Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology
Abstract
:1. Introduction
2. Bioactivity of Ascorbic Acid
2.1. Antioxidant
2.2. Pro-Oxidant
2.3. Co-Factors
2.4. Synergistic Effect
3. Sensitivity to Environment
3.1. Concentration and pH
3.2. Temperature
3.3. Light
4. Strategies for Improving the Encapsulation and Delivery of Ascorbic Acid
4.1. Low-Molecular-Weight Stabilizer and Derivatives
4.2. Construction of Carriers Based on Bio-Macromolecules
4.2.1. Chemical Interaction
4.2.2. Physical Barrier
Carrier | Material | Technology | Protective Effect | Encapsulation Efficiency | Reference |
---|---|---|---|---|---|
Microcapsules | Sodium alginate/gum Arabic | Spray drying | Thermal stability temperature of ascorbic acid is increased to 188 °C. | >90% | [91] |
Xyloglucan | Spray drying | After 60 days of storage at room temperature, the retention of ascorbic acid is around 90%. | ~96% | [92] | |
Gum Arabic/rice starch | Spray drying | The retention of ascorbic acid is around 81.3% after 90 days of storage at 21 °C. | ~99.7% | [98] | |
Gelatin/pectin | Complex coacervation | With low hygroscopicity and high thermal stability. | 23.7% to 94.3% | [15] | |
Gelatin/acacia | Complex coacervation | The retention of ascorbic acid is around 44% and 80% after 30 days of storage at 37 °C and 20 °C, respectively. | ≥97% | [93] | |
Liposome | Palm fat/chitosan | Microfluidic technique | After 30 days, retained 98.58% and 97.62% of ascorbic acid at 4 °C and 20 °C, respectively. | ~ 96.6% | [6] |
Polyglyceryl monostearate | Spray chilling | The system can inhibit the Maillard reaction between milk proteins and ascorbic acid. | ~94.2% | [98] | |
Milk fat globule membrane-derived phospholipids | Microfluidic technique | After 7 weeks at 4 °C and 25 °C, ascorbic acid in liposomes retained 67% and 30%, respectively. | ~26% | [97] | |
W/O/W emulsions | Gelatin/tetraglycerin monolaurate condensed ricinoleic acid ester/decaglycerol monolaurate | Homogenization | The half-life for W/O/W emulsions containing 30% ascorbic acid at 4 °C was about 24 days. | ≥90% | [99] |
Soybean oil/tetraglycerin condensed ricinoleic acid ester/gelatin | Homogenization and microchannel emulsification | The ascorbic acid exhibited 80% retention after 10 days storage at 4 °C. | >85% | [100] |
4.2.3. Controlled Release of Ascorbic Acid
5. Commercial Application of Ascorbic Acid
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RDA | recommended dietary allowances |
DHA | dehydroascorbic acid |
ROS | reactive oxygen species |
O2·− | superoxide radicals |
1O2 | singlet oxygen |
H2O2 | hydrogen peroxide |
OH· | reactive hydroxyl radicals |
AH2 | ascorbic acid |
AH− | ascorbate |
A2− | ascorbate dianion |
TBHQ | tert-butyl hydroquinone |
GRAS | generally recognized as safe |
β-LG | β-lactoglobulin |
HAS | human serum albumin |
BSA | bovine serum albumin |
SPI | soy protein isolate |
TPP | tripolyphosphate |
PGMS | polyglyceryl monostearate |
TMC | N,N,N-trimethylchitosan |
References
- Hasan, L.; Vgeli, P.; Neuenschwander, S.; Stoll, P.; Stranzinger, G. The L-gulono-gamma-lactone oxidase gene (GULO) which is a candidate for vitamin C deficiency in pigs maps to chromosome 14. Anim. Genet. 2015, 30, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Günter, P.; Hanspeter, H. Industrial Production of L-ascorbic Acid (Vitamin C) and D-isoascorbic Acid; Springer: Berlin/Heidelberg, Germany, 2014; Volume 143, pp. 143–188. [Google Scholar]
