Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Zinc Oxide Nanoparticles
2.2. Characterization of ZnO NPs
2.2.1. X-ray Diffraction Analysis
2.2.2. Transmission Electron Microscopy
2.3. Preparation of ZnO NPs Suspension for Antimicrobial Activity
2.4. Isolation of Microbial Pathogens, Maintenace of Isolates and Standard Microbial Strains
2.5. Quantitative Biofilm Formation by Clinical Isolates
2.6. Biochemical and Molecular Identification and Antimicrobial Susceptibility Testing of Selected Strong-Biofilm Forming Clinical Isolates
2.7. Antimicrobial and Anti-Biofilm Effect of ZnO NPs
2.7.1. Determination of Minimum Inhibitory Concentration (MIC)
2.7.2. Effect of ZnO NPs on Growth and Biofilm Formation at Sub-MIC
2.8. Gamma Radiation-Induced Graft Copolymerization of AAc onto Silicone Rubber Polymer for Functionalization
2.9. Immobilization of ZnO NPs on SR-g-AAc
2.10. Characterization of the Modified Silicone Polymeric Material
2.10.1. Fourier Transform Infrared Spectroscopy
2.10.2. Scanning Electron Microscope and Energy Dispersive Spectroscopy Analysis
2.10.3. Thermogravimetric Analysis
2.11. Cytocompatibility Assay of SR-g-AAc-ZnO (Extract Dilution Cell Culture Assay)
2.12. Anti-Adherence Activity of the Irradiated and Non-Irradiated SR-g-AAc-ZnO against Biofilm Producing Isolates
Scanning Electron Microscope Analysis
2.13. Effect of SR-g-AAc-ZnO Surface on Adhered Pseudomonas aeruginosa Isolate Differential Gene Expression of Biofilm-Associated Genes
2.14. Statistical Analysis
3. Results
3.1. Characterization of the Synthesized ZnO NPs
3.1.1. X-ray Diffraction Analysis
3.1.2. Transmission Electron Microscopy
3.2. Microbial Isolation, Biofilm Detection, Identification, and Sensitivity of Strong Biofilm Clinical Isolates
3.3. Effect of ZnO NPs on Growth and Biofilm formation by Selected Clinical Isolates
3.3.1. Determination of Minimum Inhibitory Concentration of ZnO NPs
3.3.2. Determination of the Effect of ZnO NPs on Biofilm Formation at Sub-MIC
3.4. Optimization Factors Affecting Radiation-Induced Graft Copolymerization of AAc on Silicone Catheter Segments
3.5. Characterization of SR-g-AAc Silicone Catheter
3.6. Characterization of SR-g-AAc-ZnO Silicone Catheter
3.6.1. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
3.6.2. Energy Dispersive X-ray Spectroscopy (EDX) Analysis
3.7. Thermogravimetric Analysis
3.8. Cytocompatibility Assay for SR-g-AAc-ZnO
3.9. Anti-Adherence Activity of the Irradiated and Non-Irradiated SR-g-AAc-ZnO against Biofilm Producing Isolates
Scanning Electron Microscope Analysis
3.10. Effect of SR-g-AAc-ZnO on Gene Expression of Biofilm-Associated Genes in P. aeruginosa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, M.; Sartelli, M.; McKimm, J.; Bakar, M.A. Health care-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321. [Google Scholar] [CrossRef] [Green Version]
- VanEpps, J.S.; Younger, J.G. Implantable device related infection. Shock 2016, 46, 597. [Google Scholar] [CrossRef] [Green Version]
- Mahamuni, P.P.; Patil, P.M.; Dhanavade, M.J.; Badiger, M.V.; Shadija, P.G.; Lokhande, A.C.; Bohara, R.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 2019, 17, 71–80. [Google Scholar] [CrossRef]
- Lv, X.; Wang, L.; Mei, A.; Xu, Y.; Ruan, X.; Wang, W.; Shao, J.; Yang, D.; Dong, X. Recent Nanotechnologies to Overcome the Bacterial Biofilm Matrix Barriers. Small 2022, 19, 2206220. [Google Scholar] [CrossRef]
