A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples
Abstract
:1. Introduction
2. Na-Metasomatic U Deposits
3. Common Characteristics of Na-Metasomatic U Mineralization
Deposit Name | Host Rocks | Tonnage (t U3O8) | Age of Host Rocks | Age of U Mineralization | Grade (%) | Reference |
---|---|---|---|---|---|---|
Longshoushan (China) | Granitoid, granite, and metamorphic | 1000 | ~485 Ma | 435.9 ± 3.3 Ma | 0.03–0.1 | [30] |
Aricheng (Guyana) | Granodiorite | 19,000–50,000 | 2.07–2.10 Ga | ~1995 ± 15 Ma | 0.5 | [27,28] |
Valhalla (Australia) | Metasediment and mafic volcanic | 38,593 | 1.78 Ga | ~1.5 Ga | 0.07 | [26] |
Novokostantynivka, Kirovograd, Kryvy Rig (Ukraine) | Granitoid, metasediment, and migmatite | ~327,670 | 2.0–2.05 Ga | 1.8–1.7 Ga | 0.14 | [10] |
Poli (Cameroon) | Granitoids | 25,000 | 550–530 Ma | 437 Ma | 0.1 | [39] |
Lagoa Real, Espinharas (Brazil) | Granite-gneiss | 100,000 | 1.4–1.5 Ga and 500 Ma | 956 ± 59 Ma | 0.3 | [28] |
Chad (Africa) | Granites, diorite, tonalite, and granodiorite | 3190 | 737–638 Ma | 599 ± 4 Ma | 0.02 | [24] |
Labrador (Canada) | Metasediment/metavolcanic | 46,810 | ~2.01 Ga | 1.8–1.6 Ga | 0.08 | [49,50] |
Coles Hill, Virginia (USA) | Tonalite to granite and amphibolite | 59,742 | 480–450 Ma | 250 and 200 Ma | 0.06 | [46] |
NDFB (Rajasthan, India) | Quartzite, quartz biotite schist, and amphibolite | ~11,479 | 1.72 Ga | 830 Ma | 0.07 | [45,48,51] |
3.1. Structures
3.2. Mineralogy and Alteration Products
3.3. Geochemistry of Metasomatized Rocks
Deposit Name | Geochemical Analyses | Reference | ||
---|---|---|---|---|
Depletion | Less Mobile | Enrichment | ||
Longshoushan (China) | Si, K, Rb, Ba, Ta | Mn, Ti, Ga, Zr, Hf, Al, Nb | Na, Ca Mg P, LOI, Fe, Gd, Yb, Mo, Pb, Th, U, Y, Sr, LREE | [30] |
Aricheng (Guyana) | K, Ti, Rb, Ba, Sr | Fe, Mg, Nb | Na, Al, P, Ca, U, Hf, Zr, Mn, Cu, Pb, Y, V, Th, Mo | [27,28] |
Valhalla (Australia) | K, Si, Rb, Ba, Fe, Zr | Al, Ti, Nb | Na, U, V, P, Sr, Y, Ca, Mg, Mo, Hf, Pb, Th, LOI | [26] |
Novokostantynivka, Kirovograd and Kryvy Rig (Ukraine) | Si, Zr, Fe, K, Ba, Sr | Al, Ti, Nb, Ta | Na, U, Hf, P, U, V, Mg, Ca, Rb, Mo, Y, Th | [10] |
Poli (Cameroon) | K, Rb, Nb, Ba, Si | V, Ta | Ti, Al, Mg, Pb, Zn, Ga, Hf, Sr, Fe, Al, P, Zr, U, Na, Ga, LREE, Ca, Zr, Th, LOI | [58] |
Lagoa Real, Espinharas (Brazil) | Si, K, Rb, Ba, Ca, Mo | Al, Ga, Ti, P, Pb | Na, Fe, Sr, Pb, V, U, Zr, Hf, Nb, Ta, Mg, LOI, Y, Th, LREE | [57] |
Coles Hill, Virginia (USA) | K, Rb, Ba, Mg, Fe, Al, Ca | Absent | Na, P, Si, Sr, Zr, Ti, U, Th, Ti, S | [46] |
NDFB (Rajasthan, India) | Si, K, Sr, Hf, Ba | Al, Pb, Fe, Zr, Ga | Na, LREE, Y, Mo, Th, Rb, V, Cr, Ni, U | [45,48,51] |
3.4. Inferences from Fluid Inclusions
3.5. Stable Isotopic Studies
4. Discussion
4.1. Albitization and U Mineralization
4.2. Metasomatism and Mineralizing Fluids
4.3. Dissolution, Transportation, and Deposition of Uranium
4.4. Genetic Model
4.5. Comparison of Indian and Other Na-Metasomatic U Deposits
5. Conclusions
- These deposits are characterized by medium tonnage, low-grade ores, different host rocks (granite/tonalite/metavolcanic sediments), and ages ranging from 2.05 Ga to 450 Ma.
