Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bagasse Collection and Preparation of the Yellow Mombin Bagasse Extract (YMBE)
2.2. Total Phenolic Content and Phenolic Profile Analysis of the Extract
2.3. Experimental Design and Preparation of Chicken Patties
2.4. Determination of Instrumental Color
2.5. Evaluation of the Oxidative Stability of Chicken Patties
2.5.1. Peroxide Index
2.5.2. Quantification of Conjugated Dienes
2.5.3. Thiobarbituric Acid Reactive Substances (TBARS Index)
2.5.4. p-Anisidine Value (p-AV)
2.5.5. Quantification of Total Carbonyl Compounds
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content and Phenolic Profile of the YME
3.2. Effect of Refrigerated Storage on the Color of Chicken Patties
3.3. Effect of Refrigerated Storage on Lipid and Protein Oxidation of Chicken Patties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cagdas, E.; Kumcuoglu, S. Effect of grape seed powder on oxidative stability of precooked chicken nuggets during frozen storage. J. Food Sci. Technol. 2015, 52, 2918–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, K.-E.; Choi, Y.-S.; Choi, S.-M.; Kim, H.-W.; Choi, J.-H.; Lee, M.-A.; Kim, C.-J. Antioxidant action of ganghwayakssuk (Artemisia princeps Pamp.) in combination with ascorbic acid to increase the shelf life in raw and deep fried chicken nuggets. Meat Sci. 2013, 95, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.P.; Estévez, M.; Ferreira, V.C.S.; Silva, S.A.; Lemos, L.T.M.; Ida, E.I.; Shimokomaki, M.; Madruga, M.S. Protein and lipid oxidations in jerky chicken and consequences on sensory quality. LWT 2018, 97, 341–348. [Google Scholar] [CrossRef]
- Estévez, M.; Xiong, Y. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: Recent scientific evidences and hypotheses. J. Food Sci. 2019, 84, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.C.S.; Morcuende, D.; Hérnandez-López, S.H.; Madruga, M.S.; Silva, F.A.P.; Estévez, M. Antioxidant extracts from acorns (Quercus ilex L.) effectively protect Ready-to-Eat (RTE) chicken patties irrespective of packaging atmosphere. J. Food Sci. 2017, 82, 622–631. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.C.S.; Morcuende, D.; Madruga, M.S.; Silva, F.A.P.; Estévez, M. Role of protein oxidation in the nutritional loss and texture changes in ready-to-eat chicken patties. Int. J. Food Sci. Technol. 2018, 53, 1518–1526. [Google Scholar] [CrossRef]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Helkar, P.B.; Sahoo, A.; Patil, N. Review: Food Industry By-Products used as a Functional Food Ingredients. Int. J. Waste Resour. 2016, 6, 3. [Google Scholar] [CrossRef]
- Herrera, F.; Mitchell, J.D.; Pell, S.K.; Collinson, M.E.; Daly, D.C.; Manchester, S.R. Fruit Morphology and Anatomy of the Spondioid Anacardiaceae. Bot. Rev. 2018, 84, 315–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, T.L.L.E.; da Silva, E.P.; Asquieri, E.R.; Vieira, E.C.S.; Silva, J.S.; da SILVA, F.A.; Damiani, C. Physicochemical characterization and behavior of biocompounds of caja-manga fruit (Spondias mombin L.). Food Sci. Technol. 2018, 38, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Santos Felix, A.C.; Novaes, C.G.; Pires Rocha, M.; Barreto, G.E.; do Nascimento, B.B.; Giraldez Alvarez, L.D. Mixture Design and Doehlert Matrix for the Optimization of the Extraction of Phenolic Compounds from Spondias mombin L. Apple Bagasse Agroindustrial Residues. Front. Chem. 2018, 5, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasukamonset, P.; Kwon, O.; Adisakwattana, S. Oxidative Stability of Cooked Pork Patties Incorporated with Clitoria ternatea Extract (Blue Pea Flower Petal) During Refrigerated Storage. J. Food Process. Preserv. 2017, 41, e12751. [Google Scholar] [CrossRef]
