Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of LXH Samples
2.2. Metabolite Extraction from Samples
2.3. UPLC-MS/MS Analytical Conditions
2.4. Data Processing and Metabolite Recognition
2.5. Multivariate Data Analysis
2.6. KEGG Pathway Enrichment Analysis of Differential Metabolites
3. Results
3.1. Identification of Metabolites
3.2. Multivariate Statistical Analysis for Differential Metabolites
3.3. Classification and Screening of Differential Metabolites
3.4. Hierarchical Cluster Analysis
3.5. Correlation Analysis of Metabolites
3.6. KEGG Enrichment Analysis
4. Discussion
4.1. Differential Metabolites Related to Flavonoids
4.2. Differential Metabolites Related to Lipids and Lipid-like Molecules
4.3. Differential Metabolites Related to Phenolic Acids and Organic Acids
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varzakas, T. Microbiology of Fermented Foods and Beverages. Foods 2020, 9, 1660. [Google Scholar] [CrossRef] [PubMed]
- Sanlier, N.; Gokcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Liu, R. Increase of Conjugated Linoleic Acid Content in Milk by Fermentation with Lactic Acid Bacteria. J. Food Sci. 2002, 67, 1731–1737. [Google Scholar] [CrossRef]
- Yu, M.; Xiang, X.; Tan, H.; Zhang, Q.; Shan, Y.; Yang, H. Potential correlation between volatiles and microbiome of Xiang xi sausages from four different regions. Food Res. Int. 2021, 139, 109943. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; He, Z.; Zhang, J. Identification and analysis of major flavor compounds in radish taproots by widely targeted metabolomics. Front. Nutr. 2022, 9, 889407. [Google Scholar] [CrossRef]
- Ramalingam, V.; Song, Z.; Hwang, I. The potential role of secondary metabolites in modulating the flavor and taste of the meat. Food Res. Int. 2019, 122, 174–182. [Google Scholar] [CrossRef]
- Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef]
- Pavagadhi, S.; Swarup, S. Metabolomics for Evaluating Flavor-Associated Metabolites in Plant-Based Products. Metabolites 2020, 10, 197. [Google Scholar] [CrossRef]
- Bagetta, G.; Morrone, L.A.; Rombolà, L.; Amantea, D.; Russo, R.; Berliocchi, L.; Sakurada, S.; Sakurada, T.; Rotiroti, D.; Corasaniti, M.T. Neuropharmacology of the essential oil of bergamot. Fitoterapia 2010, 81, 453–461. [Google Scholar] [CrossRef]
- Ma, Q.G.; Wei, R.R.; Yang, M.; Huang, X.Y.; Wang, F.; Dong, J.H.; Sang, J.P. Isolation and characterization of neolignan derivatives with hepatoprotective and neuroprotective activities from the fruits of Citrus medica L. var. Sarcodactylis Swingle. Bioorg. Chem. 2021, 107, 104622. [Google Scholar] [CrossRef]
- Watanabe, E.; Kuchta, K.; Kimura, M.; Rauwald, H.W.; Kamei, T.; Imanishi, J. Effects of bergamot (Citrus bergamia (Risso) Wright & Arn.) essential oil aromatherapy on mood states, parasympathetic nervous system activity, and salivary cortisol levels in 41 healthy females. Forsch Komplementmed 2015, 22, 43–49. [Google Scholar] [CrossRef]
