; Ferdinand Pennock, K.M.; Mylabathula, S.; Alavie, B.Z. Subconcussive Head Impacts in Sport: A Systematic Review of the Evidence. Int. J. Psychophysiol. 2018, 132, 39–54. [Google Scholar] [CrossRef]
- Eckner, J.T.; Wang, J.; Nelson, L.D.; Bancroft, R.; Pohorence, M.; He, X.; Broglio, S.P.; Giza, C.C.; Guskiewicz, K.M.; Kutcher, J.S.; et al. Effect of Routine Sport Participation on Short-Term Clinical Neurological Outcomes: A Comparison of Non-Contact, Contact, and Collision Sport Athletes. Sports Med. 2020, 50, 1027–1038. [Google Scholar] [CrossRef]
- Le Flao, E.; Siegmund, G.P.; Borotkanics, R. Head Impact Research Using Inertial Sensors in Sport: A Systematic Review of Methods, Demographics, and Factors Contributing to Exposure. Sports Med. 2022, 52, 481–504. [Google Scholar] [CrossRef]
- O’Connor, K.L.; Rowson, S.; Duma, S.M.; Broglio, S.P. Head-Impact–Measurement Devices: A Systematic Review. J. Athl. Train. 2017, 52, 206–227. [Google Scholar] [CrossRef]
- Beckwith, J.G.; Greenwald, R.M.; Chu, J.J.; Crisco, J.J.; Rowson, S.; Duma, S.M.; Broglio, S.P.; McAllister, T.W.; Guskiewicz, K.M.; Mihalik, J.P.; et al. Head Impact Exposure Sustained by Football Players on Days of Diagnosed Concussion. Med. Sci. Sports Exerc. 2013, 45, 737–746. [Google Scholar] [CrossRef]
- King, D.; Hume, P.; Gissane, C.; Brughelli, M.; Clark, T. The Influence of Head Impact Threshold for Reporting Data in Contact and Collision Sports: Systematic Review and Original Data Analysis. Sports Med. 2016, 46, 151–169. [Google Scholar] [CrossRef]
- Miller, L.E.; Urban, J.E.; Whelan, V.M.; Baxter, W.W.; Tatter, S.B.; Stitzel, J.D. An Envelope of Linear and Rotational Head Motion during Everyday Activities. Biomech. Model. Mechanobiol. 2020, 19, 1003–1014. [Google Scholar] [CrossRef]
- Meaney, D.F.; Smith, D.H. Biomechanics of Concussion. Clin. Sports Med. 2011, 30, 19–31. [Google Scholar] [CrossRef]
- McCunn, R.; Beaudouin, F.; Stewart, K.; Meyer, T.; MacLean, J. Heading in Football: Incidence, Biomechanical Characteristics and the Association with Acute Cognitive Function—A Three-Part Systematic Review. Sports Med. 2021, 51, 2147–2163. [Google Scholar] [CrossRef]
- Pfau, T.; Spence, A.; Starke, S.; Ferrari, M.; Wilson, A. Modern Riding Style Improves Horse Racing Times. Science 2009, 325, 289. [Google Scholar] [CrossRef]
- O’Connor, S.; Warrington, G.; McGoldrick, A.; Cullen, S. Epidemiology of Injury Due to Race-Day Jockey Falls in Professional Flat and Jump Horse Racing in Ireland, 2011–2015. J. Athl. Train. 2017, 52, 1140–1146. [Google Scholar] [CrossRef]
- Clark, J.M.; Adanty, K.; Post, A.; Hoshizaki, T.B.; Clissold, J.; McGoldrick, A.; Hill, J.; Annaidh, A.N.; Gilchrist, M.D. Proposed Injury Thresholds for Concussion in Equestrian Sports. J. Sci. Med. Sport 2020, 23, 222–236. [Google Scholar] [CrossRef]
- Piantella, S.; McDonald, S.J.; Maruff, P.; Wright, B.J. Assessing the Long-Term Impact of Concussion upon Cognition: A 5-Year Prospective Investigation. Arch. Clin. Neuropsychol. 2020, 35, 482–490. [Google Scholar] [CrossRef]
- Quintana, C.; Grimshaw, B.; Rockwood, H.E.; Heebner, N.J.; Johnson, A.K.; Ryan, K.D.; Mattacola, C.G. Differences in Head Accelerations and Physiological Demand between Live and Simulated Professional Horse Racing. Comp. Exerc. Physiol. 2019, 15, 259–268. [Google Scholar] [CrossRef]
- Legg, K.A.; Cochrane, D.J.; Gee, E.K.; Macdermid, P.W.; Rogers, C.W. Physiological Demands and Muscle Activity of “Track-Work” Riding in Apprentice Jockeys. Int. J. Sports Physiol. Perform. 2022, 17, 1698–1705. [Google Scholar] [CrossRef]
- Nguyen, J.V.K.; Brennan, J.H.; Mitra, B.; Willmott, C. Frequency and Magnitude of Game-Related Head Impacts in Male Contact Sports Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1575–1583. [Google Scholar] [CrossRef]
- Gallagher, S.; Schall, M.C., Jr. Musculoskeletal Disorders as a Fatigue Failure Process: Evidence, Implications and Research Needs. Ergonomics 2017, 60, 255–269. [Google Scholar] [CrossRef]
- BI 2631-1; Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration Part 1: General Requirements. BSI Standards Publication: London, UK, 2011.