- These deposits experienced two or more episodes of deformation and exhibit two/three prominent metasomatic- and late hydrothermal stages. The second metasomatic stage was responsible for the U mineralization in intensely altered zones.
- The metasomatized rocks exhibit depletion in Si, K, Ba, and Rb and enrichment in Na, Ca, U, Zr, P, V, Y, and Sr. U enrichment is positively correlated with Na, Mo, Cu, Y, Sc, and Sr.
- The hydrothermal fluid involved in these types of U deposits is rich in Na+, Fe2+, Mg2+, Cl−, CO2, H2O, F−, B−, and PO43−. These deposits show variations in pressure–temperature around 0.50 to 2.5 and 70–350 °C, respectively.
- U-precipitation in aqueous fluids is due to changes in physicochemical conditions during fluid–rock interaction and mixing of fluids.
- The deformation features, alteration assemblages, nature of the ore-forming fluid, and geochemical characteristics of the NDFB are similar to other Na-metasomatic U deposits (Guyana, Australia, Ukraine, Cameroon, Brazil, China, and the USA).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruneton, P.; Cuney, M. Geology of Uranium Deposits. In Uranium for Nuclear Power; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081003077. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; ISBN 0-632-01148-3. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. Uranium in natural waters and the environment: Distribution, speciation and impact. Appl. Geochemistry 2023, 148, 105534. [Google Scholar] [CrossRef]
- Bowell, R.J.; Grogan, J.; Hutton-Ashkenny, M.; Brough, C.; Penman, K.; Sapsford, D.J. Geometallurgy of uranium deposits. Miner. Eng. 2011, 24, 1305–1313. [Google Scholar] [CrossRef]
- Pérez, I.; Casas, I.; Martín, M.; Bruno, J. The thermodynamics and kinetics of uranophane dissolution in bicarbonate test solutions. Geochim. Cosmochim. Acta 2000, 64, 603–608. [Google Scholar] [CrossRef]
- Porcelli, D.; Swarzenski, P.W. The behavior of U- and Th-series nuclides in groundwater. Uranium-Ser. Geochem. 2003, 52, 317–361. [Google Scholar] [CrossRef]
- Dahlkamp, F.J. Part I: Typology of Uranium Deposits. In Uranium Deposits of the World; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 3540785574. [Google Scholar]
- Cuney, M.; Kyser, K. Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration; Mineralogical Association of Canada: Québec, QC, Canada, 2008; Volume 39, p. 259. [Google Scholar]
- Cuney, M. The extreme diversity of uranium deposits. Miner. Depos. 2009, 44, 3–9. [Google Scholar] [CrossRef]
- Cuney, M.; Emetz, A.; Mercadier, J.; Mykchaylov, V.; Shunko, V.; Yuslenko, A. Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints. Ore Geol. Rev. 2012, 44, 82–106. [Google Scholar] [CrossRef]
- Pownceby, M.I.; Johnson, C. Geometallurgy of Australian uranium deposits. Ore Geol. Rev. 2014, 56, 25–44. [Google Scholar] [CrossRef]
- Frondel, J.W.; Fleischer, M. A Contribution to the Geology of Uranium Glossary of Uranium- and Thorium-Bearing Minerals, 3rd ed.; US Government Printing Office: Washington, DC, USA, 1967.
