Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru
Abstract
:1. Introduction
2. Background
2.1. Geomorphology
2.2. Geology, Volcanism, and Seismicity
2.3. Landslide Geohazards
2.4. Terraces and Irrigation Techniques
- Excavation of trenches to bedrock or to a depth of 0.25 the height of the wall.
- Piling up rocks to build the walls, with decreasing size upwards. The base rock should be flat to increase friction with foundation.
- Rocks not used to build the wall due to their smaller size or roundness should be placed as fill on the internal side of the wall in an upwards decreasing-size fashion. Any bedrock outcropping inside of the area to be terraced should be removed or excavated.
- Filling the sub-rhizosphere with 15 cm layers of fertile soil and compacting each before adding a new layer, then depositing the uppermost layer with fertile soil, without compacting it.
- Leveling the surface of the terrace in such a way that there is 30 cm of thickness of arable fertile soil.
3. Methods
3.1. Landslide Terraces Spatial Coherence Assessment
- Loss of vegetation cover;
- Oversteepened slopes;
- Circular shapes possibly linked to scarp or flanks;
- Cracks and irregular terrain constrained within circular shapes;
- Changes in average slope related to a zone of depletion and a zone of accumulation;
- River channel offset due to accumulated material.
- True positives (TP) included landslides that had terraces or irrigated features upstream, to a distance of 500 m, and included landslides that were partially overlain by terraces or irrigated areas whenever such features persisted upstream of the landslide.
- True negatives (TN) included areas that did not have landslides or irrigated features. Lacking both features of interest, these areas were considered irrelevant for the analysis.
- False positives (FP) included terraces and irrigated areas that did not have any landslides associated. These were considered a type I error or a false alarm.
- False negatives (FN) included landslides that did not have any associated terraces or irrigated areas upstream and landslides that had terraces or irrigated areas built over the landslide deposits, whenever no other upstream irrigation features were present. These were considered a type II error or a missed alarm.
3.2. Logistic Regression Analysis of the Landslide Inventory
3.3. Finite Element Modeling of the San Cristobal Landslide
3.4. Seepage Analysis
4. Results
4.1. Spatial Coherence Analysis Results
4.2. Logistic Regression Results
4.3. Finite Element Modeling Results
4.4. Seepage Analysis Results
5. Discussion
5.1. Spatial Coherence Analysis
5.2. Logistic Regression
5.3. Finite Element Numerical Modeling
6. Conclusions
- There is a spatial correlation between irrigated terraces and landslides surrounding the main rivers and communities of the Ticsani valley.
- Irrigated terraces enhance landslide presence predictions, pointing to a contributing role in landslide occurrence.
- Terraces do not likely change large-scale slope loading conditions, but they likely change groundwater conditions due to irrigation surplus.
- Groundwater elevation and friction angle are considered the most sensitive factors influencing slope stability, according to performed modeling.
- Vertical infiltration at conservative rates can raise groundwater levels to values causing slope failure, according to the models performed.
- Rising groundwater due to irrigation surplus is considered the main anthropogenic cause behind landslide occurrence in the area.
- Drainage of susceptible slopes and adoption of water saving techniques like drip-irrigation are recommended in increased risk areas surrounding communities.
- Mitigation efforts should be concentrated in slopes surrounding main communities, underlain by poor geologic materials such as recent pyroclastic deposits, that receive increased infiltration water due to the presence of irrigated terraces upslope.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garcia-Chevesich, P.; Wei, X.; Ticona, J.; Martínez, G.; Zea, J.; García, V.; Alejo, F.; Zhang, Y.; Flamme, H.; Graber, A.; et al. The impact of agricultural irrigation on landslide triggering: A review from Chinese, English, and Spanish literature. Water 2020, 13, 10. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, H.; Zhu, Y.; Huangfu, W.; Ye, B.; Wei, Y.; Tang, B.; Kamp, U. Increasing irrigation-triggered landslide activity caused by intensive farming in deserts on three continents. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104242. [Google Scholar] [CrossRef]
- Ballón Marroquín, A. Deslizamientos de tierras en el distrito de Aczo (Provincia de Huari, departamento de Ancash). In Comisión Carta Geológica Nacional; Compilación de Estudios Geológicos. Boletín N_13; Instituto Minero, Geológico y Metalúrgico: Lima, Peru, 1996; pp. 177–190. [Google Scholar]
- Araujo Huamán, G.E.; Taipe Maquerhua, E.L.; Miranda Cruz, R.; Valderrama Murillo, P.A. Dinámica y Monitoreo del Deslizamiento de Siguas. Región Arequipa, Provincia Caylloma y Arequipa, Distrito Majes y San Juan de Siguas. 2017. Available online: https://hdl.handle.net/20.500.12544/791 (accessed on 11 November 2024).
