Investigation of the Effect of Integrated Offset, GPS, and InSAR Data in the Stochastic Source Modeling of the 2002 Denali Earthquake
Abstract
:1. Introduction
2. Seismotectonic Setting
3. Data and Stochastic Source Modeling of the 2002 Denali Earthquake
3.1. Dataset Adopted in This Study
3.2. Source Modeling of the 2002 Denali Earthquake
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yang, S.; Mavroeidis, G.P. Bridges crossing fault rupture zones: A review. Soil Dyn. Earthq. Eng. 2018, 113, 545–571. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, X.; Zhang, H.; Gu, X.; Fang, M.; Wang, L.; Adeeb, S. Reliability evaluation method for pipes buried in fault areas based on the probabilistic fault displacement hazard analysis. J. Nat. Gas Sci. Eng. 2021, 85, 103698. [Google Scholar] [CrossRef]
- Garcia, F.E. Discrete element analysis of earthquake surface fault rupture through layered media. Soil Dyn. Earthq. Eng. 2022, 152, 107021. [Google Scholar] [CrossRef]
- Melissianos, V.E.; Danciu, L.; Vamvatsikos, D.; Basili, R. Fault displacement hazard estimation at lifeline–fault crossings: A simplified approach for engineering applications. Bull. Earthq. Eng. 2023, 21, 4821–4849. [Google Scholar] [CrossRef]
- Shantz, T.; Alameddine, F.; Simek, J.; Yashinsky, M.; Merriam, M.; Keever, M. Evaluation of fault rupture hazard mitigation. In Proceedings of the 7th National Seismic Conference on Bridges and Highways, Oakland, CA, USA, 20–22 May 2013. [Google Scholar]
- Stepp, J.C. Probabilistic seismic hazard analyses for fault displacement and ground motions at Yucca Mountain, Nevada. Earthq. Spectra 2001, 17, 113–151. [Google Scholar] [CrossRef]
- Braun, J.B. Probabilistic Fault Displacement Hazards of the Wasatch Fault. Master’s Thesis, University of Utah, Salt Lake City, UT, USA, 2000. [Google Scholar]
- Youngs, R.R.; Arabasz, W.J.; Anderson, R.E.; Ramelli, A.R.; Ake, J.P.; Slemmons, D.B.; McCalpin, J.P.; Doser, D.I.; Fridrich, C.J.; Swan, F.H., III; et al. A Methodology for Probabilistic Fault Displacement Hazard Analysis (PFDHA). Earthq. Spectra 2003, 19, 191–219. [Google Scholar] [CrossRef]
- Moss, R.; Ross, Z. Probabilistic Fault Displacement Hazard Analysis for Reverse Faults. Bull. Seismol. Soc. Am. 2011, 101, 1542–1553. [Google Scholar] [CrossRef]
- Takao, M.; Tsuchiyama, J.; Annaka, T.; Kurita, T. Application of Probabilistic Fault Displacement Hazard Analysis in Japan. J. Jpn. Assoc. Earthq. Eng. 2013, 13, 17–36. [Google Scholar] [CrossRef]
- Thompson, S. Fault Displacement Hazard Characterization for OpenSRA, California Energy Commission. 2021. Available online: https://peer.berkeley.edu/sites/default/files/cec_fault_displacement_hazard_report_final-draft_2021-02-26_web.pdf (accessed on 24 September 2024).
- Katona, T.J. Improved Simplified Engineering Fault Displacement Hazard Evaluation Method for On-Fault Sites. Appl. Sci. 2024, 14, 8399. [Google Scholar] [CrossRef]
- Jonathan, B.; Norman, A.; Jennie, W.L.; Largent, M. Performance-Based Earthquake Engineering Assessment Tool for Gas Storage and Pipeline Systems, California Energy Commission, Publication Number: CEC-500-2024-038. 2020. Available online: https://www.energy.ca.gov/sites/default/files/2024-05/CEC-500-2024-038.pdf (accessed on 24 September 2024).
