The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges
Abstract
:1. Introduction
2. Metabolomic Approaches to NBS
2.1. Opportunities for Metabolomic NBS
2.2. Challenges for Metabolomic NBS
3. Genomic Approaches for NBS
3.1. Opportunities for gNBS
3.2. Challenges for gNBS
4. Multi-Omic Approaches to NBS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scarpa, M.; Bonham, J.R.; Dionisi-Vici, C.; Prevot, J.; Pergent, M.; Meyts, I.; Mahlaoui, N.; Schielen, P. Newborn screening as a fully integrated system to stimulate equity in neonatal screening in Europe. Lancet Reg. Health Eur. 2022, 13, 100311. [Google Scholar] [CrossRef] [PubMed]
- Sikonja, J.; Groselj, U.; Scarpa, M.; la Marca, G.; Cheillan, D.; Kölker, S.; Zetterström, R.H.; Kožich, V.; Le Cam, Y.; Gumus, G.; et al. Towards Achieving Equity and Innovation in Newborn Screening across Europe. Int. J. Neonatal Screen. 2022, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Maier, E.M.; Mütze, U.; Janzen, N.; Steuerwald, U.; Nennstiel, U.; Odenwald, B.; Schuhmann, E.; Lotz-Havla, A.S.; Weiss, K.J.; Hammersen, J.; et al. Collaborative evaluation study on 18 candidate diseases for newborn screening in 1.77 million samples. J. Inherit. Metab. Dis. 2023, 46, 1043–1062. [Google Scholar] [CrossRef] [PubMed]
- Expansion of Newborn Bloodspot Screening. Available online: https://www.health.gov.au/our-work/newborn-bloodspot-screening/expansion (accessed on 26 February 2024).
- Wilson, J.M.G.; Jungner, G. Principles and Practice of Screening for Disease; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- Genomic Screening Consortium for Australian Newborns (GenSCAN). Available online: https://www.australiangenomics.org.au/projects/genomic-screening-consortium-for-australian-newborns-genscan/ (accessed on 26 February 2024).
- NewbornsInSA Research Study. Available online: https://www.wch.sa.gov.au/research/newbornsinsa-research-study (accessed on 26 February 2024).
- Liu, X.; Locasale, J.W. Metabolomics: A Primer. Trends Biochem. Sci. 2017, 42, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Ashrafian, H.; Sounderajah, V.; Glen, R.; Ebbels, T.; Blaise, B.J.; Kalra, D.; Kultima, K.; Spjuth, O.; Tenori, L.; Salek, R.M.; et al. Metabolomics: The Stethoscope for the Twenty-First Century. Med. Princ. Pract. 2021, 30, 301–310. [Google Scholar] [CrossRef]
- Norman, R.; Haas, M.; Chaplin, M.; Joy, P.; Wilcken, B. Economic evaluation of tandem mass spectrometry newborn screening in Australia. Pediatrics 2009, 123, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Incerti, D.; Xu, X.-M.; Chou, J.W.; Gonzaludo, N.; Belmont, J.W.; Schroeder, B.E. Cost-effectiveness of genome sequencing for diagnosing patients with undiagnosed rare genetic diseases. Genet. Med. 2022, 24, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.C.; Adams, J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Lynch, F.; Best, S.; Gaff, C.; Downie, L.; Archibald, A.D.; Gyngell, C.; Goranitis, I.; Peters, R.; Savulescu, J.; Lunke, S.; et al. Australian Public Perspectives on Genomic Newborn Screening: Risks, Benefits, and Preferences for Implementation. Int. J. Neonatal Screen. 2024, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- White, S.; Mossfield, T.; Fleming, J.; Barlow-Stewart, K.; Ghedia, S.; Dickson, R.; Richards, F.; Bombard, Y.; Wiley, V. Expanding the Australian Newborn Blood Spot Screening Program using genomic sequencing: Do we want it and are we ready? Eur. J. Hum. Genet. 2023, 31, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Casauria, S.; Lewis, S.; Lynch, F.; Saffery, R. Australian parental perceptions of genomic newborn screening for non-communicable diseases. Front. Genet. 2023, 14, 1209762. [Google Scholar] [CrossRef] [PubMed]
- Ottosson, F.; Russo, F.; Abrahamsson, A.; MacSween, N.; Courraud, J.; Nielsen, Z.K.; Hougaard, D.M.; Cohen, A.S.; Ernst, M. Effects of Long-Term Storage on the Biobanked Neonatal Dried Blood Spot Metabolome. J. Am. Soc. Mass Spectrom. 2023, 34, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Dénes, J.; Szabó, E.; Robinette, S.L.; Szatmári, I.; Szőnyi, L.; Kreuder, J.G.; Rauterberg, E.W.; Takáts, Z. Metabonomics of Newborn Screening Dried Blood Spot Samples: A Novel Approach in the Screening and Diagnostics of Inborn Errors of Metabolism. Anal. Chem. 2012, 84, 10113–10120. [Google Scholar] [CrossRef] [PubMed]