- Bei, R. Effects of vitamin C on health: A review of evidence. Front. Biosci. 2013, 18, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Monsen, E.R. Dietary reference intakes fop the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. J. Am. Diet. Assoc. 2000, 100, 637–640. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Sun, H.; Wang, Y.H.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Comunian, T.A.; Abbaspourrad, A.; Favaro-Trindade, C.S.; Weitz, D.A. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chem. 2014, 152, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.W.; Abbas, S.; Hayat, K.; Xia, S.Q.; Zhang, X.M.; Xie, M.Y.; Kim, J.M. Encapsulation of ascorbic acid in amorphous maltodextrin employing extrusion as affected by matrix/core ratio and water content. Int. J. Food Sci. Technol. 2010, 45, 1895–1901. [Google Scholar] [CrossRef]
- Carvalho, J.D.D.; Oriani, V.B.; de Oliveira, G.M.; Hubinger, M.D. Characterization of ascorbic acid microencapsulated by the spray chilling technique using palm oil and fully hydrogenated palm oil. Lwt-Food Sci. Technol. 2019, 101, 306–314. [Google Scholar] [CrossRef]
- Alvim, I.D.; Stein, M.A.; Koury, I.P.; Dantas, F.B.H.; Cruz, C. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. Lwt-Food Sci. Technol. 2016, 65, 689–694. [Google Scholar] [CrossRef]
- De Britto, D.; de Moura, M.R.; Aouada, F.A.; Pinola, F.G.; Lundstedt, L.M.; Assis, O.B.G.; Mattoso, L.H.C. Entrapment characteristics of hydrosoluble vitamins loaded into chitosan and N,N,N-trimethyl chitosan nanoparticles. Macromol. Res. 2014, 22, 1261–1267. [Google Scholar] [CrossRef]
- Jimenez-Fernandez, E.; Ruyra, A.; Roher, N.; Zuasti, E.; Infante, C.; Fernandez-Diaz, C. Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture 2014, 432, 426–433. [Google Scholar] [CrossRef]
- Lin, F.H.; Lin, J.Y.; Gupta, R.D.; Tournas, J.A.; Burch, J.A.; Selim, M.A.; Monteiro-Riviere, N.A.; Grichnik, J.M.; Zielinski, J.; Pinnell, S.R. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Investig. Dermatol. 2005, 125, 826–832. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yin, O.Q.P.; Zuo, Z.; Chow, M.S.S. Pharmacokinetics and modeling of quercetin and metabolites. Pharm. Res. 2005, 22, 892–901. [Google Scholar] [CrossRef]
- Avnesh, K.; Sudesh, K.Y.; Subhash, C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar]
- Da Cruz, M.C.R.; Perussello, C.A.; Masson, M.L. Microencapsulated ascorbic acid: Development, characterization, and release profile in simulated gastrointestinal fluids. J. Food Process Eng. 2018, 41, e12922. [Google Scholar] [CrossRef]
- Alishahi, A.; Mirvaghefi, A.; Tehrani, M.R.; Farahmand, H.; Shojaosadati, S.A.; Dorkoosh, F.A.; Elsabee, M.Z. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem. 2011, 126, 935–940. [Google Scholar] [CrossRef]
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [Green Version]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Khaw, K.T.; Bingham, S.; Welch, A.; Luben, R.; Wareham, N.; Oakes, S.; Day, N. Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: A prospective population study. Lancet 2001, 357, 657–663. [Google Scholar] [CrossRef]
- Taniguchi, M.; Arai, N.; Kohno, K.; Ushio, S.; Fukuda, S. Anti-oxidative and anti-aging activities of 2-O-α-glucopyranosyl-l-ascorbic acid on human dermal fibroblasts. Eur. J. Pharmacol. 2012, 674, 126–131. [Google Scholar] [CrossRef]
- Lutsenko, E.A.; Carcamo, J.M.; Golde, D.W. Vitamin C prevents DNA mutation induced by oxidative stress. J. Biol. Chem. 2002, 277, 16895–16899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, M.W.; Van Montagu, M.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Zhao, R.N.; Yuan, Y.H.; Liu, F.Y.; Han, J.G.; Sheng, L.S. A computational investigation on the geometries, stabilities, antioxidant activity, and the substituent effects of the L-ascorbic acid and their derivatives. Int. J. Quantum Chem. 2013, 113, 2220–2227. [Google Scholar] [CrossRef]
- Hony, B.M.; Butler, J. The repair of oxidized amino acids by antioxidants. Biochim. Biophys. Acta 1984, 791, 212–218. [Google Scholar] [CrossRef]