- European Parliament. Directive 2002/44/EC of the European Parliament and of the council of 25 June 2002 on the minimum health and safety requirements regarding the exposure of workers to the risks from physical agents (vibration). Off. J. Eur. Communities 2002, 117, 13–19. [Google Scholar]
- Costa, N.; Arezes, P.M.; Melo, R.B. Effects of Vibration Exposure on Professional Drivers: A Field Test for Quantifying Visual and Cognitive Performance. Work 2012, 41, 3039–3042. [Google Scholar] [CrossRef]
- Bhuiyan, M.H.U.; Fard, M.; Robinson, S.R. Effects of Whole-Body Vibration on Driver Drowsiness: A Review. J. Saf. Res. 2022, 81, 175–189. [Google Scholar] [CrossRef]
- Kociolek, A.M.; Lang, A.E.; Trask, C.M.; Vasiljev, R.M.; Milosavljevic, S. Exploring Head and Neck Vibration Exposure from Quad Bike Use in Agriculture. Int. J. Ind. Ergon. 2018, 66, 63–69. [Google Scholar] [CrossRef]
- Yung, M.; Tennant, L.M.; Milosavljevic, S.; Trask, C. The Multisystem Effects of Simulated Agricultural Whole-Body Vibration on Acute Sensorimotor, Physical, and Cognitive Performance. Ann. Work Expo. Health 2018, 62, 884–898. [Google Scholar] [CrossRef]
- McMorris, T.; Myers, S.; Dobbins, T.; Hall, B.; Dyson, R. Seating Type and Cognitive Performance After 3 Hours Travel by High-Speed Boat in Sea States 2–3. Aviat. Space Environ. Med. 2009, 80, 24–28. [Google Scholar] [CrossRef]
- Tarabini, M.; Saggin, B.; Scaccabarozzi, D. Whole-Body Vibration Exposure in Sport: Four Relevant Cases. Ergonomics 2015, 58, 1143–1150. [Google Scholar] [CrossRef]
- Smit, N.; Kingma, I.; Dieen, J.; Bos, J. Are vibration dose value and daily exposure limit value suitable to assess back load in high-impact load activities. In Proceedings of the 56th UK Conference on Human Response to Vibration, Held at the Institute of Naval Medicine, Gosport, UK, 29–30 August 2023. [Google Scholar]
- Rakheja, S.; Dong, R.G.; Patra, S.; Boileau, P.-É.; Marcotte, P.; Warren, C. Biodynamics of the Human Body under Whole-Body Vibration: Synthesis of the Reported Data. Int. J. Ind. Ergon. 2010, 40, 710–732. [Google Scholar] [CrossRef]
- Mathers, C.H.; Mihalik, J.P.; Andrews, D.M.; Watkins, S.D.; Puzzuto, P.; Kiecke, D.D. Using In-Ear Accelerometers to Measure Head Acceleration in Rough Stock Riders: A Pilot Study. Athl. Train. Sports Health Care 2012, 4, 158–164. [Google Scholar] [CrossRef]
- Pritchard, N.S.; Urban, J.E.; Miller, L.E.; Lintner, L.; Stitzel, J.D. An Analysis of Head Kinematics in Women’s Artistic Gymnastics. Sci. Gymnast. J. 2020, 12, 229–242. [Google Scholar] [CrossRef]
- Miller, L.E.; Patalak, J.P.; Harper, M.G.; Urban, J.E.; Stitzel, J.D. Pilot Collection and Evaluation of Head Kinematics in Stock Car Racing. J. Biomech. Eng. 2023, 145, 031006. [Google Scholar] [CrossRef] [PubMed]
- Tooby, J.; Woodward, J.; Tucker, R.; Jones, B.; Falvey, É.; Salmon, D.; Bussey, M.D.; Starling, L.; Tierney, G. Instrumented Mouthguards in Elite-Level Men’s and Women’s Rugby Union: The Incidence and Propensity of Head Acceleration Events in Matches. Sports Med. 2024, 54, 1327–1338. [Google Scholar] [CrossRef]