- Finch, R.; Murakami, T. Systematics and paragenesis of uranium minerals. In Uranium: Mineralogy, Geochemistry, and the Environment; De Gruyter: Berlin, Germany, 2019; pp. 91–179. [Google Scholar] [CrossRef]
- OECD/IAEA. Uranium 2022: Resources, Production and Demand; Nuclear Energy Agency and International Atomic Energy Agency, OECD Publishing: Paris, France, 2023; pp. 12–13. [Google Scholar]
- Burns, P.C. 2. The Crystal Chemistry of Uranium. In Mineralogy, Geochemistry, and the Environment; Burns, P.C., Finch, R.J., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1999; pp. 23–90. ISBN 9781501509193. [Google Scholar]
- Zhang, M.; Zhong, R.; Yu, C.; Cui, H. The Immobility of Uranium (U) in Metamorphic Fluids Explained by the Predominance of Aqueous U(IV). Minerals 2023, 13, 427. [Google Scholar] [CrossRef]
- Dahlkamp, F.J. Classification of uranium deposits. Miner. Depos. 1978, 13, 83–104. [Google Scholar] [CrossRef]
- Dahlkamp, F.J. Principal aspects of the genesis of uranium deposits. In Uranium Ore Deposits; Springer: Berlin/Heidelberg, Germany, 1993; pp. 41–56. ISBN 978-3-540-53264-4. [Google Scholar]
- IAEA. World of Uranium Deposit; International Atomic Energy Agency: Vienna, Austria, 2016. [Google Scholar]
- World Nuclear Association. The Nuclear Fuel Report: Expanded Summary; World Nuclear Association: London, UK, 2020. [Google Scholar]
- IAEA. Descriptive Uranium Deposit and Mineral System Models; IAEA Publishing Section: Vienna, Austria, 2020; 313p. [Google Scholar]
- Wilde, A. Shear-hosted uranium deposits: A review. Minerals 2020, 10, 954. [Google Scholar] [CrossRef]
- Dahlkamp, F.J. Uranium Deposits of the World: USA and Latin America; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 3540785558. [Google Scholar]
- Vanderhaeghe, O.; André-Mayer, A.-S.; Diondoh, M.; Aurélien, E.; Maryse, O.; Moussa, I.; Michel, C.; Marc, P.; Marieke, V.L. Uranium mineralization associated with late magmatic ductile to brittle deformation and Na–Ca metasomatism of the Pan-African A-type Zabili syntectonic pluton (Mayo-Kebbi massif, SW Chad). Miner. Depos. 2020, 56, 1297–1319. [Google Scholar] [CrossRef]
- Porto da Silveira, C.L.; Schorscher, H.D.; Miekeley, N. The geochemistry of albitization and related uranium mineralization, Espinharas, Paraiba (PB), Brazil. J. Geochem. Explor. 1991, 40, 329–347. [Google Scholar] [CrossRef]
- Polito, P.A.; Kyser, T.K.; Stanley, C. The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia: A description of the alteration assemblage associated with uranium mineralisation in diamond drill hole V39. Miner. Depos. 2009, 44, 11–40. [Google Scholar] [CrossRef]
- Cinelu, S.; Cuney, M. Sodic metasomatism and U Zr mineralization: A model based on the Kurupung batholith (Guyana). Geochim. Cosmochim. Acta Suppl. 2006, 70, A103. [Google Scholar] [CrossRef]
- Alexandre, P. Mineralogy and geochemistry of the sodium metasomatism-related uranium occurrence of Aricheng South, Guyana. Miner. Depos. 2010, 45, 351–367. [Google Scholar] [CrossRef]
- Mishra, P.; Krishnamurthi, R.; Bisht, B.S.; Sinha, D.K. Mineralogical Studies of Metasomatized Host Rocks of Jahaz Uranium Prospect, North Delhi Fold Belt, Rajasthan. J. Geol. Soc. India 2022, 98, 1068–1073. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, S.-Y.; Gu, D.-Z.; Cai, Y.-Q.; Fan, H.-H.; Shi, C.-H.; Hu, C.-N. Geology and fluid geochemistry of the Na-metasomatism U deposits in the Longshoushan uranium metallogenic belt, NW China: Constraints on the ore-forming process. Ore Geol. Rev. 2020, 116, 103214. [Google Scholar] [CrossRef]