- Shakibaie, M.; Forootanfar, H.; Golkari, Y.; Mohammadi-Khorsand, T.; Shakibaie, M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol. 2015, 29, 235–241. [Google Scholar] [CrossRef]
- Martinez-Gutierrez, F.; Boegli, L.; Agostinho, A.; Sánchez, E.M.; Bach, H.; Ruiz, F.; James, G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 2013, 29, 651–660. [Google Scholar] [CrossRef]
- Applerot, G.; Lellouche, J.; Perkas, N.; Nitzan, Y.; Gedanken, A.; Banin, E. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv. 2012, 2, 2314–2321. [Google Scholar] [CrossRef]
- Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. J. Med. Microbiol. 2015, 64, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Cabana, S.; Lecona-Vargas, C.S.; Meléndez-Ortiz, H.I.; Contreras-García, A.; Barbosa, S.; Taboada, P.; Magariños, B.; Bucio, E.; Concheiro, A.; Alvarez-Lorenzo, C. Silicone rubber films functionalized with poly(acrylic acid) nanobrushes for immobilization of gold nanoparticles and photothermal therapy. J. Drug Deliv. Sci. Technol. 2017, 42, 245–254. [Google Scholar] [CrossRef]
- Hu, Y.; Ruan, X.; Lv, X.; Xu, Y.; Wang, W.; Cai, Y.; Ding, M.; Dong, H.; Shao, J.; Yang, D. Biofilm microenvironment-responsive nanoparticles for the treatment of bacterial infection. Nano Today 2022, 46, 101602. [Google Scholar] [CrossRef]
- Franco, D.; Calabrese, G.; Guglielmino, S.P.P.; Conoci, S. Metal-based nanoparticles: Antibacterial mechanisms and biomedical application. Microorganisms 2022, 10, 1778. [Google Scholar] [CrossRef]
- da Silva, B.L.; Abuçafy, M.P.; Manaia, E.B.; Junior, J.A.O.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomed. 2019, 14, 9395. [Google Scholar] [CrossRef] [Green Version]
- Eshed, M.; Lellouche, J.; Matalon, S.; Gedanken, A.; Banin, E. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 2012, 28, 12288–12295. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int. Nano Lett. 2014, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Suzuki, K.; Koizumi, S. Gene expression profile in human cells exposed to zinc. J. Toxicol. Sci. 2007, 32, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Sultan, A.; Khan, H.M.; Malik, A.; Ansari, A.; Azam, A.; Perween, N. Antibacterial activity of ZnO nanoparticles against ESBL and Amp-C producing gram negative isolates from superficial wound infections. Int. J. Curr. Microbiol. App. Sci 2015, 1, 38–47. [Google Scholar]
- Wang, C.; Liu, L.-L.; Zhang, A.-T.; Xie, P.; Lu, J.-J.; Zou, X.-T. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88. Afr. J. Biotechnol. 2012, 11, 10248–10254. [Google Scholar]
- Jesline, A.; John, N.P.; Narayanan, P.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl. Nanosci. 2015, 5, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Reddy, L.S.; Nisha, M.M.; Joice, M.; Shilpa, P. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm. Biol. 2014, 52, 1388–1397. [Google Scholar] [CrossRef]
- Pasquet, J.; Chevalier, Y.; Couval, E.; Bouvier, D.; Noizet, G.; Morliere, C.; Bolzinger, M.A. Antimicrobial activity of zinc oxide particles on five micro-organisms of the Challenge Tests related to their physicochemical properties. Int. J. Pharm. 2014, 460, 92–100. [Google Scholar] [CrossRef]
- Farzana, R.; Iqra, P.; Shafaq, F.; Sumaira, S.; Zakia, K.; Hunaiza, T.; Husna, M. Antimicrobial Behavior of Zinc Oxide Nanoparticles and ÃŽà ‚²-Lactam Antibiotics against Pathogenic Bacteria. Arch. Clin. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 2008, 24, 4140–4144. [Google Scholar] [CrossRef]