- Dercksen, M.; Koekemoer, G.; Duran, M.; Wanders, R.J.A.; Mienie, L.J.; Reinecke, C.J. Organic acid profile of isovaleric acidemia: A comprehensive metabolomics approach. Metabolomics 2013, 9, 765–777. [Google Scholar] [CrossRef]
- Wikoff, W.R.; Gangoiti, J.A.; Barshop, B.A.; Siuzdak, G. Metabolomics Identifies Perturbations in Human Disorders of Propionate Metabolism. Clin. Chem. 2007, 53, 2169–2176. [Google Scholar] [CrossRef] [PubMed]
- Rattray, N.J.W.; Deziel, N.C.; Wallach, J.D.; Khan, S.A.; Vasiliou, V.; Ioannidis, J.P.A.; Johnson, C.H. Beyond genomics: Understanding exposotypes through metabolomics. Hum. Genom. 2018, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; Del Bosque-Plata, L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.J.; Kennedy, A.D.; Eckhart, A.D.; Burrage, L.C.; Wulff, J.E.; Miller, L.A.D.; Milburn, M.V.; Ryals, J.A.; Beaudet, A.L.; Sun, Q.; et al. Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. J. Inherit. Metab. Dis. 2015, 38, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; de Boer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.; Huigen, M.C.D.G.; Keularts, I.M.L.W.; et al. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis. 2018, 41, 337–353. [Google Scholar] [CrossRef] [PubMed]
- van Karnebeek, C.D.M.; Bonafé, L.; Wen, X.-Y.; Tarailo-Graovac, M.; Balzano, S.; Royer-Bertrand, B.; Ashikov, A.; Garavelli, L.; Mammi, I.; Turolla, L.; et al. NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat. Genet. 2016, 48, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Kingsmore, S.F.; Smith, L.D.; Kunard, C.M.; Bainbridge, M.; Batalov, S.; Benson, W.; Blincow, E.; Caylor, S.; Chambers, C.; Del Angel, G.; et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 2022, 109, 1605–1619. [Google Scholar] [CrossRef] [PubMed]
- Milko, L.V.; O’Daniel, J.M.; DeCristo, D.M.; Crowley, S.B.; Foreman, A.K.M.; Wallace, K.E.; Mollison, L.F.; Strande, N.T.; Girnary, Z.S.; Boshe, L.J.; et al. An Age-Based Framework for Evaluating Genome-Scale Sequencing Results in Newborn Screening. J. Pediatr. 2019, 209, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Newborn Genomes Programme. Available online: https://www.genomicsengland.co.uk/initiatives/newborns (accessed on 26 February 2024).
- Downie, L.; Bouffler, S.E.; Amor, D.J.; Christodoulou, J.; Yeung, A.; Horton, A.E.; Macciocca, I.; Archibald, A.D.; Wall, M.; Caruana, J.; et al. Gene selection for genomic newborn screening: Moving towards consensus? Genet. Med. 2024, 26, 101077. [Google Scholar] [CrossRef] [PubMed]
- Dikow, N.; Ditzen, B.; Kölker, S.; Hoffmann, G.F.; Schaaf, C.P. From newborn screening to genomic medicine: Challenges and suggestions on how to incorporate genomic newborn screening in public health programs. Med. Genet. 2022, 34, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Stark, Z.; Scott, R.H. Genomic newborn screening for rare diseases. Nat. Rev. Genet. 2023, 24, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Tambuyzer, E.; Vandendriessche, B.; Austin, C.P.; Brooks, P.J.; Larsson, K.; Miller Needleman, K.I.; Valentine, J.; Davies, K.; Groft, S.C.; Preti, R.; et al. Therapies for rare diseases: Therapeutic modalities, progress and challenges ahead. Nat. Rev. Drug Discov. 2020, 19, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Christopher, G.; Fiona, L.; Danya, V.; Hilary, B.-S.; Julian, S.; John, C. Storing paediatric genomic data for sequential interrogation across the lifespan. J. Med. Ethics 2023. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Hu, Z.; Bush, L.W.; Cope, H.; Holm, I.A.; Kingsmore, S.F.; Wilhelm, K.; Scharfe, C.; Brower, A. NBSTRN Tools to Advance Newborn Screening Research and Support Newborn Screening Stakeholders. Int. J. Neonatal Screen. 2023, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Goljan, E.; Abouelhoda, M.; ElKalioby, M.M.; Jabaan, A.; Alghithi, N.; Meyer, B.F.; Monies, D. Identification of pharmacogenetic variants from large scale next generation sequencing data in the Saudi population. PLoS ONE 2022, 17, e0263137. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yang, C.; Chen, H.; Dai, D.; Wang, Y.; Zhu, H.; Wang, F. Pharmacogenetic-Guided Algorithm to Improve Daily Dose of Warfarin in Elder Han-Chinese Population. Front. Pharmacol. 2020, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Haijes, H.A.; van der Ham, M.; Prinsen, H.C.M.T.; Broeks, M.H.; van Hasselt, P.M.; de Sain-van der Velden, M.G.M.; Verhoeven-Duif, N.M.; Jans, J.J.M. Untargeted Metabolomics for Metabolic Diagnostic Screening with Automated Data Interpretation Using a Knowledge-Based Algorithm. Int. J. Mol. Sci. 2020, 21, 979. [Google Scholar] [CrossRef] [PubMed]
