Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches
Abstract
:1. Introduction
2. Material and Methods
2.1. Characterization of Three-Dimensional Cultures of Human Skin Keratinocytes (HaCat) and Human Dermal Fibroblasts (HDFa)
2.1.1. Three-Dimensional Culture Using the Agarose Coating Method
2.1.2. Diameter Determination
2.1.3. Cell Viability by the Resazurin Method
2.2. 2-Hydroxychalcone Dilution
2.3. Cytotoxicity in the Monolayer Model (2D)
2.4. Cytotoxicity in a Three-Dimensional (3D) Model
2.5. In Vivo Toxicity of 2-Hydroxychalcone in the Dark and Photoexcited
2.5.1. Alternative Model—C. elegans
2.5.2. Alternative Model—G. mellonella
2.6. Statistical Analysis
3. Results
3.1. Characterization of Three-Dimensional Models of Dermal Cells—Diameter and Viability
3.2. Evaluation of the Cytotoxicity of 2-Hydroxychalcone Mediated by Photodynamic Therapy (PDT) and in Dark Conditions, Using Monolayers and a Three-Dimensional Model with the HDFa and HaCat Cell Lines
3.3. In Vivo Toxicity Assay
3.3.1. Acute Toxicity in Caenorhabditis elegans
3.3.2. Toxicity in G. mellonella
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brannen, K.C.; Chapin, R.E.; Jacobs, A.C.; Green, M.L. Alternative Models of Developmental and Reproductive Toxicity in Pharmaceutical Risk Assessment and the 3Rs. ILAR J. 2016, 57, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, J.; Seidel, C.; Ebner, R.; Kunz-Schughart, L.A. Spheroid-based drug screen: Considerations and practical approach. Nat. Protoc. 2009, 4, 309–324. [Google Scholar] [CrossRef]
- Belfiore, L.; Aghaei, B.; Law, A.M.; Dobrowolski, J.C.; Raftery, L.J.; Tjandra, A.D.; Yee, C.; Piloni, A.; Volkerling, A.; Ferris, C.J.; et al. Generation and analysis of 3D cell culture models for drug discovery. Eur. J. Pharm. Sci. 2021, 163, 10587. [Google Scholar] [CrossRef]
- Doke, S.K.; Dhawale, S.C. Alternatives to animal testing: A review. Saudi. Pharm. J. 2015, 23, 223–229. [Google Scholar] [CrossRef]
- Grässer, U.; Bubel, M.; Sossong, D.; Oberringer, M.; Pohlemann, T.; Metzger, W. Dissociation of mono- and co-culture spheroids into single cells for subsequent flow cytometric analysis. Ann. Anat. 2018, 216, 1–8. [Google Scholar] [CrossRef]
- Freires, I.A.; Sardi, J.C.; de Castro, R.D.; Rosalen, P.L. Alternative Animal and Non-Animal Models for Drug Discovery and Development: Bonus or Burden? Pharm. Res. 2017, 34, 681–686. [Google Scholar] [CrossRef]
- Fusco-Almeida, A.M.; Silva, S.d.M.; dos Santos, K.S.; Gualque, M.W.d.L.; Vaso, C.O.; Carvalho, A.R.; Medina-Alarcón, K.P.; Pires, A.C.M.d.S.; Belizario, J.A.; Fernandes, L.d.S.; et al. Alternative Non-Mammalian Animal and Cellular Methods for the Study of Host–Fungal Interactions. J. Fungi 2023, 9, 943. [Google Scholar] [CrossRef]
- Venniro, M.; Caprioli, D.; Shaham, Y. Chapter 2—Animal models of drug relapse and craving: From drug priming-induced reinstatement to incubation of craving after voluntary abstinence. In Progress in Brain Research 224; Ekhtiari, H., Paulus, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 25–52. [Google Scholar]
- Szabo, M.; Akusjärvi, S.S.; Saxena, A.; Liu, J.; Chandrasekar, G.; Kitambi, S.S. Cell and small animal models for phenotypic drug discovery. Drug Des. Dev. Ther. 2017, 11, 1957–1967. [Google Scholar] [CrossRef]