- Pasquet, J.; Chevalier, Y.; Couval, E.; Bouvier, D.; Bolzinger, M.-A. Zinc oxide as a new antimicrobial preservative of topical products: Interactions with common formulation ingredients. Int. J. Pharm. 2015, 479, 88–95. [Google Scholar] [CrossRef]
- Dwivedi, S.; Wahab, R.; Khan, F.; Mishra, Y.K.; Musarrat, J.; Al-Khedhairy, A.A. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 2014, 9, e111289. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef] [Green Version]
- Kaur, T.; Putatunda, C.; Vyas, A.; Kumar, G. Zinc oxide nanoparticles inhibit bacterial biofilm formation via altering cell membrane permeability. Prep. Biochem. Biotechnol. 2021, 51, 309–319. [Google Scholar] [CrossRef]
- Abbasi, F.; Mirzadeh, H.; Katbab, A.A. Modification of polysiloxane polymers for biomedical applications: A review. Polym. Int. 2001, 50, 1279–1287. [Google Scholar] [CrossRef]
- Lippens, E.; De Smet, N.; Schauvliege, S.; Martens, A.; Gasthuys, F.; Schacht, E.; Cornelissen, R. Biocompatibility properties of surface-modified poly (dimethylsiloxane) for urinary applications. J. Biomater. Appl. 2013, 27, 651–660. [Google Scholar] [CrossRef]
- Hu, S.-G.; Jou, C.-H.; Yang, M.-C. Biocompatibility and antibacterial activity of chitosan and collagen immobilized poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid). Carbohydr. Polym. 2004, 58, 173–179. [Google Scholar] [CrossRef]
- Fisher, L.E.; Hook, A.L.; Ashraf, W.; Yousef, A.; Barrett, D.A.; Scurr, D.J.; Chen, X.; Smith, E.F.; Fay, M.; Parmenter, C.D.J.; et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. J. Control. Release 2015, 202, 57–64. [Google Scholar] [CrossRef]
- Okada, T.; Ikada, Y. Modification of silicone surface by graft polymerization of acrylamide with corona discharge. Die Makromol. Chem. Macromol. Chem. Phys. 1991, 192, 1705–1713. [Google Scholar] [CrossRef]
- Vázquez-González, B.; Meléndez-Ortiz, H.I.; Díaz-Gómez, L.; Alvarez-Lorenzo, C.; Concheiro, A.; Bucio, E. Silicone Rubber Modified with Methacrylic Acid to Host Antiseptic Drugs. Macromol. Mater. Eng. 2014, 299, 1240–1250. [Google Scholar] [CrossRef]
- Costoya, A.; Becerra, L.E.V.; Meléndez-Ortiz, H.I.; Díaz-Gómez, L.; Mayer, C.; Otero, A.; Concheiro, A.; Bucio, E.; Alvarez-Lorenzo, C. Immobilization of antimicrobial and anti-quorum sensing enzymes onto GMA-grafted poly (vinyl chloride) catheters. Int. J. Pharm. 2019, 558, 72–81. [Google Scholar] [CrossRef]
- López-Saucedo, F.; Flores-Rojas, G.G.; López-Saucedo, J.; Magariños, B.; Alvarez-Lorenzo, C.; Concheiro, A.; Bucio, E. Antimicrobial silver-loaded polypropylene sutures modified by radiation-grafting. Eur. Polym. J. 2018, 100, 290–297. [Google Scholar] [CrossRef]
- Li, Y.n.; Sun, Y.; Deng, X.h.; Yang, Q.; Bai, Z.y.; Xu, Z.b. Graft polymerization of acrylic acid onto polyphenylene sulfide nonwoven initiated by low temperature plasma. J. Appl. Polym. Sci. 2006, 102, 5884–5889. [Google Scholar] [CrossRef]
- Melendez-Ortiz, H.I.; Díaz-Rodríguez, P.; Alvarez-Lorenzo, C.; Concheiro, A.; Bucio, E. Binary graft modification of polypropylene for anti-inflammatory drug–device combo products. J. Pharm. Sci. 2014, 103, 1269–1277. [Google Scholar] [CrossRef]