- dos Reis, A.S.; Diedrich, C.; de Moura, C.; Pereira, D.; de Almeida, J.F.; da Silva, L.D.; Plata-Oviedo, M.S.V.; Tavares, R.A.W.; Carpes, S.T. Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT Food Sci. Technol. 2017, 76, 306–313. [Google Scholar] [CrossRef]
- Rosa, C.S.; Kubota, E.; Stein, M.; Nogara, G.P.; Vizzoto, M. Evaluation of the effect of extract of carob flour (Ceratonia siliqua L.) on oxidative stability and color of frozen hamburgers. Semin. Agrar. 2013, 34, 2277–2286. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.; Ghafoor, K.; Hawashin, M.D.; Alsawmahi, O.N.; Babiker, E.E. Effects of different levels of Moringa (Moringa oleifera) seed flour on quality attributes of beef burgers. CYTA J. Food 2016, 14, 1–9. [Google Scholar] [CrossRef]
- Brettonnet, A.; Hewavitarana, A.; DeJong, S.; Lanari, M.C. Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork. Food Chem. 2010, 121, 927–933. [Google Scholar] [CrossRef]
- Ergezer, H.; Serdaroğlu, M. Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. J. Food Meas. Charact. 2018, 12, 982–991. [Google Scholar] [CrossRef]
- Hwang, K.E.; Kim, H.W.; Choi, Y.S.; Lee, S.Y.; Yeo, E.J.; Ham, Y.K.; Choi, S.M.; Lee, M.A.; Kim, C.J. Evaluation of the antioxidant effect of ganghwayakssuk (Artemisia princeps Pamp.) extract alone and in combination with ascorbic acid in raw chicken patties. Poult. Sci. 2013, 92, 3244–3250. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A.; Choi, J.H.; Choi, Y.S.; Kim, H.Y.; Kim, H.W.; Hwang, K.E.; Chung, H.K.; Kim, C.J. Effects of kimchi ethanolic extracts on oxidative stability of refrigerated cooked pork. Meat Sci. 2011, 89, 405–411. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Calomeni, A.V.; Rodrigues, C.E.C.; Fávaro-Trindade, C.S.; Alencar, S.M.; Trindade, M.A. Peanut skin extract reduces lipid oxidation in cooked chicken patties. Poult. Sci. 2015, 94, 442–446. [Google Scholar] [CrossRef]
- Packer, V.G.; Melo, P.S.; Bergamaschi, K.B.; Selani, M.M.; Villanueva, N.D.M.; de Alencar, S.M.; Contreras-Castillo, C.J. Chemical characterization, antioxidant activity and application of beetroot and guava residue extracts on the preservation of cooked chicken meat. J. Food Sci. Technol. 2015, 52, 7409–7416. [Google Scholar] [CrossRef]
- Crizel, T.D.; Rios, A.D.; Thys, R.C.S.; Flôres, S.H. Effects of orange by-product fiber incorporation on the functional and technological properties of pasta. Food Sci. Technol. 2015, 35, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Santana Neto, D.C.; Silva, F.A.P.; Ferreira, V.C.S.; Araújo, Í.B.D.S. Fragoso. S.P. Patent BR102018067711-0, 4 September 2018. [Google Scholar]
- Carvalho, H.H.; Jong, E.V.; Belló, R.M.; Souza, R.B.; Terra, M.F. Alimentos: Métodos Físicos e Químicos de Análise; Federal University of Rio Grande do Sul: Porto Alegre, Brazil, 2002; ISBN 85-7025-626-4. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- IUPAC. Evidence of Purity and Deterioration from Ultraviolet Spectrophotometry Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th ed.; Pergamon Press: Oxford, UK, 1992. [Google Scholar]
- Ganhão, R.; Estévez, M.; Morcuende, D. Suitability of the TBA method for assessing lipid oxidation in a meat system with added phenolic-rich materials. Food Chem. 2011, 126, 772–778. [Google Scholar] [CrossRef]