- Amara, A.; Frainay, C.; Jourdan, F.; Naake, T.; Neumann, S.; Novoa-Del-Toro, E.M.; Salek, R.M.; Salzer, L.; Scharfenberg, S.; Witting, M. Networks and Graphs Discovery in Metabolomics Data Analysis and Interpretation. Front. Mol. Biosci. 2022, 9, 841373. [Google Scholar] [CrossRef] [PubMed]
- Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of Tandem Mass Spectrometry for Multianalyte Screening of Dried Blood Specimens from Newborns. Clin. Chem. 2003, 49, 1797–1817. [Google Scholar] [CrossRef]
- McHugh, D.M.S.; Cameron, C.A.; Abdenur, J.E.; Abdulrahman, M.; Adair, O.; Al Nuaimi, S.A.; Åhlman, H.; Allen, J.J.; Antonozzi, I.; Archer, S.; et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011, 13, 230–254. [Google Scholar] [CrossRef] [PubMed]
- La Marca, G. Mass spectrometry in clinical chemistry: The case of newborn screening. J. Pharm. Biomed. Anal. 2014, 101, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Wurth, R.; Turgeon, C.; Stander, Z.; Oglesbee, D. An evaluation of untargeted metabolomics methods to characterize inborn errors of metabolism. Mol. Genet. Metab. 2023, 141, 108115. [Google Scholar] [CrossRef] [PubMed]
- Bick, D.; Bick, S.L.; Dimmock, D.P.; Fowler, T.A.; Caulfield, M.J.; Scott, R.H. An online compendium of treatable genetic disorders. Am. J. Med. Genet. Part C Semin. Med. Genet. 2021, 187, 48–54. [Google Scholar] [CrossRef]
- Holm, I.A.; McGuire, A.; Pereira, S.; Rehm, H.; Green, R.C.; Beggs, A.H.; BabySeq Project Team. Returning a Genomic Result for an Adult-Onset Condition to the Parents of a Newborn: Insights from the BabySeq Project. Pediatrics 2019, 143, S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Vinkšel, M.; Writzl, K.; Maver, A.; Peterlin, B. Improving diagnostics of rare genetic diseases with NGS approaches. J. Community Genet. 2021, 12, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Kohler, L.; Puertollano, R.; Raben, N. Pompe Disease: From Basic Science to Therapy. Neurotherapeutics 2018, 15, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Ceyhan-Birsoy, O.; Murry, J.B.; Machini, K.; Lebo, M.S.; Yu, T.W.; Fayer, S.; Genetti, C.A.; Schwartz, T.S.; Agrawal, P.B.; Parad, R.B.; et al. Interpretation of Genomic Sequencing Results in Healthy and Ill Newborns: Results from the BabySeq Project. Am. J. Hum. Genet. 2019, 104, 76–93. [Google Scholar] [CrossRef]
- McInnes, G.; Sharo, A.G.; Koleske, M.L.; Brown, J.E.H.; Norstad, M.; Adhikari, A.N.; Wang, S.; Brenner, S.E.; Halpern, J.; Koenig, B.A.; et al. Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am. J. Hum. Genet. 2021, 108, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Roman, T.S.; Crowley, S.B.; Roche, M.I.; Foreman, A.K.M.; O’Daniel, J.M.; Seifert, B.A.; Lee, K.; Brandt, A.; Gustafson, C.; DeCristo, D.M.; et al. Genomic Sequencing for Newborn Screening: Results of the NC NEXUS Project. Am. J. Hum. Genet. 2020, 107, 596–611. [Google Scholar] [CrossRef]
- Clabout, T.; Maes, L.; Acke, F.; Wuyts, W.; Van Schil, K.; Coucke, P.; Janssens, S.; De Leenheer, E. Negative Molecular Diagnostics in Non-Syndromic Hearing Loss: What Next? Genes 2023, 14, 105. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.L.B.; Buchanan, A.H.; Hallquist, M.L.G.; Haggerty, C.M.; Sturm, A.C. Genetic counseling for patients with positive genomic screening results: Considerations for when the genetic test comes first. J. Genet. Couns. 2021, 30, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Raspa, M.; Moultrie, R.; Toth, D.; Haque, S.N. Barriers and Facilitators to Genetic Service Delivery Models: Scoping Review. Interact. J. Med. Res. 2021, 10, e23523. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Fan, C.; Huang, Y.; Feng, J.; Zhang, Y.; Miao, J.; Wang, X.; Li, Y.; Huang, C.; Jin, W.; et al. Genomic Sequencing as a First-Tier Screening Test and Outcomes of Newborn Screening. JAMA Netw. Open 2023, 6, e2331162. [Google Scholar] [CrossRef] [PubMed]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Millington, D.S.; Menkovic, I. Chapter 5—A complementary approach: Metabolomics. In Neurogenetics for the Practitioner; Pastores, G.M., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 65–78. [Google Scholar]