- Arunbabu, D.; Shahsavan, H.; Zhang, W.; Zhao, B. Poly (AAc-co-MBA) hydrogel films: Adhesive and mechanical properties in aqueous medium. J. Phys. Chem. B 2013, 117, 441–449. [Google Scholar] [CrossRef]
- Wan Ishak, W.H.; Yong Jia, O.; Ahmad, I. pH-Responsive Gamma-Irradiated Poly(Acrylic Acid)-Cellulose-Nanocrystal-Reinforced Hydrogels. Polymers 2020, 12, 1932. [Google Scholar] [CrossRef]
- Lazo, L.M.; Burillo, G. Novel comb-type hydrogels of net-[PP-g-AAc]-g-4VP synthesized by gamma radiation, with possible application on Cu2+ immobilization. Radiat. Phys. Chem. 2010, 79, 1–8. [Google Scholar] [CrossRef]
- Cao, D.; Gong, S.; Shu, X.; Zhu, D.; Liang, S. Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process. Nanoscale Res. Lett. 2019, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, P.; Wilson, W.S.; Abraham, A.T.; Sevanan, M. Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoScience 2012, 2, 329–335. [Google Scholar] [CrossRef]
- Farrag, H.A.A.; Al Zahraa, A.; El-Din, K.; El-Sayed, Z.G.M.; Kamal, M.M. Adherence of Irradiated Slime Producing Bacterial Pathogens to Biomaterial Surface and their Antimicrobial Susceptibility Associated with Catheter Infection in Bladder Cancer Patients. Br. J. Pharm. Res. 2014, 4, 1604–1628. [Google Scholar] [CrossRef]
- Christensen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E.H. Adherence of Coagulase-Negative Staphylococci to Plastic Tissue Culture Plates: A Quantitative Model for the Adherence of Staphylococci to Medical Devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- Stepanović, S.; Vuković, D.; Hola, V.; BONAVENTURA, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- bioMérieux. Vitek 2 Product Information, Document 510769-4EN1; bioMérieux Inc.: Durham, NC, USA, 2006. [Google Scholar]
- Wayne, P. Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st ed.; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2021. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Ahmed, J.; Gul, A.; Ikram, A.; Lalani, F.K. Antifungal susceptibility testing of vulvovaginal Candida species among women attending antenatal clinic in tertiary care hospitals of Peshawar. Infect. Drug Resist. 2018, 11, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, I.M.; Abdeltawab, N.F.; Ragab, Y.M.; Farag, M.A.; Ramadan, M.A. Biodegradation, decolorization, and detoxification of di-azo dye direct Red 81 by halotolerant, alkali-thermo-tolerant bacterial mixed cultures. Microorganisms 2022, 10, 994. [Google Scholar] [CrossRef] [PubMed]
- Wikler, M.A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. CLSI 2006, 26, M7–A7. [Google Scholar]
- Hassani Sangani, M.; Nakhaei Moghaddam, M.; Forghanifard, M.M. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed. J. 2015, 2, 121–128. [Google Scholar]
- Christena, L.R.; Mangalagowri, V.; Pradheeba, P.; Ahmed, K.B.A.; Shalini, B.I.S.; Vidyalakshmi, M.; Anbazhagan, V. Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. Rsc Adv. 2015, 5, 12899–12909. [Google Scholar] [CrossRef]
- Velazco-Medel, M.A.; Camacho-Cruz, L.A.; Bucio, E. Modification of PDMS with acrylic acid and acrylic acid/ethylene glycol dimethacrylate by simultaneous polymerization assisted by gamma radiation. Radiat. Phys. Chem. 2020, 171, 108754. [Google Scholar] [CrossRef]
- Pino-Ramos, V.H.; Alvarez-Lorenzo, C.; Concheiro, A.; Bucio, E. One-step grafting of temperature-and pH-sensitive (N-vinylcaprolactam-co-4-vinylpyridine) onto silicone rubber for drug delivery. Des. Monomers Polym. 2017, 20, 33–41. [Google Scholar] [CrossRef] [Green Version]