- Deng, G.; Craft, J.D.; Steinberg, K.M.; Li, P.; Pokharel, S.; Setzer, W. Influence of Different Isolation Methods on Chemical Composition and Bioactivities of the Fruit Peel Oil of Citrus medica L. var. sarcodactylis (Noot.) Swingle. Medicines 2017, 4, 1. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xiao, J.; Liu, J.; Tang, N.; Zhou, A. Variations of volatile flavour compounds in finger citron (Citrus medica L. var. sarcodactylis) pickling process revealed by E-nose, HS-SPME-GC-MS and HS-GC-IMS. Food Res. Int. 2020, 138, 109717. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.M.; Wu, M.H.; Zhou, Y.; Huang, Z.H.; Zhang, Y.; Ma, Z.G. Herbalogical study on original plant and medicinal and edible values of Citri Sarcodactylis Fructus. Zhongguo Zhong Yao Za Zhi 2020, 45, 3997–4003. [Google Scholar] [CrossRef] [PubMed]
- Yaqun, L.; Hanxu, L.; Wanling, L.; Yingzhu, X.; Mouquan, L.; Yuzhong, Z.; Lei, H.; Yingkai, Y.; Yidong, C. SPME-GC-MS combined with chemometrics to assess the impact of fermentation time on the components, flavor, and function of Laoxianghuang. Front. Nutr. 2022, 9, 915776. [Google Scholar] [CrossRef]
- Zuo, L.; Li, J.; Xue, L.; Jia, Q.; Li, Z.; Zhang, M.; Zhao, M.; Wang, M.; Kang, J.; Du, S. Integrated UPLC-MS/MS and UHPLC-Q-orbitrap HRMS Analysis to Reveal Pharmacokinetics and Metabolism of Five Terpenoids from Alpiniae oxyphyllae Fructus in Rats. Curr. Drug Metab. 2021, 22, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Llorach, R.; Favari, C.; Alonso, D.; Aloy, M.G.; Lacueva, C.A.; Sarda, U.S. Comparative metabolite fingerprinting of legumes using LC-MS-based untargeted metabolomics. Food Res. Int. 2019, 126, 108666. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, L.; Xu, C.; Yang, T.; Wang, Y. UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China. LWT 2021, 137, 110382. [Google Scholar] [CrossRef]
- Ghisoni, S.; Lucini, L.; Rocchetti, G.; Chiodelli, G.; Farinelli, D.; Tombesi, S.; Trevisan, M. Untargeted metabolomics with multivariate analysis to discriminate hazelnut (Corylus avellana L.) cultivars and their geographical origin. J. Sci. Food Agric. 2020, 100, 500–508. [Google Scholar] [CrossRef]
- Brigante, F.I.; Podio, N.S.; Wunderlin, D.A.; Baroni, M.V. Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics. Food Chem. 2022, 371, 131355. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Li, Y.; Liu, M.; Ni, K.; Yi, X.; Shi, Y.; Ma, L.; Willmitzer, L.; Ruan, J. Characterization of three different classes of non-fermented teas using untargeted metabolomics. Food Res. Int. 2019, 121, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Xu, X.; Liu, F.; Tian, M.; Xu, X.; Liu, F.; Fan, X.; Pan, S. Untargeted metabolomics reveals predominant alterations in primary metabolites of broccoli sprouts in response to pre-harvest selenium treatment. Food Res. Int. 2018, 111, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Jing, T.; Zhao, M.; Jin, J.; Xu, M.; Chen, Y.; Zhang, S.; Wan, X.; Schwab, W.; Song, C. Untargeted metabolomics coupled with chemometrics analysis reveals potential non-volatile markers during oolong tea shaking. Food Res. Int. 2019, 123, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Pinsorn, P.; Oikawa, A.; Watanabe, M.; Sasaki, R.; Ngamchuachit, P.; Hoefgen, R.; Saito, K.; Sirikantaramas, S. Metabolic variation in the pulps of two durian cultivars: Unraveling the metabolites that contribute to the flavor. Food Chem. 2018, 268, 118–125. [Google Scholar] [CrossRef]