- Triantafyllaki, A.; Loukidis, D.; Papanastasiou, P. Design of offshore gas pipelines against active tectonic fault movement. Soil. Dyn. Earthq. Eng. 2023, 166, 107702. [Google Scholar] [CrossRef]
- Wesnousky, S.G. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic hazard analysis and the earthquake rupture process. Bull. Seismol. Soc. Am. 2008, 98, 1609–1632. [Google Scholar] [CrossRef]
- Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D. Fault Displacement Hazard for Strike-Slip Faults. Bull. Seismol. Soc. Am. 2011, 101, 805–825. [Google Scholar] [CrossRef]
- Nurminen, F.B. Probability of Occurrence and Displacement Regression of Distributed Surface Rupturing for Reverse Earthquakes. Front. Earth Sci. 2020, 8, 581605. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmithn, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Michetti, M.A.; Audemard, M.F.; Marco, S. Future trends in paleoseismology: Integrated study of the seismic landscape as a vital tool in seismic hazard analyses. Tectonophysics 2005, 408, 3–21. [Google Scholar] [CrossRef]
- Hanks, T.C.; Bakun, W.H. A Bilinear Source-Scaling Model for M–log A Observations. Bull. Seismol. Soc. Am. 2002, 92, 1841–1846. [Google Scholar] [CrossRef]
- Shaw, B.E. Constant stress drop from small to great earthquakes in magnitude-area scaling. Bull. Seismol. Soc. Am. 2009, 98, 871–875. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, R.; Ludwig, L.G.; Akciz, S.O. Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault. Science 2010, 327, 1119–1122. [Google Scholar] [CrossRef]
- Gold, R.D.; Cowgill, E. Deriving fault-slip histories to test for secular variation. Earth Planet. 2011, 301, 52–64. [Google Scholar] [CrossRef]
- Allen, T.; Hayes, G. Alternative Rupture-Scaling Relationships for Subduction Interface and Other Offshore Environments. Bull. Seismol. Soc. Am. 2017, 107, 1240–1253. [Google Scholar] [CrossRef]
- Darragh, R.; Bolt, B. Characterization of Source Parameters and Some Empirical Relations between Them for Kachchh Region, Gujarat, India: Implication of January 26, 2001 Bhuj Earthquake and Its Aftershock Sequence. Bull. Seismol. Soc. Am. 1987, 77, 1479–1484. [Google Scholar]
- Henry, C.; Das, S. Aftershock zones of large shallow earthquakes: Fault dimensions, aftershock area expansion, and scaling relations. Geophys. J. Int. 2001, 147, 272–293. [Google Scholar] [CrossRef]
- Hartzell, S. Comparison of seismic waveform inversion results for the rupture history of a finite fault: Application to the 1986 North Palm Springs, California, earthquake. J. Geophys. Res. 1989, 94, 7515–7534. [Google Scholar] [CrossRef]
- Beresnev, I.A. Uncertainties in finite-fault slip inversions: To what extent to believe? (A critical review). Bull. Seismol. Soc. Am. 2003, 93, 2445–2458. [Google Scholar] [CrossRef]
- Hayes, G.P. Thefinite, kinematic rupture properties of great-sized earthquakes since 1990. Earth Planet. Sci. Lett. 2017, 468, 94–100. [Google Scholar] [CrossRef]
- Goda, K.; Shoaeifar, P. Prospective Fault Displacement Hazard Assessment for Leech River Valley Fault Using Stochastic Source Modelling and Okada Fault Displacement Equations. GeoHazards 2022, 3, 277–293. [Google Scholar] [CrossRef]