- D’Água, R.B.; Branquinho, R.; Duarte, M.P.; Maurício, E.; Fernando, A.L.; Martins, R.; Fortunato, E. Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost in situ synthesis. New J. Chem. 2018, 42, 1052–1060. [Google Scholar]
- Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A.; Nofal, S.M.; Khalifa, A.E.; Mosli, H.A.; Abdel-Naim, A.B. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett. 2018, 291, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Orellana, E.A.; Kasinski, A.L. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio-Protocol 2016, 6, e1984. [Google Scholar] [CrossRef] [Green Version]
- Nahum, Y.; Israeli, R.; Mircus, G.; Perelshtein, I.; Ehrenberg, M.; Gutfreund, S.; Gedanken, A.; Bahar, I. Antibacterial and physical properties of a novel sonochemical-assisted Zn-CuO contact lens nanocoating. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 95–100. [Google Scholar] [CrossRef]
- Wang, Q.; Webster, T.J. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J. Biomed. Mater. Res. Part A 2012, 100, 3205–3210. [Google Scholar] [CrossRef]
- Miles, A.A.; Misra, S.; Irwin, J. The estimation of the bactericidal power of the blood. Epidemiol. Infect. 1938, 38, 732–749. [Google Scholar] [CrossRef] [Green Version]
- Storti, A.; Pizzolitto, A.C.; Pizzolitto, E.L. Detection of mixed microbial biofilms on central venous catheters removed from intensive care unit patients. Braz. J. Microbiol. 2005, 36, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Biosystems, A. Guide to performing relative quantitation of gene expression using real-time quantitative PCR. Appl. Biosyst. 2004, 1–70. [Google Scholar]
- Yang, Y.X.; Xu, Z.H.; Zhang, Y.Q.; Tian, J.; Weng, L.X.; Wang, L.H. A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J. Microbiol. 2012, 50, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Dosunmu, E.; Chaudhari, A.A.; Singh, S.R.; Dennis, V.A.; Pillai, S.R. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: A potential mechanism for their antimicrobial effect. Int. J. Nanomed. 2015, 10, 5025–5034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colvin, K.M.; Irie, Y.; Tart, C.S.; Urbano, R.; Whitney, J.C.; Ryder, C.; Howell, P.L.; Wozniak, D.J.; Parsek, M.R. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 2012, 14, 1913–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Salman, J.A.; Marjani, M.; Abdulrazaq, R.; Kamil, I.; Kamil, N. Antibiofilm effect of iron oxide nanoparticles synthesized by lactobacillus fermentum on catheter. World J. Pharm. Res. 2015, 4, 317–328. [Google Scholar]
- Lellouche, J.; Friedman, A.; Lahmi, R.; Gedanken, A.; Banin, E. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int. J. Nanomed. 2012, 7, 1175–1188. [Google Scholar]
- Martinaga Pintarić, L.; Somogi Škoc, M.; Ljoljić Bilić, V.; Pokrovac, I.; Kosalec, I.; Rezić, I. Synthesis, modification and characterization of antimicrobial textile surface containing ZnO nanoparticles. Polymers 2020, 12, 1210. [Google Scholar] [CrossRef]
- Liao, H.-G.; Cui, L.; Whitelam, S.; Zheng, H. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014. [Google Scholar] [CrossRef] [Green Version]
- Mayekar, J.; Dhar, V.; Radha, S. Role of salt precursor in the synthesis of zinc oxide nanoparticles. Int. J. Res. Eng. Technol. 2014, 3, 43–45. [Google Scholar]