- Septiana, S.; Yuliana, N.D.; Bachtiar, B.M.; Putri, S.P.; Fukusaki, E.; Laviña, W.A.; Wijaya, C.H. Metabolomics approach for determining potential metabolites correlated with sensory attributes of Melaleuca cajuputi essential oil, a promising flavor ingredient. J. Biosci. Bioeng. 2020, 129, 581–587. [Google Scholar] [CrossRef]
- Wu, Z.; Li, H.; Yang, Y.; Zhan, Y.; Tu, D. Variation in the components and antioxidant activity of Citrus medica L. var. sarcodactylis essential oils at different stages of maturity. Ind. Crop. Prod. 2013, 46, 311–316. [Google Scholar] [CrossRef]
- Wiemann, J.; Deckelmann, A.M.; Csuk, R. A remarkably simple and convergent partial synthesis of pomolic acid. Tetrahedron Lett. 2016, 57, 3952–3953. [Google Scholar] [CrossRef]
- López, R.; Bolaños, P.; Guillén, A.; Fernández, M.C.; Ramos, M.; Granados, S.; Milán, A.F.; Caputo, C.; Castillo, C.A.; Estrada, O. Pomolic acid reduces contractility and modulates excitation-contraction coupling in rat cardiomyocytes. Eur. J. Pharmacol. 2019, 851, 88–98. [Google Scholar] [CrossRef]
- Rocha, G.D.G.; Simões, M.; Lúcio, K.A.; Oliveira, R.R.; Kaplan, M.A.C.; Gattass, C.R. Natural triterpenoids from Cecropia lyratiloba are cytotoxic to both sensitive and multidrug resistant leukemia cell lines. Bioorg. Med. Chem. 2007, 15, 7355–7360. [Google Scholar] [CrossRef]
- Sanaye, P.M.; Mojaveri, M.R.; Ahmadian, R.; Jahromi, M.S.; Bahramsoltani, R. Apigenin and its dermatological applications: A comprehensive review. Phytochemistry 2022, 203, 113390. [Google Scholar] [CrossRef] [PubMed]
- Mekawy, A.M.M.; Abdelaziz, M.N.; Ueda, A. Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiol. Biochem. 2018, 130, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, F.; Lian, Y.; Xiao, H.; Zheng, J. Biosynthesis of citrus flavonoids and their health effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 566–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef] [PubMed]
- Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Chen, Z.; Chen, R.; Shen, C. Environmental and Genetic Factors Involved in Plant Protection-Associated Secondary Metabolite Biosynthesis Pathways. Front. Plant Sci. 2022, 13, 877304. [Google Scholar] [CrossRef]
- Pott, D.M.; Osorio, S.; Vallarino, J.G. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front. Plant Sci. 2019, 10, 835. [Google Scholar] [CrossRef] [Green Version]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef]
- Li, J.; Hossain, S.; Ma, H.; Yang, Q.; Gong, X.; Yang, P.; Feng, B. Comparative metabolomics reveals differences in flavonoid metabolites among different coloured buckwheat flowers. J. Food Compos. Anal. 2020, 85, 103335. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, S.; Park, S.M.; Yun, S.H.; Gab, H.S.; Kim, S.S.; Kim, H.J. Comparative Metabolomics Analysis of Citrus Varieties. Foods 2021, 10, 2826. [Google Scholar] [CrossRef]