- Sukalovic, V.H.T.; Veljovic-Jovanovic, S.; Maksimovic, J.D.; Maksimovic, V.; Pajic, Z. Characterisation of phenol oxidase and peroxidase from maize silk. Plant Biol. 2010, 12, 406–413. [Google Scholar] [CrossRef]
- Altunkaya, A.; Gokmen, V. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chem. 2008, 107, 1173–1179. [Google Scholar] [CrossRef]
- Landi, M.; Degl’Innocenti, E.; Guglielminetti, L.; Guidi, L. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce. J. Sci. Food Agric. 2013, 93, 1814–1819. [Google Scholar] [CrossRef]
- Caiyun, L.; Jie, L.; Shoulei, Y.; Qingzhang, W. Research progress on application of ascorbic acid in food. Food Sci. Technol. 2021, 46, 228–232. [Google Scholar]
- Kim, T.K.; Hwang, K.E.; Lee, M.A.; Paik, H.D.; Kim, Y.B.; Choi, Y.S. Quality characteristics of pork loin cured with green nitrite source and some organic acids. Meat Sci. 2019, 152, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Perlo, F.; Fabre, R.; Bonato, P.; Jenko, C.; Tisocco, O.; Teira, G. Refrigerated storage of pork meat sprayed with rosemary extract and ascorbic acid. Cienc. Rural 2018, 48. [Google Scholar] [CrossRef]
- Fredriksen, J.; Løken, E.B.; Borgejordet, Å.; Gjerdevik, K.; Nordbotten, A. Unexpected sources of vitamin C. Food Chem. 2009, 113, 832–834. [Google Scholar] [CrossRef]
- Aliste, A.J.; Del Mastro, N.L. Ascorbic acid as radiation protector on polysaccharides used in food industry. Colloids Surf. Physicochem. Eng. Asp. 2004, 249, 131–133. [Google Scholar] [CrossRef]
- Przekwas, J.; Wiktorczyk, N.; Budzynska, A.; Walecka-Zacharska, E.; Gospodarek-Komkowska, E. Ascorbic Acid Changes Growth of Food-Borne Pathogens in the Early Stage of Biofilm Formation. Microorganisms 2020, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batalova, V.N.; Slizhov, Y.G.; Chumakov, A.A. Parameters for Quantitative Evaluation of the Radical-Generating (Pro-Oxidant) Capacity of Metal Ions and the Radical-Scavenging Activity of Antioxidants Using Voltammetric Method. J. Sib. Fed. Univ. Chem. 2016, 9, 60–67. [Google Scholar] [CrossRef]
- Rietjens, I.; Boersma, M.G.; de Haan, L.; Spenkelink, B.; Awad, H.M.; Cnubben, N.H.P.; van Zanden, J.J.; van der Woude, H.; Alink, G.M.; Koeman, J.H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 2002, 11, 321–333. [Google Scholar] [CrossRef]
- Chen, G.; Chang, T.M.S. Dual effects include antioxidant and pro-oxidation of ascorbic acid on the redox properties of bovine hemoglobin. Artif. Cells Nanomed. Biotechnol. 2018, 46, 983–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborthy, A.; Ramani, P.; Sherlin, H.J.; Premkumar, P.; Natesan, A. Antioxidant and pro-oxidant activity of Vitamin C in oral environment. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2014, 25, 499–504. [Google Scholar] [CrossRef]
- Podmore, I.D. Vitamin C exhibits pro-oxidant properties. Nature 1998, 392, 559. [Google Scholar] [CrossRef]
- Ullah, M.F.; Khan, H.Y.; Zubair, H.; Shamim, U.; Hadi, S.M. The antioxidant ascorbic acid mobilizes nuclear copper leading to a prooxidant breakage of cellular DNA: Implications for chemotherapeutic action against cancer. Cancer Chemother. Pharmacol. 2011, 67, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Verhoeff, A.A.; Merkx, D.W.H.; van Duynhoven, J.P.M.; Hohlbein, J. Quantitative Spatiotemporal Mapping of Lipid and Protein Oxidation in Mayonnaise. Antioxidants 2020, 9, 13. [Google Scholar] [CrossRef]
- Scheffler, J.; Bork, K.; Bezold, V.; Rosenstock, P.; Gnanapragassam, V.S.; Horstkorte, R. Ascorbic acid leads to glycation and interferes with neurite outgrowth. Exp. Gerontol. 2019, 117, 25–30. [Google Scholar] [CrossRef]