- Van Hove, J.L.; Chace, D.H.; Kahler, S.G.; Millington, D.S. Acylcarnitines in amniotic fluid: Application to the prenatal diagnosis of propionic acidaemia. J. Inherit. Metab. Dis. 1993, 16, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Zytkovicz, T.H.; Fitzgerald, E.F.; Marsden, D.; Larson, C.A.; Shih, V.E.; Johnson, D.M.; Strauss, A.W.; Comeau, A.M.; Eaton, R.B.; Grady, G.F. Tandem Mass Spectrometric Analysis for Amino, Organic, and Fatty Acid Disorders in Newborn Dried Blood Spots: A Two-Year Summary from the New England Newborn Screening Program. Clin. Chem. 2001, 47, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Millington, D.S. How mass spectrometry revolutionized newborn screening. J. Mass Spectrom. Adv. Clin. Lab 2024, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, D.C.; Hall, P.; Lepage, J.; Eichhorst, J.C.; Etter, M.L.; Greenberg, C.R. LC–MS/MS progress in newborn screening. Clin. Biochem. 2011, 44, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Tarini, B.A. The Current Revolution in Newborn Screening: New Technology, Old Controversies. Arch. Pediatr. Adolesc. Med. 2007, 161, 767–772. [Google Scholar] [CrossRef]
- Recommended Uniform Screening Panel. Available online: https://www.hrsa.gov/advisory-committees/heritable-disorders/rusp (accessed on 26 February 2024).
- Gelb, M.H. Newborn Screening for Lysosomal Storage Diseases: Methodologies, Screen Positive Rates, Normalization of Datasets, Second-Tier Tests, and Post-Analysis Tools. Int. J. Neonatal Screen. 2018, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, Y.; Subramanian, R. Comparison of information-dependent acquisition, SWATH, and MS(All) techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2014, 86, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Xiao, J.; Gijavanekar, C.; Pappan, K.L.; Glinton, K.E.; Shayota, B.J.; Kennedy, A.D.; Sun, Q.; Sutton, V.R.; Elsea, S.H. Comparison of Untargeted Metabolomic Profiling vs. Traditional Metabolic Screening to Identify Inborn Errors of Metabolism. JAMA Netw. Open 2021, 4, e2114155. [Google Scholar] [CrossRef]
- Sebaa, R.; AlMogren, M.; Alseraty, W.; Abdel Rahman, A.M. Untargeted Metabolomics Identifies Biomarkers for MCADD Neonates in Dried Blood Spots. Int. J. Mol. Sci. 2023, 24, 9657. [Google Scholar] [CrossRef] [PubMed]
- Palmer, E.A.; Cooper, H.J.; Dunn, W.B. Investigation of the 12-Month Stability of Dried Blood and Urine Spots Applying Untargeted UHPLC-MS Metabolomic Assays. Anal. Chem. 2019, 91, 14306–14313. [Google Scholar] [CrossRef] [PubMed]
- Tobin, N.H.; Murphy, A.; Li, F.; Brummel, S.S.; Taha, T.E.; Saidi, F.; Owor, M.; Violari, A.; Moodley, D.; Chi, B.; et al. Comparison of dried blood spot and plasma sampling for untargeted metabolomics. Metabolomics 2021, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Schwaiger-Haber, M.; Stancliffe, E.; Arends, V.; Thyagarajan, B.; Sindelar, M.; Patti, G.J. A Workflow to Perform Targeted Metabolomics at the Untargeted Scale on a Triple Quadrupole Mass Spectrometer. ACS Meas. Sci. Au 2021, 1, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Tang, Y.; Cowan, T.M.; Enns, G.M.; Zhao, H.; Scharfe, C. Reducing False-Positive Results in Newborn Screening Using Machine Learning. Int. J. Neonatal Screen. 2020, 6, 16. [Google Scholar] [CrossRef]
- Gertsman, I.; Barshop, B.A. Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 2018, 41, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Schleif, W.S.; Harlan, R.S.; Hamblin, F.; Amankwah, E.K.; Goldenberg, N.A.; Hernandez, R.G.; Johnson, S.B.; Reed, S.; Graham, D.R. Defining the Healthy Infant Metabolome: Liquid Chromatography Tandem-Mass Spectrometry Analysis of Dried Blood Spot Extracts from the Prospective Research on Early Determinants of Illness and Children’s Health Trajectories Birth Cohort Study. J. Pediatr. 2022, 241, 251–256.e4. [Google Scholar] [CrossRef]
- Mayo Clinic. CLIR—Collaborative Laboratory Integrated Reports. Available online: https://clir.mayo.edu/ (accessed on 26 February 2024).