- Ntikas, M.; Binkofski, F.; Shah, N.J.; Ietswaart, M. Repeated Sub-Concussive Impacts and the Negative Effects of Contact Sports on Cognition and Brain Integrity. Int. J. Environ. Res. Public Health 2022, 19, 7098. [Google Scholar] [CrossRef]
- Nowak, M.K.; Bevilacqua, Z.W.; Ejima, K.; Huibregtse, M.E.; Chen, Z.; Mickleborough, T.D.; Newman, S.D.; Kawata, K. Neuro-Ophthalmologic Response to Repetitive Subconcussive Head Impacts: A Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 350. [Google Scholar] [CrossRef]
- Hurst, H.T.; Hancock, S.; Hardwicke, J.; Anderson, E. Does Participation in Downhill Mountain Biking Affect Measures of Executive Function? J. Sci. Cycl. 2020, 9, 74–83. [Google Scholar] [CrossRef]
- Ryan, K.; Brodine, J. Weight-Making Practices Among Jockeys: An Update and Review of the Emergent Scientific Literature. Open Access J. Sports Med. 2021, 12, 87–98. [Google Scholar] [CrossRef]
- Peirce, J.W. PsychoPy—Psychophysics Software in Python. J. Neurosci. Methods 2007, 162, 8–13. [Google Scholar] [CrossRef]
- Scheiman, M.; Gallaway, M.; Frantz, K.A.; Peters, R.J.; Hatch, S.; Cuff, M.; Mitchell, G.L. Nearpoint of convergence: Test procedure, target selection, and normative data. Optom. Vis. Sci. 2003, 80, 214–225. [Google Scholar] [CrossRef]
- Horan, K.; Kourdache, K.; Coburn, J.; Day, P.; Carnall, H.; Harborne, D.; Brinkley, L.; Hammond, L.; Millard, S.; Lancaster, B.; et al. The Effect of Horseshoes and Surfaces on Horse and Jockey Centre of Mass Displacements at Gallop’. Edited by Chris Rogers. PLoS ONE 2021, 16, e0257820. [Google Scholar] [CrossRef]
- Setterbo, J.J.; Garcia, T.C.; Campbell, I.P.; Reese, J.L.; Morgan, J.M.; Kim, S.Y.; Hubbard, M.; Stover, S.M. Hoof Accelerations and Ground Reaction Forces of Thoroughbred Racehorses Measured on Dirt, Synthetic, and Turf Track Surfaces. Am. J. Vet. Res. 2009, 70, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Arif, A.S.; Stuerzlinger, W. Analysis of Text Entry Performance Metrics. In Proceedings of the 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON, Canada, 26–27 September 2009; IEEE: Toronto, ON, Canada, 2009; pp. 100–105. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Kuo, C.; Wu, L.C.; Ye, P.P.; Laksari, K.; Camarillo, D.B.; Kuhl, E. Pilot Findings of Brain Displacements and Deformations during Roller Coaster Rides. J. Neurotrauma 2017, 34, 3198–3205. [Google Scholar] [CrossRef] [PubMed]
- Hurst, H.T.; Atkins, S.; Dickinson, B.D. The Magnitude of Translational and Rotational Head Accelerations Experienced by Riders during Downhill Mountain Biking. J. Sci. Med. Sport 2018, 21, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Nangia, V.; Bui, K.; Hammoor, B.; Kurt, M.; Hernandez, F.; Kuo, C.; Camarillo, D.B. In Vivo Evaluation of Wearable Head Impact Sensors. Ann. Biomed. Eng. 2016, 44, 1234–1245. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, K.H.; King, A.I. A Proposed Injury Threshold for Mild Traumatic Brain Injury. J. Biomech. Eng. 2004, 126, 226–236. [Google Scholar] [CrossRef]
- Bayly, P.V.; Cohen, T.S.; Leister, E.P.; Ajo, D.; Leuthardt, E.C.; Genin, G.M. Deformation of the Human Brain Induced by Mild Acceleration. J. Neurotrauma 2005, 22, 845–856. [Google Scholar] [CrossRef]
