CO2 Interaction Mechanism of SnO2-Based Sensors with Respect to the Pt Interdigital Electrodes Gap
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powders Synthesis
2.2. Structural and Morphological Investigations
2.3. Layer Deposition and Sensing Investigations
3. Results and Discussions
3.1. XRD Characterisation
3.2. Analytical TEM Characterisation
3.3. Sensing Characterisation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taguchi, N. Gas Detecting Device. U.S. Patent US3695848A, 3 October 1972. [Google Scholar]
- Kong, Y.; Li, Y.; Cui, X.; Su, L.; Ma, D.; Lai, T.; Yao, L.; Xiao, X.; Wang, Y. SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Mater. Sci. 2022, 4, 339–350. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, Y.-S.; Wang, M.; Zhao, G.-H.; Hao, G.-P.; Lu, A.-H. Anomalous enhancement of humid CO2 capture by local surface bound water in polar carbon nanopores. Nat. Commun. 2024, 15, 8919. [Google Scholar] [CrossRef]
- Ramanathan, S.; Malarvili, M.B.; Gopinath, S.C.B. Assessing respiratory complications by carbon dioxide sensing platforms: Advancements in infrared radiation technology and IoT integration. Arab. J. Chem. 2023, 16, 104478. [Google Scholar] [CrossRef]
- Fleming, L.; Gibson, D.; Song, S.; Li, C.; Reid, S. Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings. Surf. Coat. Technol. 2018, 336, 9–16. [Google Scholar] [CrossRef]
- Zubair, M.; Chen, S.; Ma, Y.; Hu, X. A Systematic Review on Carbon Dioxide (CO2) Emission Measurement Methods under PRISMA Guidelines: Transportation Sustainability and Development Programs. Sustainability 2023, 15, 4817. [Google Scholar] [CrossRef]
- Almawgani, A.H.M.; Fathy, H.M.; Elsayed, H.A.; Ali, Y.A.A.; Mehaney, A. A promising ultra-sensitive CO2 sensor at varying concentrations and temperatures based on Fano resonance phenomenon in different 1D photonic crystal designs. Sci. Rep. 2023, 13, 15028. [Google Scholar] [CrossRef]
- Maier, C.; Egger, L.; Köck, A.; Reichmann, K. A Review of Gas Sensors for CO2 Based on Copper Oxides Their Derivatives. Sensors 2024, 24, 5469. [Google Scholar] [CrossRef]
- Molino, D.; Ferraro, G.; Lettieri, S.; Zaccagnini, P.; Etzi, M.; Astorino, C.; Nardo, E.D.; Bartoli, M.; Lamberti, A.; Pirri, C.F.; et al. Enhanced CO2 Detection Using Potentiometric Sensors Based on PIM-1/DBU Imidazolate Membranes. Adv. Sustain. Syst. 2024, 2400415. [Google Scholar] [CrossRef]
- Steininger, F.; Revsbech, N.P.; Koren, K. Total Dissolved Inorganic Carbon Sensor Based on Amperometric CO2 Microsensor and Local Acidification. ACS Sens. 2021, 6, 2529–2533. [Google Scholar] [CrossRef]
- Héraly, F.; Sikdar, A.; Chang, J.; Yuan, J. Capacitive CO2 sensor made of aminated cellulose nanofibrils: Development and optimization. New J. Chem. 2024, 48, 6064–6070. [Google Scholar] [CrossRef]
- Wang, C.; Ding, Y.; Li, M.; Li, H.; Xu, S.; Li, C.; Qian, L.; Yang, B. Surface acoustic wave sensor based on Au/TiO2/PEDOT with dual response to carbon dioxide and humidity. Anal. Chim. Acta 2022, 1190, 339264. [Google Scholar] [CrossRef]
- Park, K.; Koh, M.; Yoon, C.; Kim, H.; Kim, H. The behavior of quartz crystal microbalance in high pressure CO2. J. Supercrit. Fluids 2004, 29, 203–212. [Google Scholar] [CrossRef]
- Domènech-Gil, G.; Samà, J.; Fàberga, C.; Gràcia, I.; Cané, C.; Barth, S.; Romano-Rodríguez, A. Highly sensitive SnO2 nanowire network gas sensors. Sens. Actuators B Chem. 2023, 383, 133545. [Google Scholar] [CrossRef]