- Dhana Raju, R. Indian Uranium Deposits; Cambridge Scholars Publishing: Newcastle upon Tyne, UK, 2019; ISBN 9781527540460. [Google Scholar]
- Sarangi, A.K. Uranium Resources and Production: Global Availability and Indian Scenario. J. Geol. Soc. India 2022, 98, 877–882. [Google Scholar] [CrossRef]
- Khandelwal, M.K.; Jain, R.C.; Dash, S.K.; Padhi, A.K.; Nanda, L.K. Geological characteristics and ore body modeling of Rohil uranium deposit, District Sikar, Rajasthan. Mem. Geol. Soc. Ind 2010, 76, 75–85. [Google Scholar]
- Wilde, A. Towards a Model for Albitite-Type Uranium. Minerals 2013, 3, 36–48. [Google Scholar] [CrossRef]
- Veríssimo, C.U.V.; Santos, R.V.; Parente, C.V.; De Oliveira, C.G.; Cavalcanti, J.A.D.; Neto, J.d.A.N. The Itataia phosphate-uranium deposit (Ceará, Brazil) new petrographic, geochemistry and isotope studies. J. S. Am. Earth Sci. 2016, 70, 115–144. [Google Scholar] [CrossRef]
- Abd El-Naby, H.H.; Dawood, Y.H. Natural attenuation of uranium and formation of autunite at the expense of apatite within an oxidizing environment, south Eastern Desert of Egypt. Appl. Geochem. 2008, 23, 3741–3755. [Google Scholar] [CrossRef]
- Andreeva, O.V.; Golovin, V.A.; Petrov, V.A. Wall-rock argillic alteration and uranium mineralization of the northwestern Strel’tsovka caldera. Geol. Ore Depos. 2010, 52, 32–45. [Google Scholar] [CrossRef]
- Rout, D.; Krishnamurthi, R.; Sinha, D.K. Mineralogy and paragenesis of the Meso-Proterozoic Rohil uranium deposit, North Delhi Fold Belt, Rajasthan, India. Ore Geol. Rev. 2022, 151, 105204. [Google Scholar] [CrossRef]
- Kouske, A.P.; Gerard, M.; Etame, J.; Kanouo, N.S.; Tchouatcha, M.S.; Ghogomu, T.R.; Cuney, M.; Cheo, S.E.; Ngako, V. Paragenesis, mineral chemical and microtextural studies of uranium bearing minerals in the brecciated albitites U-ores from the Kitongo shear zone, Poli region, northern Cameroon. Int. J. Earth Sci. 2022, 111, 1413–1436. [Google Scholar] [CrossRef]
- Lobato, L.M.; Pimentel, M.M.; Cruz, S.C.P.; Machado, N.; Noce, C.M.; Alkmim, F.F. U-Pb geochronology of the Lagoa Real uranium district, Brazil: Implications for the age of the uranium mineralization. J. S. Am. Earth Sci. 2015, 58, 129–140. [Google Scholar] [CrossRef]
- Cui, J.-Q.; Yang, S.-Y.; Jiang, S.-Y.; Wang, H.; Zhang, R.-X.; Tang, X.-S.; Yan, Y.-J. The role of uranyl complex decomposition and redox conditions in the precipitation of hydrothermal uranium deposits: Insights from chlorite mineralogy and geochemistry in the Shazhou uranium deposit, Xiangshan, SE China. Geol. Soc. Am. Bull. 2023, 136, 388–402. [Google Scholar] [CrossRef]
- Yadav, O.P.; Saxena, S.K.; Pande, A.K.; Gupta, K.R. Sodic metasomatism-a feature of tectonomagmatic activation in Khetri sub-basin, Rajasthan, India. Geol. Surv. India Spec. Publ. 2004, 72, 301–312. [Google Scholar]
- Jain, R.B.; Yadav, O.P.; Rahman, M.; Fahmi, S.; Sharma, D.K.; Singh, G.; Thippeswamy, S. Petrography and geochemistry of the radioactive albitites and their genesis: Maonda area, north Rajasthan. J. Geol. Soc. India 1999, 53, 407–415. [Google Scholar]
- Yadav, O.P.; Nanda, L.K.; Jagadeesan, P.; Panigrahi, B. Concealed uranium mineralization in Hurra ki Dhani-Maota-Jahaz sector, North Delhi Fold Belt, Rajasthan, India-An exploration Strategy. Expl. Res. Atom. Min. 2010, 20, 43–50. [Google Scholar]