- Ozacar, A.A.; Beck, S.L.; Christensen, D.H. Source process of the 3 November 2002 Denali fault earthquake (central Alaska) from teleseismic observations. Geophys. Res. Lett. 2003, 30, 1638. [Google Scholar] [CrossRef]
- Frankel, A. Rupture process of the M 7.9 Denali Fault, Alaska, earthquake: Subevents, directivity, and scaling of high-frequency ground motions. Bull. Seismol. Soc. Am. 2004, 94, S234–S255. [Google Scholar] [CrossRef]
- Lu, Z.; Wright, T.J.; Wicks, C. Deformation of the 2002 Denali fault earthquakes, Alaska, mapped by Radarsat-1 interferometry. EOS 2003, 84, 425–431. [Google Scholar] [CrossRef]
- Wright, T.; Lu, Z.; Wicks, C. Constraining the Slip Distribution and Fault Geometry of the Mw 7.9, November 3, 2002, Denali Fault Earthquake with Interferometric Synthetic Aperture Radar and Global Positioning System Data. Bull. Seismol. Soc. Am. 2004, 94, 175–189. [Google Scholar] [CrossRef]
- Dreger, D.S.; Oglesby, D.D.; Harris, R.; Ratchkovski, N.; Hansen, R. Kinematic and dynamic rupture models of the November 3, 2002 Mw7.9 Denali, Alaska, earthquake. Geophys. Res. Lett. 2004, 31, L04605. [Google Scholar] [CrossRef]
- Oglesby, D.D.; Dreger, D.S.; Harris, R.A.; Ratchkovski, N.; Hansen, R. Inverse kinematic and forward dynamic models of the 2002 Denali Fault earthquake, Alaska. Bull. Seismol. Soc. Am. 2004, 94, S214–S233. [Google Scholar] [CrossRef]
- Asano, K.; Iwata, T.; Irikura, K. Estimation of Source Rupture Process and Strong Ground Motion Simulation of the 2002 Denali, Alaska, Earthquake. Bull. Seismol. Soc. Am. 2005, 95, 1701–1715. [Google Scholar] [CrossRef]
- Hreinsdóttir, S.; Freymueller, J.T.; Fletcher, H.J.; Larsen, C.F.; Bürgmann, R. Co-seismic slip distribution of the 2002 Mw7.9 Denali Fault earthquake, Alaska, determined from GPS measurements. Geophys. Res. Lett. 2003, 30, 1670. [Google Scholar] [CrossRef]
- Hreinsdóttir, S.; Freymueller, J.T.; Bürgmann, R.; Mitchell, J. Co-seismic deformation of the 2002 Denali Fault earthquake: Insights from GPS measurements. J. Geophys. Res. 2006, 111, B03308. [Google Scholar] [CrossRef]
- Fabris, M.; Battaglia, M.; Chen, X.; Menin, A.; Monego, M.; Floris, M. An Integrated InSAR and GNSS Approach to Monitor Land Subsidence in the Po River Delta (Italy). Remote Sens. 2022, 14, 5578. [Google Scholar] [CrossRef]
- Sorensen, S.P.; Meyer, K.J.; Carson, P.A.; Hall, W.J. Response of the Above-Ground Trans-Alaska Pipeline to the Magnitude 7.9 Denalli Fault Earthquake. In Proceedings of the 6th U.S. Conference and Workshop on Lifeline Earthquake Engineering, ASCE, Long Beach, CA, USA, 10–13 August 2003. [Google Scholar]
- Eberhart-Phillips, D.; Haeussler, P.J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; et al. The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event. Science 2003, 300, 1113–1118. [Google Scholar] [CrossRef]
- Lanphere, M.A. Displacement history of the Denali fault system, Alaska and Canada. Can. J. Earth Sci. 1978, 15, 817–822. [Google Scholar] [CrossRef]
- Haeussler, P.J.; Schwartz, D.P.; Dawson, T.E.; Stenner, H.D.; Lienkaemper, J.J.; Sherrod, B. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska. Bull. Seismol. Soc. Am. 2004, 94, S23–S52. [Google Scholar] [CrossRef]
- Haeussler, P.J. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska; Digital Data: U.S. Geological Survey Data Series 2009, 422. Available online: http://pubs.usgs.gov/ds/422/ (accessed on 17 October 2023).