- Lacroix, P.; Dehecq, A.; Taipe, E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nat. Geosci. 2020, 13, 56–60. [Google Scholar] [CrossRef]
- Lacroix, P.; Handwerger, A.; Bievre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419. [Google Scholar] [CrossRef]
- Graber, A.; Santi, P.; Meza Arestegui, P. Constraining the critical groundwater conditions for initiation of large, irrigation-induced landslides, Siguas River Valley, Peru. Landslides 2021, 18, 3753–3767. [Google Scholar] [CrossRef]
- Flamme, H.E.; Krahenbuhl, R.A.; Li, Y.; Dugan, B.; Shragge, J.; Graber, A.; Sirota, D.; Wilson, G.; Gonzales, E.; Ticona, J.; et al. Integrated geophysical investigation for understanding agriculturally induced landslides in southern Peru. Environ. Earth Sci. 2022, 81, 309. [Google Scholar] [CrossRef]
- Lemus, O.; Santi, P.M.; Colque, P.; Meza, P.; Salas, G. Failure conditions and triggers of the Achoma landslide, central Andes region, Arequipa Peru. In 2023 Graduate Research and Discovery Symposium (GRADS) Posters and Presentations; Colorado School of Mines, Arthur Lakes Library: Golden, CO, USA, 2023. [Google Scholar]
- Zhang, Z.; Zeng, R.; Zhao, S.; Meng, X.; Ma, J.; Yin, H.; Long, Z. Effects of irrigation projects on the classification of yellow river terrace landslides and their failure modes: A case study of heitai terrace. Remote Sens. 2023, 15, 5012. [Google Scholar] [CrossRef]
- Peng, D.; Xu, Q.; Zhang, X.; Xing, H.; Zhang, S.; Kang, K.; Qi, X.; Ju, Y.; Zhao, K. Hydrological response of loess slopes with reference to widespread landslide events in the Heifangtai terrace, NW China. J. Asian Earth Sci. 2019, 171, 259–276. [Google Scholar] [CrossRef]
- Wen, Y.; Gao, P.; Mu, X.; Li, M.; Su, Y.; Wang, H. Experimental Study on Landslides in Terraced Fields in the Chinese Loessial Region under Extreme Rainfall. Water 2021, 13, 270. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, K.; Liu, F.; Peng, D.; Chen, W. Effects of land use on groundwater recharge of a loess terrace under long-term irrigation. Sci. Total Environ. 2021, 751, 142340. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, G.; Peng, J. Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: Insights from hydrogeological conditions and liquefaction criteria. Eng. Geol. 2022, 302, 106619. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Zhao, K.; Wen, Q. Farmers’ adoption intentions of water-saving agriculture under the risks of frequent irrigation-induced landslides. Clim. Risk Manag. 2023, 39, 100484. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, G.; Liu, Y.; Nie, X.; Li, Z.; Lui, J.; Zhu, D. Advantages and disadvantages of terracing: A comprehensive review. Int. Soil Water Conserv. Res. 2021, 9, 344–359. [Google Scholar] [CrossRef]
- Gao, X.; Roder, G.; Ding, Y.; Liu, Z.; Tarolli, P. Farmers’ landslide risk perceptions and willingness for restoration and conservation of world heritage site of Honghe Hani Rice Terraces, China. Landslides 2020, 17, 1915–1924. [Google Scholar] [CrossRef]
- Rozaki, Z.; Wijaya, O.; Rahmawati, N.; Rahayu, L. Farmers’ Disaster Mitigation Strategies in Indonesia. Rev. Agric. Sci. 2021, 9, 178–194. [Google Scholar] [CrossRef]
- Salas, D. Andenes, Agrosistema Frágil; Llerena, C.A., Inbar, M., Benavides, M.A., Eds.; Conservación y Abandono de Andenes; Universidad Nacional Agraria La Molina: Lima, Peru, 2004; pp. 23–44. [Google Scholar]
- Xu, Y.; Lu, Z.; Leshchinsky, B. Kinematics of irrigation-induced landslides in a Washington Desert: Impacts of basal geometry. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006355. [Google Scholar] [CrossRef]
- Bradley, K.; Mallick, R.; Andikagumi, H.; Hubbard, J.; Meilianda, E.; Switzer, A.; Hill, E.M. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosci. 2019, 12, 935–939. [Google Scholar] [CrossRef]
- Watkinson, I.M.; Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 2019, 12, 940–945. [Google Scholar] [CrossRef]
- Huanca, E.; Marisol, S. Ciclos Horarios de Precipitación en el Perú Utilizando Información Satelital. 2016. Available online: https://hdl.handle.net//20.500.12542/112 (accessed on 12 November 2024).