- Rips, J.; Almashanu, S.; Mandel, H.; Josephsberg, S.; Lerman-Sagie, T.; Zerem, A.; Podeh, B.; Anikster, Y.; Shaag, A.; Luder, A.; et al. Primary and maternal 3-methylcrotonyl-CoA carboxylase deficiency: Insights from the Israel newborn screening program. J. Inherit. Metab. Dis. 2016, 39, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Held, P.K.; Singh, E.; Scott Schwoerer, J. Screening for Methylmalonic and Propionic Acidemia: Clinical Outcomes and Follow-Up Recommendations. Int. J. Neonatal Screen. 2022, 8, 13. [Google Scholar] [CrossRef]
- Kwon, C.; Farrell, P.M. The magnitude and challenge of false-positive newborn screening test results. Arch. Pediatr. Adolesc. Med. 2000, 154, 714–718. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzo, N.; Antonecchia, E.; Angiolillo, A.; Bender, V.; Camerlenghi, M.; Xie, Q.; Di Costanzo, A. Metabolomics of blood reveals age-dependent pathways in Parkinson’s Disease. Cell Biosci. 2022, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Quintero Escobar, M.; Pontes, J.G.d.M.; Tasic, L. Metabolomics in degenerative brain diseases. Brain Res. 2021, 1773, 147704. [Google Scholar] [CrossRef] [PubMed]
- Donatti, A.; Canto, A.M.; Godoi, A.B.; da Rosa, D.C.; Lopes-Cendes, I. Circulating Metabolites as Potential Biomarkers for Neurological Disorders-Metabolites in Neurological Disorders. Metabolites 2020, 10, 389. [Google Scholar] [CrossRef] [PubMed]
- Tokarz, J.; Adamski, J.; Rižner, T.L. Metabolomics for Diagnosis and Prognosis of Uterine Diseases? A Systematic Review. J. Pers. Med. 2020, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, X.; Zhou, M.; Qi, J.; Zhang, R.; Li, X.; Wang, C.; Ruan, C.; Han, Y. Plasma Metabolomics Identifies the Dysregulated Metabolic Profile of Primary Immune Thrombocytopenia (ITP) Based on GC-MS. Front. Pharmacol. 2022, 13, 845275. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Wang, X.; Liu, J.; Zhong, J.; Le, Y.; Melchior Tellier, L.C.A.; Liu, C.; Jiang, P.; Gao, R.; Wang, Y. Applying targeted next generation sequencing to dried blood spot specimens from suspicious cases identified by tandem mass spectrometry-based newborn screening. J. Pediatr. Endocrinol. Metab. 2017, 30, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Charli, J.; Michelle, A.F.; Sarah, N.; Kaustuv, B.; Bruce, B.; Ainsley, J.N.; Louise, H.; Nicole, M.; Didu, S.K. The Australian landscape of newborn screening in the genomics era. Rare Dis. Orphan Drugs J. 2023, 2, 26. [Google Scholar] [CrossRef]
- Bergougnoux, A.; Lopez, M.; Girodon, E. The Role of Extended CFTR Gene Sequencing in Newborn Screening for Cystic Fibrosis. Int. J. Neonatal Screen. 2020, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.A.; Pletcher, M.J.; Ladabaum, U. Is the “$1000 Genome’’ really $1000? Understanding the full benefits and costs of genomic sequencing. Technol. Health Care 2015, 23, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Austin-Tse, C.A.; Jobanputra, V.; Perry, D.L.; Bick, D.; Taft, R.J.; Venner, E.; Gibbs, R.A.; Young, T.; Barnett, S.; Belmont, J.W.; et al. Best practices for the interpretation and reporting of clinical whole genome sequencing. npj Genom. Med. 2022, 7, 27. [Google Scholar] [CrossRef]
- Wilcken, B.; Wiley, V. Newborn screening. Pathology 2008, 40, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.; Lantos, J.D.; Goldenberg, A.; Chen, F.; Parens, E.; Koenig, B.A.; Members of the NSIGHT Ethics and Policy Advisory Board. Sequencing Newborns: A Call for Nuanced Use of Genomic Technologies. Hastings Cent. Rep. 2018, 48, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- OMIM—An Online Catalog of Human Genes and Genetic Disorders. Available online: https://omim.org/ (accessed on 26 February 2024).