- Sabet, A.A.; Christoforou, E.; Zatlin, B.; Genin, G.M.; Bayly, P.V. Deformation of the Human Brain Induced by Mild Angular Head Acceleration. J. Biomech. 2008, 41, 307–315. [Google Scholar] [CrossRef]
- Kleiven, S. Why Most Traumatic Brain Injuries Are Not Caused by Linear Acceleration but Skull Fractures Are. Front. Bioeng. Biotechnol. 2013, 1, 15. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, X.; Domel, A.G.; Fanton, M.; Zhou, Z.; Raymond, S.J.; Alizadeh, H.V.; Cecchi, N.J.; Zeineh, M.; Grant, G. Theoretical and Numerical Analysis for Angular Acceleration Being Determinant of Brain Strain in mTBI. arXiv 2020, arXiv:2012.13507. [Google Scholar] [CrossRef]
- Kuo, C.; Patton, D.; Rooks, T.; Tierney, G.; McIntosh, A.; Lynall, R.; Esquivel, A.; Daniel, R.; Kaminski, T.; Mihalik, J.; et al. On-Field Deployment and Validation for Wearable Devices. Ann. Biomed. Eng. 2022, 50, 1372–1388. [Google Scholar] [CrossRef] [PubMed]
- Naunheim, R.S.; Bayly, P.V.; Standeven, J.; Neubauer, J.S.; Lewis, L.M.; Genin, G.M. Linear and Angular Head Accelerations during Heading of a Soccer Ball. Med. Sci. Sports Exerc. 2003, 35, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Blaine Hoshizaki, T.; Gilchrist, M.D.; Cusimano, M.D. Peak Linear and Rotational Acceleration Magnitude and Duration Effects on Maximum Principal Strain in the Corpus Callosum for Sport Impacts. J. Biomech. 2017, 61, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Koerte, I.K.; Nichols, E.; Tripodis, Y.; Schultz, V.; Lehner, S.; Igbinoba, R.; Chuang, A.Z.; Mayinger, M.; Klier, E.M.; Muehlmann, M.; et al. Impaired Cognitive Performance in Youth Athletes Exposed to Repetitive Head Impacts. J. Neurotrauma 2017, 34, 2389–2395. [Google Scholar] [CrossRef]
- Di Virgilio, T.G.; Hunter, A.; Wilson, L.; Stewart, W.; Goodall, S.; Howatson, G.; Donaldson, D.I.; Ietswaart, M. Evidence for Acute Electrophysiological and Cognitive Changes Following Routine Soccer Heading. eBioMedicine 2016, 13, 66–71. [Google Scholar] [CrossRef]
- Lipton, M.L.; Kim, N.; Zimmerman, M.E.; Kim, M.; Stewart, W.F.; Branch, C.A.; Lipton, R.B. Soccer Heading Is Associated with White Matter Microstructural and Cognitive Abnormalities. Radiology 2013, 268, 850–857. [Google Scholar] [CrossRef]
- Rose, S.C.; Yeates, K.O.; Nguyen, J.T.; Ercole, P.M.; Pizzimenti, N.M.; McCarthy, M.T. Subconcussive Head Impacts and Neurocognitive Function Over 3 Seasons of Youth Football. J. Child Neurol. 2021, 36, 768–775. [Google Scholar] [CrossRef]
- Walter, A.E.; Wilkes, J.R.; Arnett, P.A.; Miller, S.J.; Sebastianelli, W.; Seidenberg, P.; Slobounov, S.M. The Accumulation of Subconcussive Impacts on Cognitive, Imaging, and Biomarker Outcomes in Child and College-Aged Athletes: A Systematic Review. Brain Imaging Behav. 2022, 16, 503–517. [Google Scholar] [CrossRef]
- Ferrara, M.; De Gennaro, L. The sleep inertia phenomenon during the sleep-wake transition: Theoretical and operational issues. Aviat. Space Environ. Med. 2000, 71, 843–848. [Google Scholar] [PubMed]
- Hilditch, C.J.; McHill, A.W. Sleep Inertia: Current Insights. Nat. Sci. Sleep 2019, 11, 155–165. [Google Scholar] [CrossRef]