- Marroquín Liu, A.M. Balance Hídrico Superficial de la Subcuenca del Río Paltiture. Bachelor’s Thesis, Universidad de Piura, Piura, Peru, 2016. [Google Scholar]
- de Moquegua, G.R. Plan de Competitividad Región Moquegua 2012–2021. 2012. Available online: https://consultas.regionmoquegua.gob.pe/wp-content/uploads/transparencia/InformacionAdicional/Plan%20Competitividad%20Region%20Moquegua%202012-2021%20GRM-UPSM.pdf (accessed on 12 November 2024).
- Mariño Salazar, J.; Thouret, J.C. Geología, Historia Eruptiva y Evaluación de Peligros del Volcán TICSANI (Sur del Perú). 2003. Available online: https://repositorio.igp.gob.pe/items/3db71979-77c9-4bdc-9fef-26ba41b068ca (accessed on 12 November 2024).
- Mariño Salazar, J.; Rivera Porras, M.A.; Cruz Pauccara, V.; Cacya Dueñas, L. Efectos Geológicos y en Las Construcciones Producidos Durante la Crisis Sísmica de Calacoa-Moquegua (Octubre 2005); Sociedad Geológica del Perú—SGP: Lima, Perú, 2006. [Google Scholar]
- Cruden, D. A simple definition of a landslide. Bull. Eng. Geol. Environ. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Comercio, E. Search of Periodistical Articles Tagged with the Word “Deslizamientos”. 2023. Available online: https://elcomercio.pe/noticias/deslizamientos/ (accessed on 12 November 2024).
- Vílchez Mata, M.S. Casos Históricos de Movimientos en Masa Que Causaron Grandes Daños en Perú; Instituto Geológico, Minero y Metalúrgico—INGEMMET: Lima, Peru, 2018. [Google Scholar]
- Vilímek, V.; Hanzlík, J.; Sládek, I.; Šandov, M.; Santillán, N. The share of landslides in the occurrence of natural hazards and the significance of El Niño in the Cordillera Blanca and Cordillera Negra Mountains, Peru. In Landslides: Global Risk Preparedness; Springer: Berlin/Heidelberg, Germany, 2013; pp. 133–148. [Google Scholar]
- Margirier, A.; Audin, L.; Carcaillet, J.; Schwartz, S.; Benavente, C. Tectonic and climatic controls on the Chuquibamba landslide (western Andes, southern Peru). Earth Surf. Dyn. 2015, 3, 281–289. [Google Scholar] [CrossRef]
- Quispevisana, L.; Zapata, A. Memoria Descriptiva de la Geología del Cuadrángulo de Omate (34-u); INGEMMET: Lima, Per, 2000. [Google Scholar]
- INGEMMET Geocatmin Digital Repository. 2023. Available online: https://geocatmin.ingemmet.gob.pe/geocatmin/ (accessed on 12 November 2024).
- Donkin, R.A. Agricultural Terracing in the Aboriginal New World; Viking Fund Publications in Antopology (56); University of Arizona Press: Tucson, AZ, USA, 1979. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and mitigation. Chapter 3-Landslide types and processes. Transp. Res. Board Spec. Rep. 1996, 247, 36–75. [Google Scholar]
- Highland, L.M.; Bobrowsky, P. The Landslide Handbook—A Guide to Understanding Landslides (No. 1325); US Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Yamagishi, H.; Moncada, R. TXT-tool 1.081-3.1 landslide recognition and mapping using aerial photographs and Google Earth. In Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools: Volume 1: Fundamentals, Mapping and Monitoring; Springer International AG: Berlin/Heidelberg, Germany, 2018; pp. 67–82. [Google Scholar]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Lombardo, L.; Mai, P.M. Presenting logistic regression-based landslide susceptibility results. Eng. Geol. 2018, 244, 14–24. [Google Scholar] [CrossRef]
- Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Characteristics of landslides in western Colorado, USA. Landslides 2014, 11, 589–603. [Google Scholar] [CrossRef]
- Southerland, L.; Zhou, W. Comparison of Two Logistic Regression Models for Landslide Susceptibility Analysis Through a Case Study. Environ. Eng. Geosci. 2021, 27, 471–486. [Google Scholar]
- Crawford, M.M.; Dortch, J.M.; Koch, H.J.; Killen, A.A.; Zhu, J.; Zhu, Y.; Bryson, L.S.; Haneberg, W.C. Using landslide-inventory mapping for a combined bagged-trees and logistic-regression approach to determining landslide susceptibility in eastern Kentucky, USA. Q. J. Eng. Geol. Hydrogeol. 2021, 54, qjegh2020-177. [Google Scholar]
- Killen, A. Using Logistic Regression to Generate and Compare Six Landslide Inventory-Based Susceptibility Maps in El Paso County, Colorado. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2023. [Google Scholar]