- Šarić, A.; Štefanić, G.; Dražić, G.; Gotić, M. Solvothermal synthesis of zinc oxide microspheres. J. Alloy Compd. 2015, 652, 91–99. [Google Scholar] [CrossRef]
- Manyasree, D.; Kiranmayi, P.; Venkata, R.K. Characterization and antibacterial activity of ZnO nanoparticles synthesized by co-precipitation method. Int. J. Appl. Pharm. 2018, 10, 224–228. [Google Scholar]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury. Adv. Funct. Mater. 2009, 19, 842–852. [Google Scholar] [CrossRef]
- Matsumura, Y.; Yoshikata, K.; Kunisaki, S.-i.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003, 69, 4278–4281. [Google Scholar] [CrossRef] [Green Version]
- Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 1195–1208. [Google Scholar] [CrossRef]
- Nazoori, E.S.; Kariminik, A. In vitro evaluation of antibacterial properties of zinc oxide nanoparticles on pathogenic prokaryotes. J. Appl. Biotechnol. Rep. 2018, 5, 162–165. [Google Scholar] [CrossRef]
- Magaña, H.; Becerra, C.D.; Serrano-Medina, A.; Palomino, K.; Palomino-Vizcaíno, G.; Olivas-Sarabia, A.; Bucio, E.; Cornejo-Bravo, J.M. Radiation Grafting of a Polymeric Prodrug onto Silicone Rubber for Potential Medical/Surgical Procedures. Polymers 2020, 12, 1297. [Google Scholar] [CrossRef]
- Keshvari, H.; Ourang, F.; Mirzadeh, H.; Khorasani, M.; Mansouri, P. Collagen immobilization onto acrylic acid laser-grafted silicone for using as artificial skin: In vitro. Iran. Polym. J. 2008, 17, 171–182. [Google Scholar]
- Romero-Fierro, D.; Camacho-Cruz, L.; Bustamante-Torres, M.; Hidalgo-Bonilla, S.; Bucio, E. Modification of cotton gauzes with poly (acrylic acid) and poly (methacrylic acid) using gamma radiation for drug loading studies. Radiat. Phys. Chem. 2022, 190, 109787. [Google Scholar] [CrossRef]
- Arkaban, H.; Barani, M.; Akbarizadeh, M.R.; Pal Singh Chauhan, N.; Jadoun, S.; Dehghani Soltani, M.; Zarrintaj, P. Polyacrylic acid nanoplatforms: Antimicrobial, tissue engineering, and cancer theranostic applications. Polymers 2022, 14, 1259. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Wang, Z.; Sun, L.; Li, B.; Zhao, Y. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities. Mater. Sci. Eng. C 2014, 41, 249–254. [Google Scholar] [CrossRef]
- Shaik, M.R.; Kuniyil, M.; Khan, M.; Ahmad, N.; Al-Warthan, A.; Siddiqui, M.R.H.; Adil, S.F. Modified polyacrylic acid-zinc composites: Synthesis, characterization and biological activity. Molecules 2016, 21, 292. [Google Scholar] [CrossRef] [Green Version]
- Raczkowska, J.; Stetsyshyn, Y.; Awsiuk, K.; Brzychczy-Włoch, M.; Gosiewski, T.; Jany, B.; Lishchynskyi, O.; Shymborska, Y.; Nastyshyn, S.; Bernasik, A. “Command” surfaces with thermo-switchable antibacterial activity. Mater. Sci. Eng. C 2019, 103, 109806. [Google Scholar] [CrossRef]
- Nastyshyn, S.; Raczkowska, J.; Stetsyshyn, Y.; Orzechowska, B.; Bernasik, A.; Shymborska, Y.; Brzychczy-Włoch, M.; Gosiewski, T.; Lishchynskyi, O.; Ohar, H. Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv. 2020, 10, 10155–10166. [Google Scholar] [CrossRef]
- Ellerbrock, R.H.; Gerke, H.H. FTIR spectral band shifts explained by OM–cation interactions. J. Plant Nutr. Soil Sci. 2021, 184, 388–397. [Google Scholar] [CrossRef]
- Yang, J.S.; Hsiue, G.H. Synthesis of acrylic acid grafted silicone rubber via preirradiation graft copolymerization and its physical and dielectric properties. J. Appl. Polym. Sci. 1996, 61, 221–229. [Google Scholar] [CrossRef]