- Cé, R.; Silva, R.C.; Trentin, D.S.; De Marchi, J.G.B.; Paese, K.; Guterres, S.S.; Macedo, A.J.; Pohlmann, A.R. Galleria mellonella Larvae as an In Vivo Model to Evaluate the Toxicity of Polymeric Nanocapsules. J. Nanosci. Nanotechnol. 2020, 20, 1486–1494. [Google Scholar] [CrossRef]
- Jemel, S.; Guillot, J.; Kallel, K.; Botterel, F.; Dannaoui, E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020, 8, 390. [Google Scholar] [CrossRef]
- Beydoun, S.; Choi, H.S.; Dela-Cruz, G.; Kruempel, J.; Huang, S.; Bazopoulou, D.; Miller, H.A.; Schaller, M.L.; Evans, C.R.; Leiser, S.F. An alternative food source for metabolism and longevity studies in Caenorhabditis elegans. Commun. Biol. 2021, 4, 258. [Google Scholar] [CrossRef] [PubMed]
- Scorzoni, L.; de Lucas, M.P.; Singulani, J.d.L.; de Oliveira, H.C.; Assato, P.A.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Evaluation of Caenorhabditis elegans as a host model for Paracoccidioides brasiliensis and Paracoccidioides lutzii. Pathog. Dis. 2018, 76, fty004. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; McCoy, C.P.; Li, P.; Li, Y.; Zhao, Y.; Andrews, G.P.; Wylie, M.P.; Ge, Y. Carbon Dots in Photodynamic/Photothermal Antimicrobial Therapy. Nanomaterials 2024, 14, 1250. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.-H.; Lee, C.-N.; Hsu, H.-W.; Ng, I.-S.; Wu, C.-J.; Yu, C.-K.; Lee, N.-Y.; Chang, Y.; Wong, T.-W. Recent Advances in Photodynamic Therapy against Fungal Keratitis. Pharmaceutics 2021, 13, 2011. [Google Scholar] [CrossRef]
- Daniell, M.D.; Hill, J.S. A History of Photodynamic Therapy. Aust. N. Z. J. Surg. 1991, 61, 340–348. [Google Scholar] [CrossRef]
- Warrier, V.; Kwong, A.S.F.; Luo, M.; Dalvie, S.; Croft, J.; Sallis, H.M.; Baldwin, J.; Munafò, M.R.; Nievergelt, C.M.; Grant, A.J.; et al. Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: A genetically informed approach. Lancet Psychiatry 2021, 8, 373–386. [Google Scholar] [CrossRef]
- Hoorelbeke, D.; Decrock, E.; Van Haver, V.; De Bock, M.; Leybaert, L. Calcium, a pivotal player in photodynamic therapy? Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1805–1814. [Google Scholar] [CrossRef]
- Bila, N.M.; Costa-Orlandi, C.B.; Vaso, C.O.; Bonatti, J.L.C.; de Assis, L.R.; Regasini, L.O.; Fontana, C.R.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. 2-Hydroxychalcone as a Potent Compound and Photosensitizer Against Dermatophyte Biofilms. Front. Cell. Infect. Microbiol. 2021, 11, 679470. [Google Scholar] [CrossRef]
- Melo, W.C.M.A.; Santos, M.B.D.; Marques, B.D.C.; Regasini, L.O.; Giannini, M.J.S.M.; Almeida, A.M.F. Selective photoinactivation of Histoplasma capsulatum by water-soluble derivatives chalcones. Photodiagnosis Photodyn. Ther. 2017, 18, 232–235. [Google Scholar] [CrossRef]
- World Health Organization. Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Das, A. Dermatophytosis: Newer Insights. Indian J. Dermatol. 2023, 68, 491. [Google Scholar] [CrossRef] [PubMed]