- IUPAC. Determination of the p-Anisidine Value (P-Av) Standard Methods for the Analysis of Oils, Fats and Derivatives; Blackwell Scientific Publications: Oxford, UK, 1987. [Google Scholar]
- Ganhão, R.; Morcuende, D.; Estévez, M. Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Sci. 2010, 85, 402–409. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Narsaiah, K.; Borah, A. The effect of salt, extract of kinnow and pomegranate fruit by-products on colour and oxidative stability of raw chicken patties during refrigerated storage. J. Food Sci. Technol. 2011, 48, 472–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, M.P.; Faustman, C. Effect of aldehyde lipid oxidation products on myoglobin. J. Agric. Food Chem. 2000, 48, 600–604. [Google Scholar] [CrossRef]
- Muela, E.; Monge, P.; Sañudo, C.; Campo, M.M.; Beltrán, J.A. Meat quality of lamb frozen stored up to 21 months: Instrumental analyses on thawed meat during display. Meat Sci. 2015, 102, 35–40. [Google Scholar] [CrossRef]
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J.M. CIELAB color coordinates versus relative proportions of myoglobin redox forms in the description of fresh meat appearance. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Cordray, J.C.; Ahn, D.U. Effect of NaCI, Myoglobin, Fe(II), and Fe(III) on lipid oxidation of raw and cooked chicken breast and beef loin. J. Agric. Food Chem. 2010, 58, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.H.; Kim, G.H.; Lee, H.S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res. Int. 2002, 35, 753–759. [Google Scholar] [CrossRef]
- Joshi, R.; Gangabhagirathi, R.; Venu, S.; Adhikari, S.; Mukherjee, T. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radic. Res. 2012, 46, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bizzozero, O.A.; Reyes, S.; Ziegler, J.; Smerjac, S. Lipid peroxidation scavengers prevent the carbonylation of cytoskeletal brain proteins induced by glutathione depletion. Neurochem. Res. 2007, 32, 2114–2122. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Heinonen, M. Effect of phenolic compounds on the formation of α-Aminoadipic and γ-Glutamic semialdehydes from myofibrillar proteins oxidized by copper, iron, and myoglobin. J. Agric. Food Chem. 2010, 58, 4448–4455. [Google Scholar] [CrossRef]
- Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 1994, 16, 845–850. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana Neto, D.C.d.; Cordeiro, Â.M.T.M.; Meireles, B.R.L.A.; Araújo, Í.B.S.; Estévez, M.; Ferreira, V.C.S.; Silva, F.A.P. Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract. Foods 2021, 10, 1338. https://doi.org/10.3390/foods10061338
Santana Neto DCd, Cordeiro ÂMTM, Meireles BRLA, Araújo ÍBS, Estévez M, Ferreira VCS, Silva FAP. Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract. Foods. 2021; 10(6):1338. https://doi.org/10.3390/foods10061338
Chicago/Turabian StyleSantana Neto, Deocleciano C. de, Ângela M. T. M. Cordeiro, Bruno R. L. A. Meireles, Íris B. S. Araújo, Mario Estévez, Valquíria C. S. Ferreira, and Fábio A. P. Silva. 2021. "Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract" Foods 10, no. 6: 1338. https://doi.org/10.3390/foods10061338
APA StyleSantana Neto, D. C. d., Cordeiro, Â. M. T. M., Meireles, B. R. L. A., Araújo, Í. B. S., Estévez, M., Ferreira, V. C. S., & Silva, F. A. P. (2021). Inhibition of Protein and Lipid Oxidation in Ready-to-Eat Chicken Patties by a Spondias mombin L. Bagasse Phenolic-Rich Extract. Foods, 10(6), 1338. https://doi.org/10.3390/foods10061338