- Putchala, M.C.; Ramani, P.; Sherlin, H.J.; Premkumar, P.; Natesan, A. Ascorbic acid and its pro-oxidant activity as a therapy for tumours of oral cavity—A systematic review. Arch. Oral Biol. 2013, 58, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.Y.; Xu, B.H.; Azakami, K.; Morikawa, T.; Watanabe, K.; Morimoto, K.; Komatsu, M.; Aoyama, K.; Takeuchi, T. Dual role of vitamin C in an oxygen-sensitive system: Discrepancy between DNA damage and dell death. Free Radic. Res. 2005, 39, 213–220. [Google Scholar] [CrossRef]
- Kondakci, E.; Ozyurek, M.; Guclu, K.; Apak, R. Novel pro-oxidant activity assay for polyphenols, vitamins C and E using a modified CUPRAC method. Talanta 2013, 115, 583–589. [Google Scholar] [CrossRef]
- Padh, H. Cellular functions of ascorbic acid. Biochem. Cell Biol. Biochim. Biol. Cell. 1990, 68, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Aikawa, M. Vitamin C, collagen, and cracks in the plaque. Circulation 2002, 105, 1396–1398. [Google Scholar] [CrossRef] [Green Version]
- Patak, P.; Willenberg, H.S.; Bornstein, S.R. Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr. Res. 2004, 30, 871–875. [Google Scholar] [CrossRef] [PubMed]
- May, J.M.; Qu, Z.C.; Meredith, M.E. Mechanisms of ascorbic acid stimulation of norepinephrine synthesis in neuronal cells. Biochem. Biophys. Res. Commun. 2012, 426, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Pekala, J.; Patkowska-Sokola, B.; Bodkowski, R.; Jamroz, D.; Nowakowski, P.; Lochynski, S.; Librowski, T. L-Carnitine—Metabolic Functions and Meaning in Humans Life. Curr. Drug Metab. 2011, 12, 667–678. [Google Scholar] [CrossRef]
- Carr, A.C.; McCall, C. The role of vitamin C in the treatment of pain: New insights. J. Transl. Med. 2017, 15, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.H.; Shi, J.; Ibarra, A.C.; Kakuda, Y.; Xue, S.J. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and beta-carotene mixtures on the DPPH free radical. Lwt-Food Sci. Technol. 2008, 41, 1344–1349. [Google Scholar] [CrossRef]
- Lin, J.Y.; Selim, M.A.; Shea, C.R.; Grichnik, J.M.; Omar, M.M.; Monteiro-Riviere, N.A.; Pinnell, S.R. UV photoprotection by combination topical antioxidants vitamin C and vitamin E. J. Am. Acad. Dermatol. 2003, 48, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Thilavech, T.; Sompong, W.; Pasukamonset, P. Interaction between ascorbic acid and gallic acid in a model of fructose-mediated protein glycation and oxidation. Electron. J. Biotechnol. 2017, 27, 32–36. [Google Scholar] [CrossRef]
- Hazewindus, M.; Haenen, G.; Weseler, A.R.; Bast, A. The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and alpha-tocopherol. Food Chem. 2012, 132, 954–958. [Google Scholar] [CrossRef]
- Touitou, E.; Alkabes, M.; Memoli, A.; Alhaique, F. Glutathione stabilizes ascorbic acid in aqueous solution. Int. J. Pharm. 1996, 133, 85–88. [Google Scholar] [CrossRef]
- Oey, I.; Verlinde, P.; Hendrickx, M.; Loey, A.V. Temperature and pressure stability of l-ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: A kinetic study. Eur. Food Res. Technol. 2006, 223, 71–77. [Google Scholar] [CrossRef]
- Zou, M.Y.; Nie, S.P.; Yin, J.Y.; Xie, M.Y. Ascorbic acid induced degradation of polysaccharide from natural products: A review. Int. J. Biol. Macromol. 2020, 151, 483–491. [Google Scholar] [CrossRef]
- Buettner, G.R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: Ascorbate as a test for catalytic metals. J. Biochem. Biophys. Methods 1988, 16, 27–40. [Google Scholar] [CrossRef]
- Yang, S.; Buettner, G.R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic. Biol. Med. 2010, 49, 919–962. [Google Scholar]
- Li, Y.; Yan, Y.; Yu, A.N.; Wang, K. Effects of reaction parameters on self-degradation of L-ascorbic acid and self-degradation kinetics. Food Sci. Biotechnol. 2016, 25, 97–104. [Google Scholar] [CrossRef]
- Yuan, J.P.; Chen, F. Degradation of Ascorbic Acid in Aqueous Solution. J. Agric. Food Chem. 1998, 46, 5078–5082. [Google Scholar] [CrossRef]