- Traversa, D.; Joachim, A. The 3Rs Concept: Time to Change How We Evaluate the Efficacy of Anthelmintics in Companion Animals. Trends Parasitol. 2018, 34, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Vaso, C.O.; Bila, N.M.; Pandolfi, F.; De Vita, D.; Bortolami, M.; Bonatti, J.L.C.; Silva, R.A.D.M.; Gonçalves, L.N.C.; Tudino, V.; Costi, R.; et al. Evaluation of the Anti-Histoplasma capsulatum Activity of Indole and Nitrofuran Derivatives and Their Pharmacological Safety in Three-Dimensional Cell Cultures. Pharmaceutics 2022, 14, 1043. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhang, Y.; Wang, J.; Yu, W.; Wang, W.; Ma, X. Monitoring of Cell Viability and Proliferation in Hydrogel-Encapsulated System by Resazurin Assay. Appl. Biochem. Biotechnol. 2010, 162, 1996–2007. [Google Scholar] [CrossRef]
- Zeraik, M.; Ximenes, V.; Regasini, L.; Dutra, L.; Silva, D.; Fonseca, L.; Coelho, D.; Machado, S.; Bolzani, V. 4’-Aminochalcones as novel inhibitors of the chlorinating activity of myeloperoxidase. Curr. Med. Chem. 2012, 19, 5405–5413. [Google Scholar] [CrossRef]
- Scorzoni, L.; de Lucas, M.P.; Mesa-Arango, A.C.; Fusco-Almeida, A.M.; Lozano, E.; Cuenca-Estrella, M.; Mendes-Giannini, M.J.; Zaragoza, O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS ONE 2013, 8, e60047. [Google Scholar] [CrossRef]
- Costa-Orlandi, C.B.; Serafim-Pinto, A.; da Silva, P.B.; Bila, N.M.; Bonatti, J.L.d.C.; Scorzoni, L.; Singulani, J.d.L.; dos Santos, C.T.; Nazaré, A.C.; Chorilli, M.; et al. Incorporation of Nonyl 3,4-Dihydroxybenzoate Into Nanostructured Lipid Systems: Effective Alternative for Maintaining Anti-Dermatophytic and Antibiofilm Activities and Reducing Toxicity at High Concentrations. Front. Microbiol. 2020, 11, 1154. [Google Scholar] [CrossRef]
- De Lacorte Singulani, J.; Galeane, M.C.; Ramos, M.D.; Gomes, P.C.; Dos Santos, C.T.; De Souza, B.M.; Palma, M.S.; Almeida, A.M.F.; Giannini, M.J.S.M. Antifungal Activity, Toxicity, and Membranolytic Action of a Mastoparan Analog Peptide. Front. Cell. Infect. Microbiol 2019, 9, 419. [Google Scholar] [CrossRef]
- De Figueiredo Freitas, L.S.; Rossoni, R.D.; Jorge, A.O.C.; Junqueira, J.C. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized. Lasers Med. Sci. 2017, 32, 549–555. [Google Scholar] [CrossRef]
- Mai NN, H.; Yamaguchi, Y.; Choijookhuu, N.; Matsumoto, J.; Nanashima, A.; Takagi, H. Photodynamic therapy using a novel phosphorus tetraphenylporphyrin induces an anticancer effect via Bax/Bcl-xL-related mitochondrial apoptosis in biliary cancer cells. Acta Histochem. Cytochem. 2020, 53, 61–72. [Google Scholar]
- Aebisher, D.; Szpara, J.; Bartusik-Aebisher, D. Advances in Medicine: Photodynamic Therapy. Int. J. Mol. Sci. 2024, 25, 8258. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Lou, X.; Zhang, Z.; Ingram, P.; Yoon, E. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures. Sci. Rep. 2015, 5, 12175. [Google Scholar] [CrossRef] [PubMed]
- Kunz-Schughart, L.; Kreutz, M.; Knuechel, R. Multicellular spheroids: A three dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 1998, 79, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.Z.; Chang, H.Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 2008, 3, 1172–1184. [Google Scholar] [CrossRef]
- Romero, F.J.; Zukowski, D.; Mueller-Klieser, W. Glutathione content of V79 cells in two- or three-dimensional culture. Am. J. Physiol. Cell Physiol. 1997, 272, C1507–C1512. [Google Scholar] [CrossRef]
- Save Cruelty-Free Cosmetics—Commit to a Europe without Animal Testing, 2023/C 290/01, 2023. Available online: https://citizens-initiative.europa.eu/sites/default/files/2023-08/09_Save%20Cruelty%20Free%20Cosmetics_2023_EN.pdf (accessed on 1 October 2024).