- Fletcher, H.J. Tectonics of Interior Alaska from GPS Measure-Ments. Ph.D. Thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 2002. [Google Scholar]
- Parashar, S.; Langham, E.; McNally, J.; Ahmed, S. RADARSAT mission requirements and concept. Can. J. Remote Sens. 1993, 19, 280–288. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. J. Geod. 2012, 86, 1–13. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Goda, K.; Yasuda, T.; Mori, N.; Maruyama, T. New Scaling Relationships of Earthquake Source Parameters for Stochastic Tsunami. Coast. Eng. J. 2016, 58, 1650010–1650011. [Google Scholar] [CrossRef]
- Mai, P.M.; Beroza, G.C. A spatial random field model to characterize complexity in earthquake slip. J. Geophys. Res. 2002, 107, ESE-10. [Google Scholar] [CrossRef]
- Goda, K.; Mai, P.M.; Yasuda, T.; Mori, N. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space 2014, 66, 105. [Google Scholar] [CrossRef]
- Beauducel, F. Okada: Surface Deformation Due to a Finite Rectangular Source. MATLAB Central File Exchange. 2024. Available online: https://www.mathworks.com/matlabcentral/fileexchange/25982-okada-surface-deformation-due-to-a-finite-rectangular-source (accessed on 27 September 2024).
Source Parameter | a | b | c |
---|---|---|---|
Length L (km) | −2.162 | 0.549 | 0.172 |
Width W (km) | −0.689 | 0.289 | 0.146 |
Mean slip Da (m) | −4.361 | 0.624 | 0.250 |
Maximum slip Dm (m) | −3.739 | 0.615 | 0.225 |
Box–Cox parameter λBC | Normal variable with [mean = 0.312, standard deviation = 0.278] | ||
Along-strike correlation length CLL (km) | −2.466 | 0.511 | 0.220 |
Along-dip correlation length CLW (km) | −1.335 | 0.303 | 0.159 |
Hurst number H | 0.99 with 43% probability/normal distribution with 57% probability and [mean = 0.714, standard deviation = 0.172] |
Correlation Coefficient | ||||||
---|---|---|---|---|---|---|
1.0 | 0.139 | −0.595 | −0.516 | 0.734 | 0.249 | |
0.139 | 1.0 | −0.680 | −0.545 | 0.035 | 0.826 | |
−0.595 | −0.680 | 1.0 | 0.835 | −0.374 | −0.620 | |
−0.516 | −0.545 | 0.835 | 1.0 | −0.337 | −0.564 | |
0.734 | 0.035 | −0.374 | −0.337 | 1.0 | 0.288 | |
0.249 | 0.826 | −0.620 | −0.564 | 0.288 | 1.0 |
No. of Segments | Strike (Degree) | Dip (Degree) | Rake (Degree) | Length (km) | Width (km) | Size of Subfaults (km) | |
---|---|---|---|---|---|---|---|
Wright et al. [34] | 9 | SG 1-2: 249.6° Denali 1: 98.3° Denali 2: 105.1° Denali 3: 119° Denali 4: 108.4° Denali 5: 114.9° Denali 6: 116.8° Denali 7: 151.2° TC: 135.3° | SG 1-2: 41° Denali-TC: 90° | SG 1-2: 84.6° Denali-TC: 180° | SG 1-2: 28.5 Denali 1: 47 Denali 2: 20.3 Denali 3: 22.2 Denali 4: 31.6 Denali 5: 39.6 Denali 6: 51.1 Denali 7: 20.8 TC: 49.7 | SG 1-2: 10 Denali-TC: 16 | Strike direction: SG: 4.06 Denali 1: 3.92 Denali 2: 4.06 Denali 3: 3.7 Denali 4: 3.95 Denali 5: 3.96 Denali 6: 3.96 Denali 7: 4.16 TC: 4.14 Dip direction: SG: 2.5 Denali-TC: 4 |