- Datsyuk, V.; Billon, L.; Guerret-Piécourt, C.; Dagréou, S.; Passade-Boupatt, N.; Bourrigaud, S.; Guerret, O.; Couvreur, L. In situ nitroxide-mediated polymerized poly (acrylic acid) as a stabilizer/compatibilizer carbon nanotube/polymer composites. J. Nanomater. 2007, 2007, 074769. [Google Scholar] [CrossRef] [Green Version]
- Shalom, Y.; Perelshtein, I.; Perkas, N.; Gedanken, A.; Banin, E. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Res. 2017, 10, 520–533. [Google Scholar] [CrossRef]
- Nejadnik, M.R.; van der Mei, H.C.; Busscher, H.J.; Norde, W. Determination of the shear force at the balance between bacterial attachment and detachment in weak-adherence systems, using a flow displacement chamber. Appl. Environ. Microbiol. 2008, 74, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán-Ladero, M.Á.; Blanco-Blanco, M.T.; Fernández-Calderón, M.C.; Lucio, L.; Gutiérrez-Martín, Y.; Blanco, M.T.; Pérez-Giraldo, C. Candida tropicalis biofilm formation and expression levels of the CTRG ALS-like genes in sessile cells. Yeast 2019, 36, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anbalagan, A.K.; Gupta, S.; Kumar, A.; Haw, S.-C.; Kulkarni, S.S.; Tai, N.-H.; Tseng, F.-G.; Hwang, K.C.; Lee, C.-H. Gamma ray irradiation enhances the linkage of cotton fabrics coated with ZnO nanoparticles. ACS Omega 2020, 5, 15129–15135. [Google Scholar] [CrossRef]
- Rumbaugh, K.P.; Griswold, J.A.; Hamood, A.N. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect. 2000, 2, 1721–1731. [Google Scholar] [CrossRef]
- Saleh, M.M.; Refat, A.S.; Latif, H.K.A.; Abbas, H.A.; Askoura, M. Zinc oxide nanoparticles inhibits quorum sensing and virulence in Pseudomonas aeruginosa. Afr. Health Sci. 2019, 19, 2043–2055. [Google Scholar] [CrossRef] [Green Version]
- Abdelraheem, W.M.; Mohamed, E.S. The effect of zinc oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression. J. Infect. Dev. Ctries. 2021, 15, 826–832. [Google Scholar] [CrossRef]
- García-Lara, B.; Saucedo-Mora, M.; Roldán-Sánchez, J.; Pérez-Eretza, B.; Ramasamy, M.; Lee, J.; Coria-Jimenez, R.; Tapia, M.; Varela-Guerrero, V.; García-Contreras, R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett. Appl. Microbiol. 2015, 61, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.G.; Cho, M.H.; Lee, J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Res. 2014, 169, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.R.; Singh, B.N.; Singh, A.; Khan, W.; Naqvi, A.H.; Singh, H.B. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci. Rep. 2015, 5, 13719. [Google Scholar] [CrossRef] [Green Version]
Gene | Gene ID | Sequence (5’-3’) | Reference | |
---|---|---|---|---|
House-keeping gene | 30S ribosomal protein S12 (rpsL) | 881709 | AACTCGGCACTGCGTAAG | This study |
TGTGCTCTTGCAGGTTGT | ||||
Quorum-sensing associated genes | Transcriptional regulator LasR (lasR) | 881789 | CTGTGGATGCTCAAGGACTAC | This study |
CCACTGCAACACTTCCTTCT | ||||
Acyl-homoserine-lactone synthase (lasI) | 881777 | GGCTGGGACGTTAGTGTCAT | [66] | |
AAAACCTGGGCTTCAGGAGT | ||||
Transcriptional regulator RhlR (rhlR) | 878968 | GGCTTCGATTACTACGCCTATG | This study | |
CCGTAGTTCTGCATCTGGTATC | ||||
Acyl-homoserine-lactone synthase (rhlI) | 878967 | GCAGCTGGCGATGAAGATA | This study | |
GCCGTTGCGAACGAAATAG | ||||
Adhesion factors associated genes | PA-I galactophilic lectin (lecA) | 882335 | CACCATTGTGTTTCCTGGCGTTCA | [67] |