- Davranche, K.; Audiffren, M.; Denjean, A. A Distributional Analysis of the Effect of Physical Exercise on a Choice Reaction Time Task. J. Sports Sci. 2006, 24, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The Effects of Acute Exercise on Cognitive Performance: A Meta-Analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef]
- Weber, A.F.; Mihalik, J.P.; Register-Mihalik, J.K.; Mays, S.; Prentice, W.E.; Guskiewicz, K.M. Dehydration and Performance on Clinical Concussion Measures in Collegiate Wrestlers. J. Athl. Train. 2013, 48, 153–160. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M.; Watson, P. Exercise, Heat, Hydration and the Brain. J. Am. Coll. Nutr. 2007, 26 (Suppl. S5), 604S–612S. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Zhu, T.; Zhong, J.; Janigro, D.; Rozen, E.; Roberts, A.; Javien, H.; Merchant-Borna, K.; Abar, B.; Blackman, E.G. Persistent, Long-Term Cerebral White Matter Changes after Sports-Related Repetitive Head Impacts. PLoS ONE 2014, 9, e94734. [Google Scholar] [CrossRef]
- McAllister, T.W.; Ford, J.C.; Flashman, L.A.; Maerlender, A.; Greenwald, R.M.; Beckwith, J.G.; Bolander, R.P.; Tosteson, T.D.; Turco, J.H.; Raman, R.; et al. Effect of Head Impacts on Diffusivity Measures in a Cohort of Collegiate Contact Sport Athletes. Neurology 2014, 82, 63–69. [Google Scholar] [CrossRef]
- Svaldi, D.O.; Joshi, C.; McCuen, E.C.; Music, J.P.; Hannemann, R.; Leverenz, L.J.; Nauman, E.A.; Talavage, T.M. Accumulation of High Magnitude Acceleration Events Predicts Cerebrovascular Reactivity Changes in Female High School Soccer Athletes. Brain Imaging Behav. 2020, 14, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Hakozaki, T.; Enoki, S.; Sakihama, S.; Ishimatsu, S.; Kuramochi, R. Oculomotor Response in Male Collegiate Pole Vaulters after Repeated Head Impact Due to Falls from Heights: A Pilot Longitudinal Study. J. Phys. Fit. Sports Med. 2021, 10, 213–218. [Google Scholar] [CrossRef]
- Kawata, K.; Tierney, R.; Phillips, J.; Jeka, J. Effect of Repetitive Sub-Concussive Head Impacts on Ocular Near Point of Convergence. Int. J. Sports Med. 2016, 37, 405–410. [Google Scholar] [CrossRef]
- Zonner, S.W.; Ejima, K.; Fulgar, C.C.; Charleston, C.N.; Huibregtse, M.E.; Bevilacqua, Z.W.; Kawata, K. Oculomotor Response to Cumulative Subconcussive Head Impacts in US High School Football Players: A Pilot Longitudinal Study. JAMA Ophthalmol. 2019, 137, 265. [Google Scholar] [CrossRef]
- Pearce, K.L.; Sufrinko, A.; Lau, B.C.; Henry, L.; Collins, M.W.; Kontos, A.P. Near Point of Convergence After a Sport-Related Concussion: Measurement Reliability and Relationship to Neurocognitive Impairment and Symptoms. Am. J. Sports Med. 2015, 43, 3055–3061. [Google Scholar] [CrossRef] [PubMed]
- Burma, J.S.; Copeland, P.V.; Macaulay, A.; Smirl, J.D. The Impact of High- and Moderate-Intensity Exercise on near-Point of Convergence Metrics. Brain Inj. 2021, 35, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Coon, S.; Bevilacqua, Z.W.; Ferris, M.; Chen, Z.; Kawata, K. Caution in Clinical Interpretation of Near Point of Convergence: Influence of Time of Day on Oculomotor Function. Athl. Train. Sports Health Care 2021, 13, 7–10. [Google Scholar] [CrossRef]