- Jain, A.K.; Padhi, A.K.; Kumar, K.; Saxena, A.; Kothari, P.K.; Giridhar, G.V.; Purohit, R.K.; Nanda, L.K.; Rai, A.K. Geology, petrology and trace element geochemistry of uranium mineralisation of Jahaj area, Khetri sub-basin, Delhi Supergroup, Jhunjhun District, Rajasthan, India. Expl. Res. Atom. Min. 2016, 26, 91–103. [Google Scholar]
- Hall, S.M.; Beard, J.S.; Potter, C.J.; Bodnar, R.J.; Neymark, L.A.; Paces, J.B.; Johnson, C.A.; Breit, G.N.; Zielinksi, R.A.; Aylor, G.J. The Coles Hill Uranium Deposit, Virginia, USA: Geology, Geochemistry, Geochronology, and Genetic Model. Econ. Geol. 2022, 117, 273–304. [Google Scholar] [CrossRef]
- Turpin, L.; Maruejol, P.; Cuney, M. U-Pb, Rb-Sr and Sm-Nd chronology of granitic basement, hydrothermal albitites and uranium mineralization (Lagoa Real, South-Bahia, Brazil). Contrib. Miner. Pet. 1988, 98, 139–147. [Google Scholar] [CrossRef]
- Padhi, A.K.; Mukherjee, M.K.; Tripathi, B.K.; Pande, D.; Bisht, B.S. Polymetallic Uranium Mineralisation in Rohil, Rajasthan, Western India: Insights from Mode of Occurrences, Structural Controls, Alteration Geochemistry and Exploration. Minerals 2023, 13, 555. [Google Scholar] [CrossRef]
- Sparkes, G.W.; Dunning, G.R.; Langille, A. The Michelin Deposit: An Example of Albitite-Hosted Uranium Mineralization within the Central Mineral Belt of Labrador. Gov. Nfld. Labrador Dep. Nat. Resour. Geol. Surv. Can. 2017, 17-1, 219–238. [Google Scholar]
- Duffett, C.L.; Potter, E.G.; Petts, D.C.; Acosta-Gongóra, P.; Cousens, B.L.; Sparkes, G.W. The evolution of metasomatic uranium ore systems in the Kitts-Post Hill belt of the Central Mineral Belt, Labrador, Canada. Ore Geol. Rev. 2020, 126, 103720. [Google Scholar] [CrossRef]
- Roy, M.; Sunilkumar, T.S.; Kumar, S.; Bhairam, C.L.; Parihar, P.S. Ore mineralogy and mineral-chemistry of uranium mineralisation, and geochemistry of metasomatised calc-silicate rocks at Raghunathpura, Mahendragarh district, Haryana. J. Geol. Soc. India 2016, 87, 691–705. [Google Scholar] [CrossRef]
- Lobato, L.M.; Fyfe, W.S. Metamorphism, metasomatism, and mineralization at Lagoa real, Bahia, Brazil. Econ. Geol. 1990, 85, 968–989. [Google Scholar] [CrossRef]
- Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J. Struct. Geol. 2002, 24, 1861–1884. [Google Scholar] [CrossRef]
- MacLean, W.H.; Barrett, T.J. Lithogeochemical techniques using immobile elements. J. Geochem. Explor. 1993, 48, 109–133. [Google Scholar] [CrossRef]
- Grant, J.A. Isocon analysis: A brief review of the method and applications. Phys. Chem. Earth 2005, 30, 997–1004. [Google Scholar] [CrossRef]
- MacLean, W.H.; Kranidiotis, P. Alteration: Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Marques, C.; Cabral, A.R.; Rios, F.J. Whole-rock chemistry of the Gameleira I uranium deposit, Lagoa Real, Brazil. Geochemistry 2021, 81, 125677. [Google Scholar] [CrossRef]
- Kouske, A.P.; Suh, C.E.; Ghogomu, R.T.; Ngako, V. Na-Metasomatism and Uranium Mineralization during a Two-Stage Albitization at Kitongo, Northern Cameroon: Structural and Geochemical Evidence. Int. J. Geosci. 2012, 03, 258–279. [Google Scholar] [CrossRef]
- Bastrakov, E.N.; Jaireth, S.; Mernagh, T.P. Solubility of Uranium in Hydrothermal Fluids at 25° to 300 °C: Implications for the Formation of Uranium Deposits; Geoscience Australia Record 2010/29; Geoscience Australia: Canberra, Australia, 2010; ISBN 9781921781278.