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front. Chem. 2021, 9, 691697. [Google Scholar] [CrossRef]
- Proctor, W.R.; Foster, A.J.; Vogt, J.; Summers, C.; Middleton, B.; Pilling, M.A.; Shienson, D.; Kijanska, M.; Ströbel, S.; Kelm, J.M.; et al. Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch. Toxicol. 2017, 91, 2849–2863. [Google Scholar] [CrossRef]
- Friedrich, J.; Eder, W.; Castaneda, J.; Doss, M.; Huber, E.; Ebner, R.; Kunz-Schughart, L.A. A reliable tool to determine cell viability in complex 3-d culture: The acid phosphatase assay. J. Biomol. Screen. 2007, 12, 925–937. [Google Scholar] [CrossRef]
- Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007, 127, 998–1008. [Google Scholar] [CrossRef]
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef]
- Coleman, J.J.; Okoli, I.; Tegos, G.P.; Holson, E.B.; Wagner, F.F.; Hamblin, M.R.; Mylonakis, E. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem. Biol. 2010, 5, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Bugyna, L.; Kendra, S.; Bujdáková, H. Galleria mellonella—A Model for the Study of aPDT—Prospects and Drawbacks. Microorganisms 2023, 11, 1455. [Google Scholar] [CrossRef] [PubMed]
- Marras, E.; Balacchi, C.J.; Orlandi, V.; Caruso, E.; Brivio, M.F.; Bolognese, F.; Mastore, M.; Malacarne, M.C.; Rossi, M.; Caruso, F.; et al. Ruthenium(II)-Arene Curcuminoid Complexes as Photosensitizer Agents for Antineoplastic and Antimicrobial Photodynamic Therapy: In Vitro and In Vivo Insights. Molecules 2023, 28, 7537. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bila, N.M.; Vaso, C.O.; Belizário, J.A.; Assis, L.R.; Regasini, L.O.; Fontana, C.R.; Fusco-Almeida, A.M.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.S. Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics 2024, 16, 1523. https://doi.org/10.3390/pharmaceutics16121523
Bila NM, Vaso CO, Belizário JA, Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Costa-Orlandi CB, Mendes-Giannini MJS. Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics. 2024; 16(12):1523. https://doi.org/10.3390/pharmaceutics16121523
Chicago/Turabian StyleBila, Níura Madalena, Carolina Orlando Vaso, Jenyffie Araújo Belizário, Letícia Ribeiro Assis, Luís Octávio Regasini, Carla Raquel Fontana, Ana Marisa Fusco-Almeida, Caroline Barcelos Costa-Orlandi, and Maria José Soares Mendes-Giannini. 2024. "Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches" Pharmaceutics 16, no. 12: 1523. https://doi.org/10.3390/pharmaceutics16121523
APA StyleBila, N. M., Vaso, C. O., Belizário, J. A., Assis, L. R., Regasini, L. O., Fontana, C. R., Fusco-Almeida, A. M., Costa-Orlandi, C. B., & Mendes-Giannini, M. J. S. (2024). Toxicological Assessment of 2-Hydroxychalcone-Mediated Photodynamic Therapy: Comparative In Vitro and In Vivo Approaches. Pharmaceutics, 16(12), 1523. https://doi.org/10.3390/pharmaceutics16121523