- Hirad, A.A.; Bazarian, J.J.; Merchant-Borna, K.; Garcea, F.E.; Heilbronner, S.; Paul, D.; Hintz, E.B.; Van Wijngaarden, E.; Schifitto, G.; Wright, D.W.; et al. A Common Neural Signature of Brain Injury in Concussion and Subconcussion. Sci. Adv. 2019, 5, eaau3460. [Google Scholar] [CrossRef]
- Terada, K. Comparison of Head Movement and EMG Activity of Muscles between Advanced and Novice Horseback Riders at Different Gaits. J. Equine Sci. 2000, 11, 83–90. [Google Scholar] [CrossRef]
- Williams, E.M.P.; Petrie, F.J.; Pennington, T.N.; Powell, D.R.L.; Arora, H.; Mackintosh, K.A.; Greybe, D.G. Sex Differences in Neck Strength and Head Impact Kinematics in University Rugby Union Players. Eur. J. Sport Sci. 2022, 22, 1649–1658. [Google Scholar] [CrossRef]
- Purushothaman, Y.; Yoganandan, N. Gender Differences in Cervical Spine Motions and Loads with Head Supported Mass Using Finite Element Models. J. Eng. Sci. Med. Diagn. Ther. 2022, 5, 041004. [Google Scholar] [CrossRef]
- Lavender, A.P.; Rawlings, S.; Warnock, A.; McGonigle, T.; Hiles-Murison, B.; Nesbit, M.; Lam, V.; Hackett, M.J.; Fitzgerald, M.; Takechi, R. Repeated Long-Term Sub-Concussion Impacts Induce Motor Dysfunction in Rats: A Potential Rodent Model. Front. Neurol. 2020, 11, 491. [Google Scholar] [CrossRef]
- Wright, F.; Docherty, P.D.; Williams, E.; Greybe, D.; Arora, H.; Kabaliuk, N. An In-Silico Study of the Effect of Non-Linear Skin Dynamics on Skin-Mounted Accelerometer Inference of Skull Motion. Biomed. Signal Process. Control 2021, 70, 102986. [Google Scholar] [CrossRef]
C | Mean ± SD | Maximum | Minimum |
---|---|---|---|
PRLA (g) | 5.82 ± 1.08 | 9.65 | 4.35 |
MRLA (g) | 1.02 ± 0.01 | 1.04 | 1.01 |
PRRV (rad/s) | 10.43 ± 3.23 | 24.43 | 3.21 |
MRRV (rad/s) | 0.85 ± 0.15 | 1.13 | 0.64 |
PRRA (rad/s2) | 1495.00 ± 532.75 | 3562.54 | 829.02 |
MRRA (rad/s2) | 86.58 ± 15.54 | 124.21 | 60.47 |
PLAD (ms) | 575.59 ± 62.68 | 737.8 | 453.33 |
MLAD (ms) | 127.04 ± 17.22 | 155.83 | 91.13 |
PRAD (ms) | 813.34 ± 160.89 | 1184.90 | 496.89 |
MRAD (ms) | 89.42 ± 19.74 | 127.46 | 50.24 |
Cumulative Metric | Mean ± SD | Maximum | Minimum |
---|---|---|---|
LAC | 26,830.29 ± 11,067.98 | 51,021.00 | 8976.00 |
LAC > 3 g | 739.00 ± 586.73 | 2385.00 | 88.00 |
LAC > 3 g min | 4.99 ± 3.19 | 12.32 | 0.92 |
RAC | 73,071.46 ± 34,844.49 | 187,585.00 | 19,188.00 |
RAC > 400 rad/s2 | 1013.80 ± 547.57 | 2638.00 | 168.00 |
RAC > 400 rad/s2/min | 7.42 ± 3.55 | 16.86 | 1.41 |
Metric | Overall Peak Value | Mean ± SD | ||||||
---|---|---|---|---|---|---|---|---|
J 1 (Female) | J 2 (Female) | J 3 (Male) | J 4 (Male) | J 1 (n = 12) | J 2 (n = 12) | J 3 (n = 3) | J 4 (n = 8) | |
PRLA (g) | 9.65 | 6.14 | 6.57 | 8.12 | 5.75 ± 1.35 | 5.35 ± 0.45 | 5.56 ± 0.91 | 6.71 ± 0.96 |
MRLA (g) | 1.03 | 1.03 | 1.02 | 1.02 | 1.03 ± 0.01 | 1.02 ± 0.00 | 1.02 ± 0.00 | 1.02 ± 0.01 |
PRRV (rad/s) | 24.43 | 11.33 | 13.13 | 14.79 | 11.85 ± 4.29 | 9.02 ± 1.46 | 9.99 ± 3.70 | 10.33 ± 2.79 |
MRRV (rad/s) | 1.12 | 0.88 | 0.69 | 0.82 | 1.03 ± 0.10 | 0.79 ± 0.07 | 0.67 ± 0.03 | 0.75 ± 0.06 |
PRRA (rad/s2) | 3563 | 1656 | 1715 | 2888 | 1636 ± 696 | 1313 ± 238 | 1300 ± 446 | 1631 ± 582 |