- Kaur, P.; Chaudhri, N.; Hofmann, A.W.; Raczek, I.; Okrusch, M.; Skora, S.; Baumgartner, L.P. Two-Stage, Extreme Albitization of A-type Granites from Rajasthan, NW India. J. Petrol. 2012, 53, 919–948. [Google Scholar] [CrossRef]
- Skirrow, R.G.; Jaireth, S.; Huston, D.L.; Bastrakov, E.N.; Schofield, A.; Van Der Wielen, S.E.; Barnicoat, A.C. Uranium Mineral Systems: Processes, Exploration Criteria and a New Deposit Framework. Geosci. Aust. Rec. 2009, 20, 44. [Google Scholar]
- Peiffert, C.; Nguyen-Trung, C.; Cuney, M. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-NaX (X = Cl, F) system at 770 °C, 2 kbar. Geochim. Cosmochim. Acta 1996, 60, 1515–1529. [Google Scholar] [CrossRef]
- Zharikov, V.A.; Ivanov, I.P.; Omel’yanenko, B.I.; Red’kin, A.F.; Yudintsev, S.V. Experimental study of the solubility of uraninite in granitic melts and fluid solutions at high pressures and temperatures. Int. Geol. Rev. 1987, 29, 997–1004. [Google Scholar] [CrossRef]
- Romberger, S.B. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300 °C: Geological implications. In Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources; Springer: Dordrecht, The Netherlands, 1984; pp. 12–17. [Google Scholar] [CrossRef]
- Cox, S.F. Antitaxial crack-seal vein microstructures and their relationship to displacement paths. J. Struct. Geol. 1987, 9, 779–787. [Google Scholar] [CrossRef]
- Oliver, N.H.S. Linking of regional and local hydrothermal systems in the mid-crust by shearing and faulting. Tectonophysics 2001, 335, 147–161. [Google Scholar] [CrossRef]
- Xing, Y.; Mei, Y.; Etschmann, B.; Liu, W.; Brugger, J. Uranium Transport in F-Cl-Bearing Fluids and Hydrothermal Upgrading of U-Cu Ores in IOCG Deposits. Geofluids 2018, 2018, 6835346. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Wang, F.; White, N.C.; Zhou, T. Release of uranium from uraninite in granites through alteration: Implications for the source of granite-related uranium ores. Econ. Geol. 2021, 116, 1115–1139. [Google Scholar] [CrossRef]
S.No. | Type of Deposit | Type Area | Age of U-Ore (Ma) | Deposit Subtype |
---|---|---|---|---|
1. | Intrusive | Rossing, (Namibia) | ~500 | 1.1. Anatectic |
1.2. Plutonic | ||||
2. | Granite-related | Xiazhuang (China) | ~1300 | 2.1. Endogranitic |
2.2. Perigranitic | ||||
3. | Polymetallic breccia complex | Olympic Dam (Australia) | ~1400–1300 | Not applicable |
4. | Volcanic-related | Streltsovskoye (Russia) | ~125 to ~70 | 4.1. Structure-bound |
4.2. Stratabound | ||||
4.3. Volcano-sedimentary | ||||
5. | Metasomatite | Kirovograd (Ukraine) | ~1800–1400 | 5.1. Na-metasomatite |
5.2. K-metasomatite | ||||
5.3. Skarn | ||||
6. | Metamorphite | Forstau (Austria) Jaduguda (India) | 1600 | 6.1. Stratabound |
6.2. Structure-bound | ||||
6.3. Marble-hosted | ||||