- Yi, L.; Dong, N.; Liu, S.; Yi, Z.; Zhang, Y. Chemical features of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride revealed by GC-MS metabolomics analysis. Food Chem. 2015, 186, 192–199. [Google Scholar] [CrossRef]
- Wang, H.; Hua, J.; Yu, Q.; Li, J.; Wang, J.; Deng, Y.; Yuan, H.; Jiang, Y. Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing. Food Chem. 2021, 363, 130131. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Qin, M.; Song, L.; Sun, H.; Zhang, H.; Wu, H.; Ren, H.; Liu, H.; Duan, G.; Wang, Y.; et al. Molecular Link in Flavonoid and Amino Acid Biosynthesis Contributes to the Flavor of Changqing Tea in Different Seasons. Foods 2022, 11, 2289. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; Freitas, V.D. Different phenolic compounds activate distinct human bitter taste receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hou, L.; Gao, J.; Li, D.; Tian, Z.; Fan, B.; Wang, F.; Li, S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021, 10, 2294. [Google Scholar] [CrossRef]
- Delgado, R.M.; Zamora, R.; Hidalgo, F.J. Contribution of phenolic compounds to food flavors: Strecker-type degradation of amines and amino acids produced by o- and p-diphenols. J. Agric. Food Chem. 2015, 63, 312–318. [Google Scholar] [CrossRef]
- Ceccaroni, D.; Sileoni, V.; Marconi, O.; Francesco, J.D.; Lee, E.G.; Perretti, G. Specialty rice malt optimization and improvement of rice malt beer aspect and aroma. LWT 2019, 99, 299–305. [Google Scholar] [CrossRef]
- Wannenmacher, J.; Gastl, M.; Becker, T. Phenolic Substances in Beer: Structural Diversity, Reactive Potential and Relevance for Brewing Process and Beer Quality. Compr. Rev. Food Sci. Food Saf. 2018, 17, 953–988. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Zhang, Y.H.; Chen, G.S.; Yin, J.F.; Chen, J.X.; Wang, F.; Xu, Y.Q. Effects of phenolic acids and quercetin-3-O-rutinoside on the bitterness and astringency of green tea infusion. NPJ Sci. Food 2022, 6, 8. [Google Scholar] [CrossRef]
- Colantonio, V.; Ferrão, L.F.; Tieman, D.M.; Bliznyuk, N.; Sims, C.; Klee, H.J.; Munoz, P.; Resende, M.F., Jr. Metabolomic Selection for Enhanced Fruit Flavor. Proc. Natl. Acad. Sci. USA 2022, 119, e2115865119. [Google Scholar] [CrossRef]
Group | Number | Compound | Substance Classification | Secondary Substance Classification | VIP Value | Fold Change | Log2(FC) | Type |
---|---|---|---|---|---|---|---|---|
1 | Apigenin-7-O-neohesperidoside | Flavonoids | Flavonoid | 1.126417 | 44,938.5185 | 15.45566 | Up | |
2 | Orientin-7-O-arabinoside | Flavonoids | Flavonoid carbonoside | 1.126384 | 42,087.037 | 15.36109 | Up | |
3 | Orientin-2″-O-xyloside | Flavonoids | Flavonoid | 1.126273 | 39770 | 15.27939 | Up | |
4 | Kaempferol-3-O-(6″-p-Coumaroyl)glucoside (Tiliroside) | Flavonoids | Flavonols | 1.1264 | 11,743.6296 | 13.51959 | Up | |
JG vs. YS | 5 | Luteolin-6-C-arabinoside-7-O-glucoside | Flavonoids | Flavonoid carbonoside | 1.126356 | 10,588.5185 | 13.37021 | Up |
6 | Iso-glyasperin D | Flavonoids | Dihydroisoflavone | 1.126365 | 0.00017205 | −12.5049 | Down | |
7 | Gancaonin D | Flavonoids | Isoflavones | 1.126295 | 0.00006126 | −13.99465 | Down | |
8 | Licoflavonol * | Flavonoids | Flavonols | 1.126353 | 0.00004100 | −14.57389 | Down | |