Asano et al. [37] | 4 | SG 1-2: 262° Denali 1: 279° Denali 2: 298° TC: 315° | SG 1-2: 48° Denali-TC: 86° | SG 1-2: 174.8° Denali-TC: 122° | SG 1-2: 31.5 Denali 1: 72 Denali 2: 126 TC: 63 | 18 | Both strike and dip directions: 4.5 |
Hreinsdóttir et al. [39] | 11 | SG 1: 262° SG 2: 262° Denali 1: 261° Denali 2: 279° Denali 3: 286° Denali 4: 300° Denali 5: 290° Denali 6: 297° Denali 7: 300° TC 1: 335° TC 2: 320° | SG 1: 19° SG 2: 48° Denali-TC: 89.99° | SG 1-2: 84.6° Denali-TC: 180° | SG 1-2: 33 Denali 1: 32 Denali 1: 40 Denali 1: 146 TC: 83 | SG 1: 6.14 SG 2: 8.88 Denali-TC: 18 | Both strike and dip directions: 3 |
Segment Number | Segment | Strike (Degree) | Dip (Degree) | Rake (Degree) | Length (km) | Width (km) |
---|---|---|---|---|---|---|
1 | Susitna Glaciers | 248° | 48° | 135° | 48 | 18 |
2 | Denali-1 | 270° | 85° | 175° | 32 | 18 |
3 | Denali-2 | 284° | 85° | 175° | 40 | 18 |
4 | Denali-3 | 299° | 85° | 175° | 147 | 18 |
5 | Totschunda | 326° | 85° | 175° | 81 | 18 |
Model-Weighted Error | Wright et al. [34] | Asano et al. [37] | Hreinsdóttir et al. [39] | Baseline of Benchmark Studies | SSM-3748 (Offset) | SSM-4813 (GPS) | SSM-1432 (InSAR) | SSM- 3979 (Integrated) |
---|---|---|---|---|---|---|---|---|
Offset H | 213.36 | 77.58 | 61.6 | 61.6 | 47.72 | 55.24 | 104.68 | 55.01 |
Offset Z | 11.73 | 7.78 | 25.87 | 7.78 | 6.40 | 7.80 | 7.94 | 6.78 |
GPS H | 19.28 | 72.50 | 3.43 | 3.43 | 5.81 | 2.58 | 39.31 | 3.00 |
GPS Z | 2.66 | 2.23 | 1.71 | 1.71 | 1.15 | 1.04 | 1.55 | 1.13 |
InSAR | 2.28 | 4.4 | 4.99 | 2.06 | 1.27 | 1.87 | 0.52 | 1.53 |
Total | 249.31 | 164.49 | 97.60 | 76.58 | 62.35 | 68.53 | 154.00 | 67.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoaeifar, P.; Goda, K. Investigation of the Effect of Integrated Offset, GPS, and InSAR Data in the Stochastic Source Modeling of the 2002 Denali Earthquake. Geosciences 2024, 14, 300. https://doi.org/10.3390/geosciences14110300
Shoaeifar P, Goda K. Investigation of the Effect of Integrated Offset, GPS, and InSAR Data in the Stochastic Source Modeling of the 2002 Denali Earthquake. Geosciences. 2024; 14(11):300. https://doi.org/10.3390/geosciences14110300
Chicago/Turabian StyleShoaeifar, Parva, and Katsuichiro Goda. 2024. "Investigation of the Effect of Integrated Offset, GPS, and InSAR Data in the Stochastic Source Modeling of the 2002 Denali Earthquake" Geosciences 14, no. 11: 300. https://doi.org/10.3390/geosciences14110300
APA StyleShoaeifar, P., & Goda, K. (2024). Investigation of the Effect of Integrated Offset, GPS, and InSAR Data in the Stochastic Source Modeling of the 2002 Denali Earthquake. Geosciences, 14(11), 300. https://doi.org/10.3390/geosciences14110300