- Casanova-Chafer, J.; Garcia-Aboal, R.; Llobet, E.; Atienzar, P. Enhanced CO2 sensing by oxygen plasma treated perovskite-graphene nanocomposites. ACS Sens. 2024, 9, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.; Zhang, Y.; Yang, L.; Zhao, X.; Wu, C.; Chen, T.; Zhan, R.; Huang, Z.; Lin, H. Enhanced CO2 response of La1-xFeO3-δ perovskites with A-site deficiency synthesized by flame spray pyrolysis. Ceram. Int. 2023, 49, 591–599. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their application in nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef]
- Batzill, M. Surface Science Studies of Gas Sensing Materials: SnO2. Sensors 2006, 6, 1345–1366. [Google Scholar] [CrossRef]
- Xiong, Y.; Xue, Q.; Ling, C.; Lu, W.; Ding, D.; Zhu, L.; Li, X. Effective CO2 detection based on LaOCl-doped SnO2 nanofibers: Insight into the role of oxygen in carrier gas. Sens. Actuators B Chem. 2017, 241, 725–734. [Google Scholar] [CrossRef]
- Kuncser, A.C.; Vlaicu, I.D.; Dinu, I.V.; Simion, C.E.; Iacoban, A.C.; Florea, O.G.; Stanoiu, A. The impact of the synthesis temperature on SnO2 morphology and sensitivity to CO2 under in-field conditions. Mater. Lett. 2022, 325, 132855. [Google Scholar] [CrossRef]
- Sopiha, K.V.; Malyi, O.I.; Persson, C.; Wu, P. Chemistry of Oxygen Ionosorption on SnO2 Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 33664–33676. [Google Scholar] [CrossRef]
- Masuda, Y. Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuators B Chem. 2022, 364, 131876. [Google Scholar] [CrossRef]
- Masuda, Y. Facet controlled growth mechanism of SnO2 (101) nanosheet assembled film via cold crystallization. Sci. Rep. 2021, 11, 11304. [Google Scholar] [CrossRef] [PubMed]
- Rescalli, A.; Marzorati, D.; Gelosa, S.; Cellesi, F.; Cerveri, P. Temperature Modulation of MOS Sensors for Enhanced Detection of Volatile Organic Compounds. Chemosensors 2023, 11, 501. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Staerz, A.; Weimar, U.; Barsan, N. Current state of knowledge on the metal oxide based gas sensing mechanism. Sens. Actuators B Chem. 2022, 358, 131531. [Google Scholar] [CrossRef]
- Morrison, S.R. The Chemical Physics of Surfaces; Springer: New York, NY, USA, 1990. [Google Scholar] [CrossRef]
- Franke, M.E.; Koplin, T.J.; Simon, U. Metal and Metall Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter? Small 2006, 2, 36–50. [Google Scholar] [CrossRef]
- Oprea, A.; Bârsan, N.; Weimar, U. Work function changes in gas sensitive materials: Fundamentals and applications. Sens. Actuators B Chem. 2009, 142, 470–493. [Google Scholar] [CrossRef]
- Islam, M.N.; Hakim, M.O. Electron affinity and work function of polycrystalline SnO2 thin film. J. Mater. Sci. Lett. 1986, 5, 63–65. [Google Scholar] [CrossRef]
- Hölzl, J.; Schulte, F.K. Work Functions of Metals. In Solid Surface Physics; Hölzl, J., Schulte, F.K., Wagner, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar] [CrossRef]
- Nulmi, S.; Thangadurai, V. Editors’ Choice—Review—Solid-State Electrochemical Carbon Dioxide Sensors: Fundamentals, Materials and Applications. J. Electrochem. Soc. 2020, 167, 037567. [Google Scholar] [CrossRef]
- Yuan, G.; Zhong, Y.; Chen, Y.; Zhuo, Q.; Sun, X. Highly sensitive and fast-response ethanol sensing of porous CO3O4 hollow polyhedral via palladium reined spillover effect. RSC Adv. 2022, 12, 6725–6731. [Google Scholar] [CrossRef] [PubMed]