- VanNoy, G.E.; Genetti, C.A.; McGuire, A.L.; Green, R.C.; Beggs, A.H.; Holm, I.A.; The BabySeq Project Group. Challenging the Current Recommendations for Carrier Testing in Children. Pediatrics 2019, 143, S27–S32. [Google Scholar] [CrossRef] [PubMed]
- Arbour, L.; Canadian Paediatric Society; Bioethics Committee. Guidelines for genetic testing of healthy children. Paediatr. Child Health 2003, 8, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Tluczek, A.; Ersig, A.L.; Lee, S. Psychosocial Issues Related to Newborn Screening: A Systematic Review and Synthesis. Int. J. Neonatal Screen. 2022, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.K.; Berg, J.S.; Botkin, J.R.; Brenner, S.E.; Brosco, J.P.; Brothers, K.B.; Currier, R.J.; Gaviglio, A.; Kowtoniuk, W.E.; Olson, C.; et al. Newborn screening for neurodevelopmental diseases: Are we there yet? Am. J. Med. Genet. Part C Semin. Med. Genet. 2022, 190, 222–230. [Google Scholar] [CrossRef] [PubMed]
- King, J.R.; Notarangelo, L.D.; Hammarström, L. An appraisal of the Wilson & Jungner criteria in the context of genomic-based newborn screening for inborn errors of immunity. J. Allergy Clin. Immunol. 2021, 147, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Dobrow, M.J.; Hagens, V.; Chafe, R.; Sullivan, T.; Rabeneck, L. Consolidated principles for screening based on a systematic review and consensus process. CMAJ 2018, 190, E422–E429. [Google Scholar] [CrossRef]
- Chien, Y.H.; Hwu, W.L. The modern face of newborn screening. Pediatr. Neonatol. 2023, 64 (Suppl. S1), S22–S29. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.N.; Gallagher, R.C.; Wang, Y.; Currier, R.J.; Amatuni, G.; Bassaganyas, L.; Chen, F.; Kundu, K.; Kvale, M.; Mooney, S.D.; et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat. Med. 2020, 26, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, T.; Scott, A.J.; Brandt, M.; Hall, I.M. Genomic Analysis in the Age of Human Genome Sequencing. Cell 2019, 177, 70–84. [Google Scholar] [CrossRef]
- Hekel, R.; Budis, J.; Kucharik, M.; Radvanszky, J.; Pös, Z.; Szemes, T. Privacy-preserving storage of sequenced genomic data. BMC Genom. 2021, 22, 712. [Google Scholar] [CrossRef] [PubMed]
- Daniels, H.; Jones, K.H.; Heys, S.; Ford, D.V. Exploring the Use of Genomic and Routinely Collected Data: Narrative Literature Review and Interview Study. J. Med. Internet Res. 2021, 23, e15739. [Google Scholar] [CrossRef]
- Eck, S.H. Challenges in data storage and data management in a clinical diagnostic setting. J. Lab. Med. 2018, 42, 219–224. [Google Scholar] [CrossRef]
- Bonomi, L.; Huang, Y.; Ohno-Machado, L. Privacy challenges and research opportunities for genomic data sharing. Nat. Genet. 2020, 52, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Dimmock, D.; Caylor, S.; Waldman, B.; Benson, W.; Ashburner, C.; Carmichael, J.L.; Carroll, J.; Cham, E.; Chowdhury, S.; Cleary, J.; et al. Project Baby Bear: Rapid precision care incorporating rWGS in 5 California children’s hospitals demonstrates improved clinical outcomes and reduced costs of care. Am. J. Hum. Genet. 2021, 108, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Lunke, S.; Bouffler, S.E.; Patel, C.V.; Sandaradura, S.A.; Wilson, M.; Pinner, J.; Hunter, M.F.; Barnett, C.P.; Wallis, M.; Kamien, B.; et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 2023, 29, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Farnaes, L.; Hildreth, A.; Sweeney, N.M.; Clark, M.M.; Chowdhury, S.; Nahas, S.; Cakici, J.A.; Benson, W.; Kaplan, R.H.; Kronick, R.; et al. Rapid whole-genome sequencing decreases infant morbidity and cost of hospitalization. npj Genom. Med. 2018, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Stranneheim, H.; Lagerstedt-Robinson, K.; Magnusson, M.; Kvarnung, M.; Nilsson, D.; Lesko, N.; Engvall, M.; Anderlid, B.M.; Arnell, H.; Johansson, C.B.; et al. Integration of whole genome sequencing into a healthcare setting: High diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Med. 2021, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Etchegary, H.; Nicholls, S.G.; Tessier, L.; Simmonds, C.; Potter, B.K.; Brehaut, J.C.; Pullman, D.; Hayeems, R.; Zelenietz, S.; Lamoureux, M.; et al. Consent for newborn screening: Parents’ and health-care professionals’ experiences of consent in practice. Eur. J. Hum. Genet. 