AGAAGGCAACGTCGACTCGTTGAT | ||||
Fucose-binding lectin PA-IIL (lecB) | 882528 | AGACAGCGTAACAATCGAACGAGC | [67] | |
AGGACGCATCGTTCAGCCAATCTA | ||||
Exopolysaccharide-associated genes | Hypothetical protein PA3064 (pelA) | 878833 | CCTTCAGCCATCCGTTCTTCT | [68] |
TCGCGTACGAAGTCGACCTT | ||||
Biofilm formation protein PslA (pslA) | 879717 | TGATCTTCTGGTTCACCGGC | This study | |
GGTACATGCCGCGTTTCATC | ||||
Phosphomannomutase (algC) | 879406 | GGCAGATCCGTTGTTCCAGA | This study | |
TCATGATGGGGGTTTGCTCC |
Clinical Isolate Number | Identification | % Identity | Query Coverage | e-Value | Accession No. |
---|---|---|---|---|---|
#26 | Pseudomonas aeruginosa DSM 50071 | 99.23% | 98% | 0.0 | NR117678.1 |
#36 | Escherichia coli NBRC 102203 | 95.38% | 100% | 1 × 10−73 | NR114042.1 |
#56 | Alcaligenes faecalis NBRC 13111 | 97.85% | 100% | 0.0 | NR113606.1 |
#55 | Klebsiella pneumonia DSM 30104 | 99.53% | 100% | 0.0 | NR117683.1 |
#35 | Staphylococcus aureus S33 R | 99.66% | 100% | 0.0 | NR037007.2 |
#06 | Candida tropicalis YDP38 | 100% | 100% | 0.0 | MT341912.1 |
Microbe | MIC of ZnO NPs (mg/mL) | |
---|---|---|
Clinical Isolates | P. aeruginosa | 16 |
K. pneumoniae | 1.0 | |
E. coli | 0.5 | |
A. faecalis | 1.0 | |
S. aureus | 0.25 | |
C. tropicalis | 8.0 | |
Standard Strains | P. aeruginosa (PAO1) | 16.0 |
K. pneumoniae (2S11122) | 0.25 | |
E. coli (K12MG1655) | 1.0 | |
S. aureus (MRSA—N315) | 2.0 | |
S. aureus (MSSA—RN6319) | 0.25 |
Extract Name | Mean OD ± SD (540 nm) | Cell Viability % |
---|---|---|
Extract of SR | 1.724 ± 0.009 | 99.36 |
Extract of SR-g-AA-ZnO | 1.713 ± 0.020 | 98.71 |
Two-fold diluted extract of SR-g-AA-ZnO (1:2) | 1.729 ± 0.003 | 99.63 |
Four-fold diluted of extract of SR-g-AA-ZnO (1:4) | 1.720 ± 0.009 | 99.13 |
Negative control | 1.740 ± 0.041 | 100 |
Segment Used | Average Viable Count (log CFU/Segment ± SD) 1 | |||
---|---|---|---|---|
Microbial Isolate | SR | Non-Irradiated SR-g-AAc-ZnO | Irradiated SR-g-AAc-ZnO | |
P. aeruginosa | 4.5 ± 0.20 | - 2 | - | |
K. pneumonia | 4.7 ± 0.10 | 3.4 ± 0.10 | 2.0 ± 0.04 | |
E. coli | 3.0 ± 0.00 | - | - | |
A. faecalis | 3.5 ± 0.02 | 2.9 ± 0.05 | 2.9 ± 0.02 | |
S. aureus | 4.7 ± 0.10 | - | - | |
C. tropicalis | 4.6 ± 0.25 | 4.2 ± 0.06 | 4.1 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elzahaby, D.A.; Farrag, H.A.; Haikal, R.R.; Alkordi, M.H.; Abdeltawab, N.F.; Ramadan, M.A. Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation. Microorganisms 2023, 11, 913. https://doi.org/10.3390/microorganisms11040913
Elzahaby DA, Farrag HA, Haikal RR, Alkordi MH, Abdeltawab NF, Ramadan MA. Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation. Microorganisms. 2023; 11(4):913. https://doi.org/10.3390/microorganisms11040913
Chicago/Turabian StyleElzahaby, Dalia A., Hala A. Farrag, Rana R. Haikal, Mohamed H. Alkordi, Nourtan F. Abdeltawab, and Mohammed A. Ramadan. 2023. "Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation" Microorganisms 11, no. 4: 913. https://doi.org/10.3390/microorganisms11040913
APA StyleElzahaby, D. A., Farrag, H. A., Haikal, R. R., Alkordi, M. H., Abdeltawab, N. F., & Ramadan, M. A. (2023). Inhibition of Adherence and Biofilm Formation of Pseudomonas aeruginosa by Immobilized ZnO Nanoparticles on Silicone Urinary Catheter Grafted by Gamma Irradiation. Microorganisms, 11(4), 913. https://doi.org/10.3390/microorganisms11040913