- Bree, I.V.; Baetens, J.M.; Samapundo, S.; Devlieghere, F.; Laleman, R.; Vandekinderen, I.; Noseda, B.; Xhaferi, R.; Baets, B.D.; Meulenaer, B.D. Modelling the degradation kinetics of vitamin C in fruit juice in relation to the initial headspace oxygen concentration. Food Chem. 2012, 134, 207–214. [Google Scholar] [CrossRef]
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Et Biophys. Acta-Rev. Cancer 2012, 1826, 443–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakal, S.; Balasubramaniam, V.M.; Ayvaz, H.; Rodriguez-Saona, L.E. Kinetic modeling of ascorbic acid degradation of pineapple juice subjected to combined pressure-thermal treatment. J. Food Eng. 2018, 224, 62–70. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; Elez-Martínez, P.; De, A.B.; Martín-Belloso, O.; Cano, M.P. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J. Agric. Food Chem. 2005, 53, 4403–4409. [Google Scholar] [CrossRef]
- Velázquez-Estrada, R.; Hernández-Herrero, M.; Rüfer, C.; Guamis-López, B.; Roig-Sagués, A. Influence of ultra high pressure homogenization processing on bioactive compounds and antioxidant activity of orange juice. Innov. Food Sci. Emerg. Technol. 2013, 18, 89–94. [Google Scholar] [CrossRef]
- Siriwoharn, T.; Surawang, S. Protective effect of sweet basil extracts against vitamin C degradation in a model solution and in guava juice. J Food Process. Preserv. 2018, 42, 7. [Google Scholar] [CrossRef]
- Akyildiz, A.; Mertoglu, T.S.; Agcam, E. Kinetic study for ascorbic acid degradation, hydroxymethylfurfural and furfural formations in Orange juice. J. Food Compos. Anal. 2021, 102, 103996. [Google Scholar] [CrossRef]
- Peleg, M.; Normand, M.D.; Dixon, W.R.; Goulette, T.R. Modeling the degradation kinetics of ascorbic acid. Crit. Rev. Food Sci. Nutr. 2018, 58, 1478–1494. [Google Scholar] [CrossRef]
- Seok, Y.J.; Her, J.Y.; Kim, Y.G.; Kim, M.Y.; Jeong, S.Y.; Kim, M.K.; Lee, J.Y.; Kim, C.I.; Yoon, H.J.; Lee, K.G. Furan in Thermally Processed Foods—A Review. Toxicol. Res. 2015, 31, 241–253. [Google Scholar] [CrossRef]
- Mingyue, S.; Fan, Z.; Tao, H.; Jianhua, X.; Yuting, W.; Shaoping, N.; Mingyong, X. Comparative study of the effects of antioxidants on furan formation during thermal processing in model systems. LWT-Food Sci. Technol. 2017, 75, 286–292. [Google Scholar]
- Zhang, S.W.; Tromans, D. Temperature and pressure dependent solubility of oxygen in water: A thermodynamic analysis. Hydrometallurgy 1998, 48, 327–342. [Google Scholar]
- Battino, R. Oxygen and Ozone. Solubility Data 1981, 46, B1513–B1516. [Google Scholar]
- Al Fata, N.; George, S.; Dlalah, N.; Renard, C.M.G.C. Influence of partial pressure of oxygen on ascorbic acid degradation at canning temperature. Innov. Food Sci. Emerg. Technol. 2018, 49, 215–221. [Google Scholar] [CrossRef]
- Aguilar, K.; Garvin, A.; Lara-Sagahon, A.V.; Ibarz, A. Ascorbic acid degradation in aqueous solution during UV-Vis irradiation. Food Chem. 2019, 297, 124864.1–124864.6. [Google Scholar] [CrossRef] [PubMed]
- Tikekar, R.V.; Anantheswaran, R.C.; Laborde, L.F. Ascorbic Acid Degradation in a Model Apple Juice System and in Apple Juice during Ultraviolet Processing and Storage. J. Food Sci. 2015, 76, H62–H71. [Google Scholar] [CrossRef]
- Koutchma, T. Advances in Ultraviolet Light Technology for Non-thermal Processing of Liquid Foods. Food & Bioprocess Technol. 2009, 2, 138–155. [Google Scholar]
- Ahmad, I.; Mobeen, M.F.; Sheraz, M.A.; Ahmed, S.; Anwar, Z.; Shaikh, R.S.; Hussain, I.; Ali, S.M. Photochemical interaction of ascorbic acid and nicotinamide in aqueous solution: A kinetic study. J. Photochem. Photobiol. B 2018, 182, 115–121. [Google Scholar] [CrossRef]
- Doert, M.; Krüger, S.; Morlock, G.E.; Kroh, L.W. Synergistic effect of lecithins for tocopherols: Formation and antioxidant effect of the phosphatidylethanolamine—l-ascorbic acid condensate. Eur. Food Res. Technol. 2017, 243, 583–596. [Google Scholar] [CrossRef]