2016, 24, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.; Christensen, K.D.; Genetti, C.A.; Parad, R.B.; Robinson, J.O.; Blout Zawatsky, C.L.; Zettler, B.; Beggs, A.H.; Holm, I.A.; Green, R.C.; et al. Parental Attitudes Toward Standard Newborn Screening and Newborn Genomic Sequencing: Findings from the BabySeq Study. Front. Genet. 2022, 13, 867371. [Google Scholar] [CrossRef] [PubMed]
- Gold, N.B.; Adelson, S.M.; Shah, N.; Williams, S.; Bick, S.L.; Zoltick, E.S.; Gold, J.I.; Strong, A.; Ganetzky, R.; Roberts, A.E.; et al. Perspectives of Rare Disease Experts on Newborn Genome Sequencing. JAMA Netw. Open 2023, 6, e2312231. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.; Kuusisto, J.; Stančáková, A.; Kuulasmaa, T.; Pajukanta, P.; Lusis, A.J.; Collins, F.S.; Mohlke, K.L.; Boehnke, M. The Metabolic Syndrome in Men study: A resource for studies of metabolic and cardiovascular diseases. J. Lipid Res. 2017, 58, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Bi, M.; Guo, H.; Li, M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. eBioMedicine 2022, 79, 104001. [Google Scholar] [CrossRef] [PubMed]
- Overmyer, K.A.; Shishkova, E.; Miller, I.J.; Balnis, J.; Bernstein, M.N.; Peters-Clarke, T.M.; Meyer, J.G.; Quan, Q.; Muehlbauer, L.K.; Trujillo, E.A.; et al. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst. 2021, 12, 23–40.e7. [Google Scholar] [CrossRef] [PubMed]
- Diray-Arce, J.; Fourati, S.; Doni Jayavelu, N.; Patel, R.; Maguire, C.; Chang, A.C.; Dandekar, R.; Qi, J.; Lee, B.H.; van Zalm, P.; et al. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep. Med. 2023, 4, 101079. [Google Scholar] [CrossRef] [PubMed]
- Driver, H.G.; Hartley, T.; Price, E.M.; Turinsky, A.L.; Buske, O.J.; Osmond, M.; Ramani, A.K.; Kirby, E.; Kernohan, K.D.; Couse, M.; et al. Genomics4RD: An integrated platform to share Canadian deep-phenotype and multiomic data for international rare disease gene discovery. Hum. Mutat. 2022, 43, 800–811. [Google Scholar] [PubMed]
- Zhuang, Y.-J.; Mangwiro, Y.; Wake, M.; Saffery, R.; Greaves, R.F. Multi-omics analysis from archival neonatal dried blood spots: Limitations and opportunities. Clin. Chem. Lab. Med. 2022, 60, 1318–1341. [Google Scholar] [CrossRef] [PubMed]
- Kerkhofs, M.H.P.M.; Haijes, H.A.; Willemsen, A.M.; van Gassen, K.L.I.; van der Ham, M.; Gerrits, J.; de Sain-van der Velden, M.G.M.; Prinsen, H.C.M.T.; van Deutekom, H.W.M.; van Hasselt, P.M.; et al. Cross-Omics: Integrating Genomics with Metabolomics in Clinical Diagnostics. Metabolites 2020, 10, 206. [Google Scholar] [CrossRef]
- Almeida, L.S.; Pereira, C.; Aanicai, R.; Schröder, S.; Bochinski, T.; Kaune, A.; Urzi, A.; Spohr, T.; Viceconte, N.; Oppermann, S.; et al. An integrated multiomic approach as an excellent tool for the diagnosis of metabolic diseases: Our first 3720 patients. Eur. J. Hum. Genet. 2022, 30, 1029–1035. [Google Scholar] [CrossRef]
- Usha Rani, G.; Kadali, S.; Kurma Reddy, B.; Shaheena, D.; Naushad, S.M. Application of machine learning tools and integrated OMICS for screening and diagnosis of inborn errors of metabolism. Metabolomics 2023, 19, 49. [Google Scholar] [CrossRef] [PubMed]
- Godler, D.E.; Ling, L.; Gamage, D.; Baker, E.K.; Bui, M.; Field, M.J.; Rogers, C.; Butler, M.G.; Murgia, A.; Leonardi, E.; et al. Feasibility of Screening for Chromosome 15 Imprinting Disorders in 16 579 Newborns by Using a Novel Genomic Workflow. JAMA Netw. Open 2022, 5, e2141911. [Google Scholar] [CrossRef] [PubMed]