7. | Proterozoic unconformity | McArthur River (Canada) Lambapur and Chitrial (India) | 1300 | 7.1. Unconformity-contact |
7.2. Basement-hosted | ||||
7.3. Stratiform fracture | ||||
8. | Collapse breccia pipe | Arizona (USA) | 260–200 | Not applicable |
9. | Sandstone | Colorado (USA) Domisiat (India) | 132 | 9.1. Basal channel |
9.2. Tabular | ||||
9.3. Roll-front | ||||
9.4. Tectonic-lithologic | ||||
9.5. Mafic dykes/sills | ||||
10. | Quartz-pebble conglomerate | Elliot Lake (Canada) Witwatersrand (South Africa) | ~2000 | 10.1. U dominant |
10.2. Au-dominant | ||||
11. | Surficial | Heinrich (Namibia) Yeelerie (Australia) | <65 | 11.1. Peat bog |
11.2. Fluvial valley | ||||
11.3. Lacustrine-playa | ||||
11.4. Pedogenic | ||||
12. | Lignite-coal | North Dakota (USA) | 17–11 | 12.1. Stratitorm |
12.2. Fracture-controlled | ||||
13. | Carbonate | Tummalapalle (India) Todilto District (USA) | 1900–2000 | 13.1. Stratabond |
13.2. Cataclastic | ||||
13.3. Palaeokarst | ||||
14. | Phosphate | Mangyshlak (Kazakhstan) | ~590 | 14.1 Organic phosphorite |
14.2. Minerochemical phosphorite | ||||
14.3. Continental phosphate | ||||
15. | Black shale | Haggan (Sweden) | 525 | 15.1. Stratiform |
15.2. Stockwork |
Deposit Name | Mineralogy of Parent Rocks | Mineralogy of Altered Rocks | Major Ore Mineralization | Metasomatic-Hydrothermal Stages | Reference |
---|---|---|---|---|---|
Longshoushan (China) | K-feldspar, Pl, Bt, and Qz | Ab, Chl, Ant, Cal, Ap, and Qz | Py, Ur, Hem, Mol, Ccp, REE mineral, and secondary uranium | Na, main U mineralization, post, and supergene mineralization | [30] |
Aricheng (Guyana) | Qz, K-feldspar, Pl, Bt, Ms, and Ttn | Ab, Ttn, Chl, Bt, Ap, Cal, and Wo | Mag, Rt, Cof, Ur, Hem, Gn, Bn, and Lm | Na, chlorite, main ore, post-ore, oxidation | [28] |
Mount Isa, Valhalla (Australia) | Ep, Act, Ab, Cal, Ttn, Chl, and Mag | Chl, Cal, Ab, Do, Chl, Ap, and Ant | Hem, Ur, Py, Ccp, and Gn | Early, main, and late | [26] |
Novokostantynivka, Kirovograd, Kryvy Rig (Ukraine) | Alm, Zrn, Ap, Mnz, Olg, Bt, Mc, Qz, Mag, and Ilm | Ab, Chl, Cal, Rbk, Aeg, Adr, and Phl | Rt, Py, Ttn, Hem, Cof, Ur, and Br | Na, Ca-Mg, K, and late chlorite epidote | [10] |
Poli (Cameroon) | Qz, K-feldspar, Pl, Amp, Bt, Mnz, Ttn, Zrn, and Mag | Ab, Rbk, Aeg, Cal, and Ep | Mag, Hem, Ur, Cof, U-Zr-Si phase, and U-Ti phase | Na-1, and Na-2 | [39] |
Lagoa Real, Espinharas (Brazil) | Mc, Pl, Qz, Amp, Ttn, Aln, and Ap | Ab, Cal, Rbk, Chl, Ap, Xmt, and Chl | Py, Hem, and Cof | Early, and late | [25,40,52] |
Chad (Africa) | Qz, Pl, Or, Bt, Hst, Mag, Zrn, and Mnz | Ab, Ep, Cal, Ser, Chl, Ap, and Rbk | Ur, Rt, Ttn, and Bn | Na, and Na-Ca | [24] |
Labrador (Canada) | Amp, Pyx, and Adr | Ab, Amp, Pyx, Bt, Chl, and Cal | Ccp, Py, Mol, Rt, Ur, Cof, REE, Mag, and Hem | Absent | [49,50] |
