
Unremoved Unused and Dead Code Increases Maintenance Burden
Unused and dead code resides in an application’s codebase but is not used by the application. Removing
unused and dead code significantly reduces the burden of maintaining the codebase and makes it easier
to understand. Developers want to remove unused and dead code but are terrified of doing so because the
process of identifying and removing it is manually intensive and can break the application. Traditional tools
like IDEs do not provide a complete view of code used in production over time due to their static nature.
Profilers are so overhead intensive they cannot practically be used in production settings.

Why It Matters
Unused and dead code increases the cognitive burden for developers to understand the code, makes
onboarding new developers difficult, and makes it difficult to update libraries and upgrade from one
Java version to the next. Unused and dead code impacts overall developer productivity and slows
down velocity of delivering new features. If unaddressed, unused and dead code becomes harder to
deprecate and can lead to zombie code that reawakens with unintended consequences.

Codebase Codebase Codebase

In use code

Unused ‘dead’
code

Initial release
of codebase

Time

Maintenance
burden

Code Inventory
Accurately identify unused and dead code for removal to save time and money

The Importance of Deleting Unused and Dead Code
A recent study from Goldman Sachs’ DevOps organization underscores the importance of deleting unused and dead
code by revealing that they:
 • Reduced the size of a codebase by 67% for a recent project
 • Improved product release cadence to more than 250 releases per year
 • Reduced codebase size and greater confidence in their testing resulted in time savings and
 afforded opportunity for other investments

Proof
”Without a timely, complete and trustworthy code use and impact report, there’s a
 danger that the step of deprecating code can cause bigger problems,”
 said David Norfolk, Practice Leader, Bloor Research.
”Reliably identifying dead code is the hard part and using automation to find what code
 is and is not running, or can’t ever be reached, gives developers a huge advantage.”

Azul Intelligence Cloud

https://developer.gs.com/blog/posts/importance-of-deleting-unused-code

Product Features
A feature of Azul Intelligence Cloud, Code Inventory is the only solution that precisely catalogs the source
code actually used in production by Java applications, making it easy to accurately identify unused and dead
code for removal. lt slashes the burden of maintaining and testing code that is not being used, significantly
improving developer productivity and ultimately saving time and money.

 • Aggregates what code runs over time
 • Strongest, most accurate signal
 • Collects information inside the JVM
 • Runs in Production, no performance penalty
 • Provides a comprehensive view across an enterprise’s Java workloads
 • Identifies code down to the class/package and method level

Benefits
Significant Reduction in Time Spent Automatically finds what code runs, dramatically slashing the time to
identify dead code for removal by eliminating the time-intensive manual process of locating and validating
dead code.

Remove Unused and Dead Code with Confidence Provides a comprehensive view across an enterprise’s
Java workloads of what code runs over time down to the class/package and method level, providing a more
accurate signal to confidently remove unused and dead code and reduce the risk of breaking the application.

No Performance Penalty Collects and aggregates detailed code information from inside the JVM without
the performance penalty of traditional profilers, and provides production context IDEs lack.

Summarizes and Retains History Collects data across all of an enterprise’s Java workloads and consolidates
it to provide a history of when code was first and last run, down to the method level.

Proof
”Without a timely, complete and trustworthy code use and impact report, there’s a
 danger that the step of deprecating code can cause bigger problems,”
 said David Norfolk, Practice Leader, Bloor Research.
”Reliably identifying dead code is the hard part and using automation to find what code
 is and is not running, or can’t ever be reached, gives developers a huge advantage.”

1 The application runs on top of Azul and other
 JVMs, enabled with Code Inventory

2 Data goes through the Forwarder to a point
 of collection

3 Each customer’s tenant collects and
 aggregates the data, marking the first-seen
 and last-seen date and time of each method
 to provide visibility across runs.

4 Application owners can call Code Inventory
 for the results via the REST API and compare
 against their code to plan removal

Learn more at
www.azul.com/components/code-inventory

1 2 3

4

How it Works

Code Inventory
Accurately identify unused and dead code for removal to save time and money

Azul Intelligence Cloud

Contact Azul
385 Moffett Park Drive, Suite 115

Sunnyvale, CA 94089 USA
sales@azul.com

+1.650.230.6515
www.azul.com

Copyright © 2024 Azul Systems, Inc.