- Pedrielli, P.; Skibsted, L.H. Antioxidant synergy and regeneration effect of quercetin, (−)-epicatechin, and (+)-catechin on alpha-tocopherol in homogeneous solutions of peroxidating methyl linoleate. J. Agric. Food. Chem. 2002, 50, 7138–7144. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Yhabc, D.; Mwabc, D.; Fyabc, D.; Yxabc, D.; Ygabc, D.; Ycabc, D.; Wyabc, D. Regenerative efficacy of tert-butyl hydroquinone (TBHQ) on dehydrogenated ascorbic acid and its corresponding application to liqueur chocolate. Food Biosci. 2021, 42, 101129. [Google Scholar]
- Han, R.Z.; Liu, L.; Li, J.H.; Du, G.C.; Chen, J. Functions, applications and production of 2-O-d-glucopyranosyl-l-ascorbic acid. Appl. Microbiol. Biotechnol. 2012, 95, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, Q.; Yang, R.; Zhao, W.; Hua, X. 2-O-d-glucopyranosyl-l-ascorbic acid: Properties, production, and potential application as a substitute for L-ascorbic acid. J. Funct. Foods 2021, 82, 104481. [Google Scholar] [CrossRef]
- Andersen, F.A. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics. Int. J. Toxicol. 2005, 24, 51–111. [Google Scholar]
- Chanphai, P.; Tajmir-Riahi, H.A. Conjugation of vitamin C with serum proteins: A potential application for vitamin delivery. Int. J. Biol. Macromol. 2019, 137, 966–972. [Google Scholar] [CrossRef]
- Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocoll. 2014, 38, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Desai, K.; Park, H.J. Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J. Microencapsul. 2005, 22, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Hon, M.H. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem. J. 2009, 92, 87–91. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Ishwarya, S.P. Spray drying for nanoencapsulation of food components. In Spray Drying Techniques for Food Ingredient Encapsulation; John Wiley & Sons: New York, NY, USA, 2015; pp. 180–197. [Google Scholar]
- Barra, P.A.; Márquez, K.; Gil-Castell, O.; Mujica, J.; Ribes-Greus, A.; Faccini, M. Spray-Drying Performance and Thermal Stability of L-ascorbic Acid Microencapsulated with Sodium Alginate and Gum Arabic. Molecules 2019, 24, 2872. [Google Scholar] [CrossRef] [Green Version]
- Farias, M.D.P.; Albuquerque, P.B.S.; Soares, P.A.G.; de Sa, D.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Xyloglucan from Hymenaea courbaril var. courbaril seeds as encapsulating agent of L-ascorbic acid. Int. J. Biol. Macromol. 2018, 107, 1559–1566. [Google Scholar] [CrossRef] [Green Version]
- Comunian, T.A.; Thomazini, M.; Alves, A.; Junior, F.E.D.M.; Balieiro, J.C.D.C.; Favaro-Trindade, C.S. Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Res. Int. 2013, 52, 373–379. [Google Scholar] [CrossRef]
- Eghbal, N.; Choudhary, R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT 2018, 90, 254–264. [Google Scholar] [CrossRef]
- Lee, J.B.; Ahn, J.; Lee, J.; Kwak, H.S. L-ascorbic acid microencapsulated with polyacylglycerol monostearate for milk fortification. Biosci. Biotechnol. Biochem. 2004, 68, 495–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozman, B.; Gasperlin, M. Stability of vitamins C and E in topical microemulsions for combined antioxidant therapy. Drug Deliv. 2007, 14, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Farhang, B.; Kakuda, Y.; Corredig, M. Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Sci. Technol. 2012, 92, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Trindade, M.A.; Grosso, C.R.F. The stability of ascorbic acid microencapsulated in granules of rice starch and in gum arabic. J. Microencapsul. 2000, 17, 169–176. [Google Scholar]
- Khalid, N.; Kobayashi, I.; Neves, M.A.; Uemura, K.; Nakajima, M. Preparation and characterization of water-in-oil emulsions loaded with high concentration of L-ascorbic acid. Lwt-Food Sci. Technol. 2013, 51, 448–454. [Google Scholar] [CrossRef]