- Amarasekera, S.S.C.; Hock, D.H.; Lake, N.J.; Calvo, S.E.; Grønborg, S.W.; Krzesinski, E.I.; Amor, D.J.; Fahey, M.C.; Simons, C.; Wibrand, F.; et al. Multi-omics identifies large mitoribosomal subunit instability caused by pathogenic MRPL39 variants as a cause of pediatric onset mitochondrial disease. Hum. Mol. Genet. 2023, 32, 2441–2454. [Google Scholar] [CrossRef] [PubMed]
- Archibald, A.D.; McClaren, B.J.; Caruana, J.; Tutty, E.; King, E.A.; Halliday, J.L.; Best, S.; Kanga-Parabia, A.; Bennetts, B.H.; Cliffe, C.C.; et al. The Australian Reproductive Genetic Carrier Screening Project (Mackenzie’s Mission): Design and Implementation. J. Pers. Med. 2022, 12, 1781. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.; De Jong, L.; Waters, W.; Rawlings, L.H.; Simons, K.; Gao, S.; Soubrier, J.; Kenyon, R.; Lin, M.; King, R.; et al. Extending the new era of genomic testing into pregnancy management: A proposed model for Australian prenatal services. Aust. N. Z. J. Obstet. Gynaecol. 2024. [Google Scholar] [CrossRef] [PubMed]
Metabolomic NBS | Genomic NBS | |
---|---|---|
Techniques | Targeted—LC-MS/MS 1 Untargeted—LC-MS/TOF 2 Metabolites and Lipids [8,9,10] | Targeted panel Whole-genome sequencing |
Comparative screening cost | Low [11] | High [12] |
Relative public acceptability | High [13] | Mixed [14,15,16] |
Opportunities | DBS 3 for retrospective epidemiological studies [17] Building on existing NBS workflows [18,19,20] Closer to phenotype [21,22] Ability to screen multiple conditions at once [23] Possibility of new biomarker discovery [24,25] | Applicable to any condition type as a single test [26,27,28,29] Up-front molecular diagnosis [30,31,32] Lifetime re-use of data (WGS) [31,33] Enabling research into gene–disease associations, treatment developments, population variation, and pharmacogenetic variation [31,33,34,35,36] |
Challenges | Feature characterization and data interpretation [37,38] May not be suitable for all condition types [23] Custom validation for each targeted condition [39,40,41] Need for sufficiently large validation cohorts [42] Results can be affected by sampling factors unrelated to conditions screened for | Consensus of which genes/variants to report [28,29,43] Possibility of identifying adult-onset conditions/variants [44,45,46] Novel variants difficult to interpret [47,48] Low pick-up for some conditions [49,50] Genetic counseling at scale [51,52] Management of large data at scale Meeting required turnaround time [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashenden, A.J.; Chowdhury, A.; Anastasi, L.T.; Lam, K.; Rozek, T.; Ranieri, E.; Siu, C.W.-K.; King, J.; Mas, E.; Kassahn, K.S. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. Int. J. Neonatal Screen. 2024, 10, 42. https://doi.org/10.3390/ijns10030042
Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, Siu CW-K, King J, Mas E, Kassahn KS. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. International Journal of Neonatal Screening. 2024; 10(3):42. https://doi.org/10.3390/ijns10030042
Chicago/Turabian StyleAshenden, Alex J., Ayesha Chowdhury, Lucy T. Anastasi, Khoa Lam, Tomas Rozek, Enzo Ranieri, Carol Wai-Kwan Siu, Jovanka King, Emilie Mas, and Karin S. Kassahn. 2024. "The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges" International Journal of Neonatal Screening 10, no. 3: 42. https://doi.org/10.3390/ijns10030042
APA StyleAshenden, A. J., Chowdhury, A., Anastasi, L. T., Lam, K., Rozek, T., Ranieri, E., Siu, C. W. -K., King, J., Mas, E., & Kassahn, K. S. (2024). The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. International Journal of Neonatal Screening, 10(3), 42. https://doi.org/10.3390/ijns10030042