9 | 7-Methyllicoricidin | Others | Others | 1.126302 | 0.00003772 | −14.69419 | Down | |
10 | Licorisoflavan A | Others | Others | 1.126226 | 0.00003746 | −14.70413 | Down | |
1 | Apigenin-7-O-neohesperidoside | Flavonoids | Flavonoid | 1.137351391 | 127,896.2963 | 16.96461496 | Up | |
2 | Licochalcone C | Flavonoids | Chalcones | 1.137357845 | 90,041.85185 | 16.45830811 | Up | |
3 | Luteolin-6-C-arabinoside-7-O-glucoside | Flavonoids | Flavonoid carbonoside | 1.13735939 | 14,403.7037 | 13.81415221 | Up | |
4 | Luteolin-7-O-glucoside-5-O-arabinoside | Flavonoids | Flavonoid | 1.137319003 | 14,317.40741 | 13.80548265 | Up | |
5 | Ellagic acid-4-O-Xyloside | Tannins | Tannin | 1.137274445 | 11,843.33333 | 13.53178757 | Up | |
QS vs. CK | 6 | L-Methionine | Amino acids and derivatives | Amino acids and derivatives | 1.136742305 | 0.00296228 | −8.399076127 | Down |
7 | Synephrine; 4-[1-Hydroxy-2-(methylamino)ethyl]phenol | Alkaloids | Amphetamine alkaloids | 1.131501161 | 0.000475462 | −11.03838303 | Down | |
8 | 6-Hydroxyhexanoic acid | Organic acids | Organic acids | 1.136815382 | 0.000436773 | −11.16082852 | Down | |
9 | Phenethylamine | Alkaloids | Alkaloids | 1.136818257 | 0.000391197 | −11.31981845 | Down | |
10 | Adipic Acid | Organic acids | Organic acids | 1.137304026 | 0.000125694 | −12.9578007 | Down | |
1 | 6-O-Caffeoylarbutin | Phenolic acids | Phenolic acids | 1.171937206 | 75,198.14815 | 16.19840951 | Up | |
2 | Licorisoflavan A | Others | Others | 1.171857338 | 26,692.22222 | 14.7041318 | Up | |
3 | 7-Methyllicoricidin | Others | Others | 1.171928468 | 26,508.88889 | 14.69418858 | Up | |
4 | Licoagrochalcone D | Flavonoids | Chalcones | 1.172028906 | 26,098.51852 | 14.67168029 | Up | |
5 | Licoflavonol * | Flavonoids | Flavonols | 1.171994179 | 24,388.14815 | 14.57389259 | Up | |
QS vs. JG | 6 | Phenethylamine | Alkaloids | Alkaloids | 1.171756278 | 0.000391197 | −11.31981845 | Down |
7 | D-Glucose 6-phosphate | Others | Saccharides and alcohols | 1.171821987 | 0.00026668 | −11.87260363 | Down | |
8 | L-Glycyl-L-isoleucine * | Amino acids and derivatives | Amino acids and derivatives | 1.171979721 | 0.0001353 | −12.85155386 | Down | |
9 | Adipic Acid | Organic acids | Organic acids | 1.172037319 | 0.000125694 | −12.9578007 | Down | |
10 | N-Glycyl-L-leucine * | Amino acids and derivatives | Amino acids and derivatives | 1.172008186 | 0.000105116 | −13.2157296 | Down | |
1 | Adipic Acid | Organic acids | Organic acids | 1.131895001 | 9257.296296 | 13.17637518 | Up | |
2 | 6-Hydroxyhexanoic acid | Organic acids | Organic acid | 1.131963506 | 3209.592593 | 11.64817447 | Up | |
3 | Tryptamine | Alkaloids | Plumerane | 1.122093959 | 2937.077778 | 11.52016576 | Up | |
4 | Phenethylamine | Alkaloids | Alkaloid | 1.131758859 | 2803.37037 | 11.45294664 | Up | |
CK vs. YS | 5 | Licoagrochalcone D | Flavonoids | Chalcone | 1.131552846 | 2166.185185 | 11.08094087 | Up |
6 | Sinapine | Alkaloids | Alkaloid | 1.066109475 | 0.00012731 | −12.93936631 | Down | |
7 | Ellagic acid-4-O-Xyloside | Tannins | Tannin | 1.131894356 | 0.00008443 | −13.53178757 | Down | |