- Khalid, N.; Kobayashi, I.; Neves, M.A.; Uemura, K.; Nakajima, M.; Nabetani, H. Monodisperse W/O/W emulsions encapsulating L-ascorbic acid: Insights on their formulation using microchannel emulsification and stability studies. Colloids Surf. Physicochem. Eng. Asp. 2014, 458, 69–77. [Google Scholar] [CrossRef]
- Perez-Vicente, A.; Gil-Izquierdo, A.; Garcia-Viguera, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food. Chem. 2002, 50, 2308–2312. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Andreoli, A.; Sinibaldi Salimei, P.; D’Orazio; Guidi, A.; Ghiselli, A. Determination of the blood ascorbic acid level after administration of slow-release vitamin C. Clin. Ter. 2001, 152, 87–90. [Google Scholar]
- Xu, X.-F.; Zhong, H.Q.; Liu, W.; Xia, W.X.; Yang, J.G. A Kinetic Study on the In Vitro Simulated Digestion of Gummy Vitamin C and Calcium Candies. Mod. Food Sci. Technol. 2018, 34, 83–89. [Google Scholar]
- Liu, G.; Huang, W.; Babii, O.; Gong, X.; Chen, L. Novel protein-lipid composite nanoparticles with inner aqueous compartment as delivery systems of hydrophilic nutraceutical compounds. Nanoscale 2018, 10, 10629–10640. [Google Scholar] [CrossRef]
- Gopi, S.; Balakrishnan, P. Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. J. Liposome Res. 2021, 31, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, G.A.; Sgroppo, S.C.; Martin-Belloso, O.; Soliva Ortuny, R. Chitosan/tripolyphosphate nanoaggregates enhance the antibrowning effect of ascorbic acid on mushroom slices. Postharvest Biol. Technol. 2019, 156, 110934. [Google Scholar] [CrossRef]
- Zhao, M.; You, X.; Wu, Y.; Wang, L.; Wu, W.; Shi, L.; Sun, W.; Xiong, G. Acute heat stress during transportation deteriorated the qualities of rainbow trout (Oncorhynchus mykiss) fillets during chilling storage and its relief attempt by ascorbic acid. LWT, 2021. (in press) [Google Scholar]
- Lall, S.P.; Lewis-Mccrea, L.M. Role of nutrients in skeletal metabolism and pathology in fish—An overview. Aquaculture 2007, 267, 3–19. [Google Scholar] [CrossRef]
- Tzu Ming, P.; Cheng-Lun, W. Soybean Milk to Which Vitamin C, Vitamin C Salt, or Vitamin C Stereoisomer Is Added. Patent 2013039122 A, 28 February 2013. [Google Scholar]
- Fujii, K.; Yasuda, A.; Orikoshi, E.; Kimura, Y.; Chaen, H. Milk Constituent-Containing Food Reinforced in Vitamin C. Patent 2006320222 A, 30 November 2006. [Google Scholar]
- Nitin, M.; Sharma, B.D.; Kumar, R.R.; Pavan, K.; Prakash Malav, O.; Kumar Verma, A. Fortification of low-fat chicken meat patties with calcium, vitamin E and vitamin C. Nutr. Food Sci. 2015, 45, 688–702. [Google Scholar]
- Zhou, H.B.; Huang, X.Y.; Bi, Z.; Hu, Y.H.; Wang, F.Q.; Wang, X.X.; Wang, Y.Z.; Lu, Z.Q. Vitamin A with L-ascorbic acid sodium salt improves the growth performance, immune function and antioxidant capacity of weaned pigs. Animal 2021, 15, 7. [Google Scholar] [CrossRef]
- Tsaloeva, M.R.; Dubtsov, G.G.; Bogdanov, A.R.; Pavlyuchkova, M.S. A vitamin-mineral premix for bakery products to be used in preventive diets. Nutrition 2013, 3, 29–31. [Google Scholar]
- Kurzer, A.B.; Dunn, M.L.; Pike, O.A.; Eggett, D.L.; Jefferies, L.K. Antioxidant effects on retinyl palmitate stability and isomerization in nonfat dry milk during thermally accelerated storage. Int. Dairy J. 2014, 35, 111–115. [Google Scholar] [CrossRef]
- Hwang, K.E.; Kim, H.W.; Song, D.H.; Kim, Y.J.; Ham, Y.K.; Choi, Y.S.; Lee, M.A.; Kim, C.J. Effect of Mugwort and Rosemary Either Singly, or Combination with Ascorbic Acid on Shelf Stability of Pork Patties. J. Food Process. Preserv. 2017, 41, e12994. [Google Scholar] [CrossRef]