Coles Hill, Virginia (USA) | Pl, Mag, Ilm, Aln, Ccp, Zrn, Ms, Mnz, Qz, and Ap | Ab, Chl, Rbk, Ser, Cal, Ap, Qz, and clay | Ilm, Py, Hem, Sp, Ur, and Bn | Na, U mineralization, and late-stage | [46] |
NDFB (Rajasthan, India) | Qz, Ann, Ms, Hbl, An, Byt, Alm, St, Crn, and Ilm | Ab, chl, Bt, Frgp, Cal, Act, Ser, Ap, and Qz | Py, Ccp, Py, Ur, Rt, Ttn, Mol, and Sp | Early Na, Na-Ca-Mg, and K | [29,33,38] |
Deposit Name | Host Mineral | Homogenization T (°C) | Salinity (wt% NaCl eqv.) | Trapping Pressure (kbar) | Type and Composition of Fluid | Reference |
---|---|---|---|---|---|---|
Longshoushan (China) | Calcite | 70–288 | 0.7–11.5 | 1.6–2.5 | Aqueous; Na+, Fe2+, Mg2+, Cl−, H2O | [30] |
Aricheng (Guyana) | Albite, carbonate | 50 to 350 | Low saline | Absent | Absent | [27] |
Novokostantynivka (Ukraine) | Calcite | 131 to 198 | 14.3–20.8 | ~0.50 | Aqueous; NaCl, H2O | [10] |
Coles Hill, Virginia (USA) | Quartz, calcite, albite, apatite | ~200 | Absent | Absent | Aqueous; NaCl, H2O, P | [46] |
Country | Deposit Name | Studied Mineral | δ18O (SMOW) ‰ | δD (SMOW) ‰ | δ18O (SMOW) ‰ | δ13C (PDB) ‰ | Source of Fluid | Reference |
---|---|---|---|---|---|---|---|---|
O-H Isotopic Values | C-O Isotopic Values | |||||||
China | Longshoushan | Calcite (Main ore) | Absent | Absent | 5.6 to 13.3 | −6.3 to −1.5 | Meteoric | [30] |
Guyana | Aricheng | Calcite (Pre-ore) | 8.4 to 11.3 | Absent | Absent | Absent | Magmatic | [28] |
Chlorite (Pre-ore) | 5.3 to 5.8 | −40 to −46 | Absent | Absent | ||||
Zircon (Main ore) | Absent | Absent | Absent | Absent | ||||
Australia | Valhalla | Calcite (Main ore) | 8 to 9 | Absent | 10.6 to 12.8 | −2.8 to −0.7 | Magmatic | [26] |
Ukraine | Novokostantynivka Vatutinske Michurinske Severynka Zhovta Richka | Albite (fluid inclusion) | −3.1 to 0.7 | −180 to −38 | Absent | Absent | Meteoric/ formation | [10] |
Calcite-2 (Main ore) | Absent | Absent | 8.1 to 26.0 | −13.5 to −0.4 | Marine and organic | |||
USA | Coles Hill, Virginia | Whole-rock sample | 9.4 to 12.7 | Absent | Absent | Absent | Meteoric/ connate | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, P.; Sati, M.; Krishnamurthi, R. A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples. Geosciences 2024, 14, 304. https://doi.org/10.3390/geosciences14110304
Mishra P, Sati M, Krishnamurthi R. A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples. Geosciences. 2024; 14(11):304. https://doi.org/10.3390/geosciences14110304
Chicago/Turabian StyleMishra, Priyanka, Manju Sati, and Rajagopal Krishnamurthi. 2024. "A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples" Geosciences 14, no. 11: 304. https://doi.org/10.3390/geosciences14110304
APA StyleMishra, P., Sati, M., & Krishnamurthi, R. (2024). A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples. Geosciences, 14(11), 304. https://doi.org/10.3390/geosciences14110304