- Rocscience Inc. RS2 Finite Element Modeling Software.; Rocscience Inc.: Toronto, Canada, 2024. [Google Scholar]
- Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A. Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related hazard studies. J. Volcanol. Geotherm. Res. 2017; 332, 51–70. [Google Scholar]
- Cervantes, J.; Martínez Valladares, W.; Romero Fernández, D.; Zapata Montes, A.A.; Navarro Colque, P.A. The Matalaque Formation of southern Peru: New stratigraphic and geochemical data. In Proceedings of the 6th International Symposium on Andean Geodynamics, Extended Abstracts, Barcelona, Spain, 12–14 September 2005. [Google Scholar]
- Ronda, G. Linking Inca Terraces with Landslide Occurrence in the Moquegua Region, Peru. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2024. [Google Scholar]
- Bosco, G.; Dalpiaz, M.; Simeoni, L. Effects of modified irrigation procedures on the stability of cultivated slopes. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018; pp. 483–489. [Google Scholar]
Parameter | Description | Source | References |
---|---|---|---|
Elevation | Elevation (masl) from available DEM of the AoI | Alos Palsar DEM (JAXA 2013), 12.5 m from original 30 m resolution (ASF 2023) | [41] [42] [43] [45] [46] |
Slope | First derivative of the elevation raster | ArcGIS PRO toolbox | [41] [42] [43] [44] [45] [46] |
Curvature (axial and perpendicular) | Second derivative of the elevation raster | ArcGIS PRO toolbox | [42] [43] [45] [46] |
Geology | Four-category raster of decreasing quality | Geological Map | [41] [43] [44] [46] |
TWI | Topographic wetness index | [42] [43] [46] | |
Fluvial erosion | Used as a proxy of fluvial erosion | Nearest distance to drainage ArcGIS PRO toolbox | [42] [43] (stream power index) |
Material | Unit Weight (kN/m3) | Friction Angle (°) Peak/Residual | Cohesion (MPa) | Tensile Strength (MPa) | Young´s Modulus (MPa) | Poisson Ratio | Permeability (m/s) |
---|---|---|---|---|---|---|---|
Debris avalanche (Q-Pl) | 25.3 | 42.5/42 | 0 | 0 | 30 | 0.25 | 1 × 10−4 |
Pyroclastic deposits (Qp-vl-pi) | 16.5 | 48/43 | 0 | 0 | 40 | 0.25 | 1 × 10−7 |
Matalaque Fm. (Ki-mat) | 26.5 | 39/25 | 11.5/3.1 | 1 | 40 | 0.25 | 1 × 10−8 |
AoI Analysis | SQRT Area Normalized Classes | Confusion Matrix Statistics | ||||
---|---|---|---|---|---|---|
TP | FN | FP | PR | RE | F1 | |
Terraces | 0.572 | 0.428 | 0.595 | 0.490 | 0.572 | 0.528 |
Irrigated | 0.361 | 0.639 | 0.616 | 0.369 | 0.361 | 0.365 |
Terraces + irrigated | 0.630 | 0.370 | 0.602 | 0.511 | 0.630 | 0.565 |
Terraces + irrigated (main rivers buffer) | 0.809 | 0.191 | 0.446 | 0.644 | 0.809 | 0.717 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
---|---|---|---|---|---|---|---|---|
Variables | Slope, elevation, curvature, TWI, geology, distance to rivers | Slope, elevation, curvature, TWI, geology, distance to rivers, terrace presence | Curvature, geology, distance to rivers | Curvature, geology, distance to rivers, terrace presence | Curvature, distance to rivers | Curvature, distance to rivers, terrace presence | Distance to rivers | Distance to rivers, terrace presence |
AUC | 0.81 | 0.82 | 0.80 | 0.81 | 0.78 | 0.80 | 0.64 | 0.69 |
AIC | 289 | 284 | 292 | 288 | 297 | 291 | 348 | 339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronda, G.; Santi, P.; Pope, I.E.; Vargas Luque, A.L.; Paria, C.J.B. Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru. Geosciences 2024, 14, 315. https://doi.org/10.3390/geosciences14110315
Ronda G, Santi P, Pope IE, Vargas Luque AL, Paria CJB. Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru. Geosciences. 2024; 14(11):315. https://doi.org/10.3390/geosciences14110315
Chicago/Turabian StyleRonda, Gonzalo, Paul Santi, Isaac E. Pope, Arquímedes L. Vargas Luque, and Christ Jesus Barriga Paria. 2024. "Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru" Geosciences 14, no. 11: 315. https://doi.org/10.3390/geosciences14110315
APA StyleRonda, G., Santi, P., Pope, I. E., Vargas Luque, A. L., & Paria, C. J. B. (2024). Linking Inca Terraces with Landslide Occurrence in the Ticsani Valley, Peru. Geosciences, 14(11), 315. https://doi.org/10.3390/geosciences14110315