- Sripakdee, T.; Mahachai, R.; Chanthai, S. Phenolics and Ascorbic Acid Related to Antioxidant Activity of MaoFruit Juice and Their Thermal Stability Study (Review Article). Orient. J. Chem. 2017, 33, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Yoshitomi, B. Depletion of ascorbic acid derivatives in fish feed by the production process. Fish. Sci. 2004, 70, 1153–1156. [Google Scholar] [CrossRef]
- Berardo, A.; De Maere, H.; Stavropoulou, D.A.; Rysman, T.; Leroy, F.; De Smet, S. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages. Meat Sci. 2016, 121, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Hendricks, D.G.; Cornforth, D.P. A comparison of carnosine and ascorbic acid on color and lipid stability in a ground beef pattie model system. Meat Sci. 1999, 51, 245–253. [Google Scholar]
- Itaru, Y.; Norio, M.; Toshio, M. Alpha-glycosyl-l-ascorbic acid, and its preparation and uses. Patent EP0398484 B1, 31 May 1995. [Google Scholar]
- Bamidele, O.P.; Duodu, K.G.; Emmambux, M.N. Encapsulation and antioxidant activity of ascorbyl palmitate with maize starch during pasting. Carbohydr. Polym. 2017, 166, 202–208. [Google Scholar] [CrossRef]
- Aleman, M.; Bou, R.; Tres, A.; Polo, J.; Codony, R.; Guardiola, F. Oxidative stability of a heme iron-fortified bakery product: Effectiveness of ascorbyl palmitate and co-spray-drying of heme iron with calcium caseinate. Food Chem. 2016, 196, 567–576. [Google Scholar] [CrossRef]
- Lin, F.-Q.; Chen, Y.-H.; He, S. Application of L-ascorbyl palmitate in formula milk. Mod. Food Sci. Technol. 2010, 26, 1114–1116. [Google Scholar]
- He, S.; Lin, F.-Q.; Chen, Y.-H. Effect of L-ascorbyl palmitate on the stability of frying oil. Mod. Food Sci. Technol. 2010, 26, 972–974. [Google Scholar]
Ascorbic Acid or Ascorbate | Product | Property of Added Bioactives | Challenges of Application | References |
---|---|---|---|---|
L-ascorbic acid | Liqueur chocolate, milk fortification, edible coating, juice, meat patties | With antioxidant properties and a series of physiological activities such as iron metabolism, it can eliminate bacterial biofilms and the cost is low. | Poor stability, sour taste. | [31,33,82,100,114,115,116] |
L-ascorbic acid sodium | Fish feed, formulae and weaning foods, cured hams | With antioxidant properties and the cost is low. | Poor stability, and compared with ascorbic acid, sodium ascorbate has a potential anti-nutritional effect on protein after high-temperature baking. | [117,118] |
2-O-D-glucopyranosyl-L-ascorbic acid | Berry beverage, black rice baking products, cured meat products, aquatic products | With anti-oxidation and stability, it avoids the degradation of anthocyanins caused by ascorbic acid and releases ascorbic acid under the catalysis of enzymes in vivo. | High cost and lowyield in industrial production. | [84,119,120] |
L-ascorbic acid palmitic acid ester | Formula milk, heme iron-fortified bakery product, frying oil, nutritional powders | It is a lipophilicity L-ascorbic acid esters derivatives with antioxidant properties and can be converted into ascorbic acid by esterase. | The thermal stability is poor, and chemically modified products often contain mixtures. | [121,122,123,124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants 2022, 11, 153. https://doi.org/10.3390/antiox11010153
Yin X, Chen K, Cheng H, Chen X, Feng S, Song Y, Liang L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants. 2022; 11(1):153. https://doi.org/10.3390/antiox11010153
Chicago/Turabian StyleYin, Xin, Kaiwen Chen, Hao Cheng, Xing Chen, Shuai Feng, Yuanda Song, and Li Liang. 2022. "Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology" Antioxidants 11, no. 1: 153. https://doi.org/10.3390/antiox11010153
APA StyleYin, X., Chen, K., Cheng, H., Chen, X., Feng, S., Song, Y., & Liang, L. (2022). Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants, 11(1), 153. https://doi.org/10.3390/antiox11010153