8 | LysoPE 18:3(2n isomer) | Lipids | LPE | 1.131980975 | 0.00002816 | −15.11581736 | Down | |
9 | LysoPE 18:3 | Lipids | LPE | 1.131983277 | 0.00002707 | −15.1724333 | Down | |
10 | Brevifolin carboxylic acid | Phenolic acids | Phenolic acid | 1.131925149 | 0.0000074284 | −17.03851736 | Down | |
1 | Apigenin-7-O-neohesperidoside | Flavonoids | Flavonoid | 1.195389305 | 44,938.51852 | 15.45566494 | Up | |
2 | Licochalcone C | Flavonoids | Chalcone | 1.19539782 | 16,299.62963 | 13.99255156 | Up | |
3 | Luteolin-6-C-arabinoside-7-O-glucoside | Flavonoids | Flavonoid carbonoside | 1.195306886 | 10,588.51852 | 13.37021313 | Up | |
QS vs. YS | 4 | Luteolin-7-O-glucoside-5-O-arabinoside | Flavonoids | Flavonoid | 1.195286929 | 8024.925926 | 12.97027236 | Up |
5 | Pomolic acid | Terpenoids | Triterpene | 1.195022849 | 5758.259259 | 12.49141703 | Up | |
6 | LysoPC 17:2 | Lipids | LPC | 1.194661579 | 0.000600374 | −10.70185192 | Down | |
7 | Brevifolin carboxylic acid | Phenolic acids | Phenolic acids | 1.194119719 | 0.000378969 | −11.3656339 | Down | |
8 | 1-Linolenoyl-rac-glycerol-diglucoside | Lipids | Free fatty acids | 1.195229758 | 0.000145036 | −12.75130384 | Down | |
9 | LysoPE 18:3 | Lipids | LPE | 1.194872468 | 0.000142903 | −12.77268114 | Down | |
10 | LysoPE 18:3(2n isomer) | Lipids | LPE | 1.194628338 | 0.000133517 | −12.8706858 | Down | |
1 | Apigenin-7-O-neohesperidoside | Flavonoids | Flavonoid | 1.116814 | 127,896.296 | 16.96461 | Up | |
2 | Orientin-7-O-arabinoside | Flavonoids | Flavonoid carbonoside | 1.116797 | 53,208.5185 | 15.69937 | Up | |
3 | Kaempferol-3-O-(6″-p-Coumaroyl)glucoside (Tiliroside) | Flavonoids | Flavonol | 1.11681 | 52,504.8148 | 15.68016 | Up | |
4 | Orientin-2″-O-xyloside | Flavonoids | Flavonoid | 1.116763 | 47,237.037 | 15.52763 | Up | |
JG vs. CK | 5 | Luteolin-6-C-arabinoside-7-O-glucoside | Flavonoids | Flavonoid carbonoside | 1.116777 | 14,403.7037 | 13.81415 | Up |
6 | 5,2′-Dihydroxy-7,8- dimethoxyflavone * | Flavonoids | Flavonoid | 1.116659 | 0.00021977 | −12.15172 | Down | |
7 | 4′,5-Dihydroxy-3′,5′-dimethoxyflavone * | Flavonoids | Flavonoid | 1.116652 | 0.00017971 | −12.44203 | Down | |
8 | Iso-glyasperin D | Flavonoids | Dihydroisoflavone | 1.116734 | 0.00017205 | −12.5049 | Down | |
9 | Licoflavonol * | Flavonoids | Flavonols | 1.116716 | 0.00004100 | −14.57389 | Down | |
10 | Licoagrochalcone D | Flavonoids | Chalcones | 1.116758 | 0.00003831 | −14.67168 | Down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Lin, L.; Cai, H.; Gao, X. Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods 2023, 12, 425. https://doi.org/10.3390/foods12020425
Chen X, Lin L, Cai H, Gao X. Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods. 2023; 12(2):425. https://doi.org/10.3390/foods12020425
Chicago/Turabian StyleChen, Xi, Liangjing Lin, Huitian Cai, and Xiangyang Gao. 2023. "Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang" Foods 12, no. 2: 425. https://doi.org/10.3390/foods12020425
APA StyleChen, X., Lin, L., Cai, H., & Gao, X. (2023). Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods, 12(2), 425. https://doi.org/10.3390/foods12020425