MRRA (rad/s2) | 124.2 | 93.52 | 66.81 | 89.87 | 102.3 ± 12.90 | 80.99 ± 7.79 | 65.10 ± 1.53 | 80.40 ± 6.74 |
PLAD (ms) | 720.9 | 737.8 | 559.1 | 613.3 | 613.1 ± 37.57 | 577.4 ± 73.49 | 543.1 ± 21.16 | 528.8 ± 53.65 |
MLAD (ms) | 155.8 | 140.4 | 1367.0 | 120.1 | 143.0 ± 11.47 | 121.3 ± 15.49 | 129.5 ± 7.09 | 110.7 ± 6.42 |
PRAD (ms) | 941.3 | 1185 | 974.2 | 889.8 | 839.0 ± 98.02 | 830.4 ± 239.56 | 866.4 ± 107.12 | 729.5 ± 79.31 |
MRAD (ms) | 127.5 | 123.6 | 97.99 | 89.84 | 99.81 ± 16.11 | 86.43 ± 25.73 | 93.18 ± 4.34 | 76.89 ± 73.71 |
LAC | 28,389 | 51,021 | 35,766 | 43,984 | 18,822 ± 6480 | 33,857 ± 10,542 | 24,402 ± 11,282 | 29,214 ± 10,697 |
LAC > 3 g | 998 | 2385 | 1038 | 1517 | 448.3 ± 261.7 | 1148 ± 726.9 | 609.6 ± 403.4 | 609.9 ± 479.0 |
LAC > 3 g/min | 12.32 | 10.57 | 7.62 | 6.64 | 4.78 ± 3.48 | 6.20 ± 3.59 | 4.76 ± 2.93 | 3.58 ± 1.67 |
RAC | 70,642 | 264,338 | 87,260 | 187,585 | 51,137 ± 14,679 | 96,894 ± 35,482 | 55,465 ± 29,141 | 76,842 ± 37,289 |
RAC > 400 rad/s2 | 2039 | 2638 | 883.0 | 2134 | 934.0 ± 441.1 | 1094 ± 609.2 | 515.0 ± 357.9 | 1201 ± 601.8 |
RAC > 400 rad/s2/min | 16.86 | 10.80 | 4.15 | 15.23 | 9.05 ± 3.35 | 6.01 ± 2.67 | 3.39 ± 0.96 | 8.61 ± 3.97 |
Metric | Time Period One (August ’22) | Time Period Two (March ’23) | Time Period Three (June ’23) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
J 1 | J 2 | J 3 | J 4 | Mean | J 1 | J 2 | J 3 | Mean | J 1 | J 2 | Mean | |
Time (min) | 71.44 | 171.1 | 139.7 | 104.2 | 121.6 | 137.9 | 202.0 | 198.8 | 179.6 | 105.7 | 177.2 | 141.4 |
PRLA (g) | 5.82 | 4.93 | 5.56 | 6.27 | 5.65 | 6.41 | 5.66 | 7.14 | 6.40 | 5.03 | 5.46 | 5.25 |
MRLA (g) | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.03 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 |
PRRV (rad/s) | 10.94 | 8.72 | 9.99 | 8.16 | 9.45 | 14.76 | 9.15 | 12.51 | 12.14 | 9.84 | 9.20 | 9.52 |
MRRV (rad/s) | 1.07 | 0.77 | 0.67 | 0.72 | 0.81 | 1.03 | 0.83 | 0.78 | 0.88 | 0.99 | 0.78 | 0.89 |
PRRA (rad/s2) | 1241 | 1141 | 1300 | 1238 | 1230 | 2000 | 1337 | 2025 | 1787 | 1668 | 1462 | 1565 |
MRRA (rad/s2) | 102.2 | 80.99 | 65.10 | 79.32 | 81.90 | 101.3 | 82.23 | 81.47 | 88.34 | 103.4 | 70.77 | 87.08 |
PLAD (ms) | 601.6 | 587.6 | 543.1 | 484.9 | 554.3 | 642.2 | 619.8 | 572.6 | 611.5 | 595.6 | 524.9 | 560.2 |
MLAD (ms) | 135.5 | 126.8 | 129.5 | 112.4 | 126.0 | 151.2 | 133.5 | 109.0 | 131.2 | 141.8 | 103.6 | 122.7 |
PRAD (ms) | 712.9 | 879.6 | 866.3 | 749.8 | 802.1 | 914.7 | 989.8 | 709.1 | 871.2 | 889.3 | 621.8 | 755.6 |
MRAD (ms) | 86.71 | 90.12 | 93.18 | 80.14 | 87.38 | 116.7 | 112.8 | 73.66 | 101.0 | 96.06 | 56.35 | 76.21 |
LAC | 12,774 | 30,868 | 24,402 | 20,610 | 22,163 | 25,732 | 31,950 | 37,818 | 31,834 | 17,960 | 38,753 | 28,356 |
LAC > 3 g | 553.5 | 372.5 | 609.6 | 235.8 | 442.8 | 625.3 | 1423.5 | 984.0 | 1010.9 | 166.0 | 1648.5 | 907.3 |
LAC > 3 g/min | 8.29 | 2.19 | 4.76 | 2.24 | 4.37 | 4.47 | 7.11 | 4.91 | 5.50 | 1.58 | 9.29 | 5.44 |
RAC | 40,722 | 82,919 | 90,752 | 47,319 | 65,428 | 59,201 | 72,912 | 106,366 | 79,493 | 53,488 | 134,852 | 94,170 |
RAC > 400 rad/s2 | 664.8 | 720.0 | 515.0 | 1108.0 | 751.9 | 907.0 | 925.0 | 1293.0 | 1041.7 | 1229.0 | 1636.3 | 1432.6 |
RAC > 400 rad/s2/min | 9.45 | 4.21 | 3.39 | 10.63 | 6.92 | 6.49 | 4.58 | 6.64 | 5.90 | 11.62 | 9.24 | 10.43 |