- Goel, N.; Kunal, K.; Kushwaha, A.; Kumar, M. Metal oxide semiconductors for gas sensing. Eng. Rep. 2023, 5, e12604. [Google Scholar] [CrossRef]
- Simion, C.E.; Mihalcea, C.G.; Iacoban, A.C.; Dinu, I.V.; Predoi, D.; Vlaicu, I.D.; Florea, O.G.; Stanoiu, A. Influence of Synthesis Method and Electrode Geometry on GHG-Sensing Properties of 5%Gd-Doped SnO2. Chemosensors 2024, 12, 148. [Google Scholar] [CrossRef]
- Lee, S.P. Electrodes for Semiconductor Gas Sensors. Sensors 2017, 17, 683. [Google Scholar] [CrossRef]
- Hoefer, U.; Steiner, K.; Wagner, E. Contact and sheet resistance of SnO2 thin films from transmission-line model measurements. Sens. Actuators B Chem. 1995, 26, 59–63. [Google Scholar] [CrossRef]
- Hoefer, U.; Böttner, H.; Wagner, E.; Kohl, C.D. Highly sensitive NO2 sensor device featuring a JFET-like transducer mechanism. Sens. Actuators B Chem. 1998, 47, 213–217. [Google Scholar] [CrossRef]
- Gonzalez, D.M.R.; Kumar, Y.; Ramón, J.A.R.; Bogyreddy, N.K.R.; Olive-Méndez, S.F.; Karthik, T.V.K.; Becerra, D.; Pérez-Tijerina, E.; Agarwal, V. CO2 sensing performance enhanced by Pt-catalyzed SnO2/porous-silicon hybrid structures. Sens. Int. 2022, 3, 100165. [Google Scholar] [CrossRef]
- Chai, H.; Zheng, Z.; Liu, K.; Xu, J.; Wu, K.; Luo, Y.; Liao, H.; Debliquy, M.; Zhang, C. Stability of Metal Oxide Semiconductor Gas Sensors: A review. IEEE Sens. J. 2022, 22, 5470–5481. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, E.; Tang, J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catal. 2022, 12, 7300–7316. [Google Scholar] [CrossRef]
- He, Y.; Huang, D. Single-Atom Platinum Catalyst for Efficient CO2 Conversion via Reverse Water Gas Shift Reaction. Molecules 2023, 28, 6630. [Google Scholar] [CrossRef]
- Mondoza-Núñez, E.M.; Fierro-Conzalez, J.C.; Zepeda, T.A.; Solis-Garcia, A. Effect of platinum addition on the reaction mechanism of the CO2 methanation catalyzed by ZrO2-supported Rh. Mol. Catal. 2022, 533, 112801. [Google Scholar] [CrossRef]
- Shaheen, A.; Othman, W.; Ali, M.; Tit, N. Catalyst-induced gas-sensing selectivity in ZnO nanoribbons: Ab-initio investigation at room temperature. Appl. Surf. Sci. 2020, 505, 144602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanoiu, A.; Iacoban, A.C.; Mihalcea, C.G.; Dinu, I.V.; Florea, O.G.; Vlaicu, I.D.; Simion, C.E. CO2 Interaction Mechanism of SnO2-Based Sensors with Respect to the Pt Interdigital Electrodes Gap. Chemosensors 2024, 12, 238. https://doi.org/10.3390/chemosensors12110238
Stanoiu A, Iacoban AC, Mihalcea CG, Dinu IV, Florea OG, Vlaicu ID, Simion CE. CO2 Interaction Mechanism of SnO2-Based Sensors with Respect to the Pt Interdigital Electrodes Gap. Chemosensors. 2024; 12(11):238. https://doi.org/10.3390/chemosensors12110238
Chicago/Turabian StyleStanoiu, Adelina, Alexandra Corina Iacoban, Catalina Gabriela Mihalcea, Ion Viorel Dinu, Ovidiu Gabriel Florea, Ioana Dorina Vlaicu, and Cristian Eugen Simion. 2024. "CO2 Interaction Mechanism of SnO2-Based Sensors with Respect to the Pt Interdigital Electrodes Gap" Chemosensors 12, no. 11: 238. https://doi.org/10.3390/chemosensors12110238
APA StyleStanoiu, A., Iacoban, A. C., Mihalcea, C. G., Dinu, I. V., Florea, O. G., Vlaicu, I. D., & Simion, C. E. (2024). CO2 Interaction Mechanism of SnO2-Based Sensors with Respect to the Pt Interdigital Electrodes Gap. Chemosensors, 12(11), 238. https://doi.org/10.3390/chemosensors12110238