Cognitive Test Battery | Pre-Test | Post-Test | MD | 95% CI | Effect | ||||
---|---|---|---|---|---|---|---|---|---|
n = 35 | Mean | SD | Mean | SD | Lower | Upper | Hedges | ||
TMTB (s) | speed/error | 81.46 | 17.80 | 83.60 | 13.44 | 2.14 | −1.42 | 5.69 | 0.20 |
mean | 20.37 | 4.45 | 20.89 | 3.36 | 0.53 | −0.36 | 1.41 | 0.20 | |
Stroop Speed/Error (s) | combined | 21.61 | 2.95 | 22.12 | 5.66 | 0.50 | −1.50 | 2.50 | 0.08 |
congruent | 10.26 | 1.27 | 11.00 | 3.10 | 0.74 | −0.34 | 1.81 | 0.23 | |
incongruent | 11.45 | 2.92 | 11.06 | 3.04 | −0.39 | −1.68 | 0.89 | −0.10 | |
Stroop Reaction Time (s) | combined | 0.67 | 0.09 | 0.69 | 0.15 | 0.20 | −0.04 | 0.80 | 0.12 |
congruent | 0.64 | 0.08 | 0.69 | 0.16 | 0.05 | 0.01 | 0.10 | 0.30 | |
incongruent | 0.70 | 0.14 | 0.70 | 0.16 | 0.00 | −0.08 | 0.08 | 0.01 | |
Choice Reaction Time (s) | speed/error | 13.70 | 2.96 | 13.57 | 3.54 | −0.12 | −1.65 | 1.41 | −0.03 |
reaction time | 0.67 | 0.11 | 0.68 | 0.13 | 0.01 | −0.05 | 0.06 | 0.05 | |
Grooved Pegboard (s) | dominant | 57.04 | 5.33 | 55.72 | 4.63 | −1.31 | −3.49 | 0.85 | −0.20 |
non dominant | 63.64 | 5.80 | 60.89 | 5.64 | −2.75 | −4.65 | −0.85 | −0.50 | |
RAF Ruler (cm) | NPC | 11.74 | 2.69 | 13.37 | 3.63 | 1.63 | 1.16 | 2.11 | 1.15 |
NPA | 11.76 | 2.52 | 13.61 | 3.48 | 1.85 | 1.31 | 2.39 | 1.14 |
Metric | Current Study | Quintana et al. [19] | Mathers et al. [33] | Kuo et al. [47] | Miller et al. [12] | |||
---|---|---|---|---|---|---|---|---|
Overall Peak | Overall Mean ± SD | Race Riding | Simulated Riding | Bull Riding | Bare Riding | Rollercoaster | Daily Living | |
PRLA (g) | 9.65 | 5.82 ± 1.08 | 6.18 ± 4.12 | 2.44 ± 0.67 | 15.7 | 6.1 | 8 | 3.8 |
MRLA (g) | 1.04 | 1.02 ± 0.01 | 1.15 ± 0.08 | 1.02 ± 0.08 | ||||
PRRV (rad/s) | 24.43 | 10.37 ± 3.23 | 11.76 ± 13.10 | 4.88 ± 1.80 | 33.2 | 12 | 9.9 | 5 |
MRRV (rad/s) | 1.12 | 0.85 ± 0.15 | 0.99 ± 0.21 | 0.53 ± 0.15 | ||||
PRRA (rad/s2) | 3562.54 | 1495 ± 532.75 | 2129.4 | 1577.8 | 290 | 287 | ||
MRRA (rad/s2) | 124.21 | 86.58 ± 15.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, E.; Bond, B.; Holsgrove, T.P.; Hill, J.; Baker, R.; Williams, G.K.R. Stirred Not Shaken: A Longitudinal Pilot Study of Head Kinematics and Cognitive Changes in Horseracing. Vibration 2024, 7, 1171-1189. https://doi.org/10.3390/vibration7040060
Edwards E, Bond B, Holsgrove TP, Hill J, Baker R, Williams GKR. Stirred Not Shaken: A Longitudinal Pilot Study of Head Kinematics and Cognitive Changes in Horseracing. Vibration. 2024; 7(4):1171-1189. https://doi.org/10.3390/vibration7040060
Chicago/Turabian StyleEdwards, Emma, Bert Bond, Timothy P. Holsgrove, Jerry Hill, Ryan Baker, and Genevieve K. R. Williams. 2024. "Stirred Not Shaken: A Longitudinal Pilot Study of Head Kinematics and Cognitive Changes in Horseracing" Vibration 7, no. 4: 1171-1189. https://doi.org/10.3390/vibration7040060
APA StyleEdwards, E., Bond, B., Holsgrove, T. P., Hill, J., Baker, R., & Williams, G. K. R. (2024). Stirred Not Shaken: A Longitudinal Pilot Study of Head Kinematics and Cognitive Changes in Horseracing. Vibration, 7(4), 1171-1189. https://doi.org/10.3390/vibration7040060