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Abstract: This paper focuses on the Low-Density Algebra-Check (LDAC) code, a novel low-
rate channel code derived from the Low-Density Parity-Check (LDPC) code with expanded
algebra-check constraints. A method for optimizing LDAC code design using Extrinsic
Information Transfer (EXIT) charts is presented. Firstly, an iterative decoding model for
LDAC is established according to its structure, and a method for plotting EXIT curves of the
algebra-check node decoder is proposed. Then, the performance of two types of algebra-
check nodes under different conditions is analyzed via EXIT curves. Finally, a low-rate
LDAC code with enhanced coding gain is constructed, demonstrating the effectiveness of
the proposed method.

Keywords: EXIT; LDAC; LDPC; CND; algebraic codes; iterative decoder; channel coding

1. Introduction
In modern communication systems, channel coding techniques play a crucial and

fundamental role. Currently, research on channel coding primarily focuses on medium-to-
high-rate codes to achieve high-speed and reliable transmission of big data. As society’s
reliance on information and communication networks grows, the demand for communica-
tion in various scenarios rises. Low-rate channel coding technology is of great significance
for improving communication capabilities and ensuring Minimum Essential Emergency
Communication (MEEC) in extremely adverse channel conditions. For example, in Internet
of Things (IoT) applications where sensor nodes transmit small amounts of data with high
reliability requirements, or in emergency communication in remote areas with limited
bandwidth and harsh environments. Obviously, a low-rate channel coding scheme is an
indispensable part of the channel coding system.

However, research on low-rate channel coding techniques remains insufficient. More-
over, the performance of common channel coding schemes with excellent performance in
medium-to-high rates, such as turbo code, Low-Density Parity-Check (LDPC) code, and
polar code, significantly declines when constructing a low-rate channel code. The LDPC
code is widely used in modern communication systems and exhibits excellent performance
in medium-to-high-rate codes. However, the construction of low-rate LDPC codes is very
difficult. The CCSDS [1] standard uses LDPC codes with a minimum rate of 1/2. The
DVB-S2 standard [2,3] improves the coding performance by concatenating LDPC codes
with BCH codes and applies LDPC codes with a minimum rate of approximately 1/4. Until
now, there has been no uniform standard for channel coding with a rate less than 1/2.

Despite the challenges associated with low-rate LDPC codes, some attempts have been
made to develop efficient low-rate channel coding [4–9]. However, these studies failed to
break through the LDPC code structure and only achieved rate compatibility. Therefore, the
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construction of these codes is still under difficult conditions caused by reducing the rate of
LDPC codes, often associated with issues such as complex construction and poor flexibility.

Generalized Low-Density Parity Check (GLDPC) codes [10,11] provide another per-
spective, showing that the check nodes of LDPC codes need not be limited to the Single
Parity Check (SPC) and can be extended to other shortcodes with stronger error correction
ability. Another code that extends the SPC node is the LDPC-Hadamard code [12], which
stems from the parallel iterative decoding structure. Around the same period, the Turbo-
Hadamard code [13,14] and the Zigzag-Hadamard code [15], both employing a similar
structure, were also proposed, and all exhibit excellent performance at low rates. While
the authors only considered approaching the Shannon limit, the length of designed codes
was extremely long and difficult to implement in practice. In 2021, a team from Tsinghua
University adopted the same structure as LDPC-Hadamard codes to propose LDBCH
codes [16]. Subsequently, they further extended it and proposed Generalized Sparse (GS)
Codes [17], which further enriched the types of subcodes.

Recently, a novel channel coding scheme named Low-Density Algebra-Check (LDAC)
codes has been introduced, which is specifically designed to enhance the coding gain of
low-rate codes [18]. In this paper, the Extrinsic Information Transfer (EXIT) chart [19–21] is
used to optimize the design of LDAC codes. An iterative decoding model for LDAC codes
is established, and the methods for plotting EXIT curves for two types of algebra-check
nodes have been proposed. The performance of two types of algebra-check nodes of LDAC
codes in different cases is discussed.

2. System Model
2.1. The Structure of LDAC Code

The LDAC code is derived from the LDPC code. To enhance the coding structure,
LDAC codes incorporate complex algebraic checks to constrain the check nodes. Algebra-
check constraints use algebraic codes as subcodes, which usually have significant algebraic
structures, such as BCH codes [22–24], RS codes [25], and Hamming codes [26]. The
nodes constrained by algebraic checks are named algebra-check nodes, and the constraint
relationship of each algebra-check node can be represented by a set of algebraic equations
or matrices. Based on whether all bits of the algebraic code take part in the decoding
iteration, the algebra-check nodes are classified into two categories. These two types of
algebra-check nodes are different in connection and will show different performance in
decoding iteration.

Figure 1 depicts the Tanner graph of LDAC codes. In this figure, a circle represents
a variable node, a square represents a check node, and the Tanner graph of two types of
algebra-check nodes is presented within the dotted box.

Each check node can be considered a subcode. For instance, an SPC node is related to
an SPC code. In both LDAC and LDPC codes, all subcodes are connected in parallel based
on the connection shown by the sparse check matrix. LDPC codes consist of SPC codes.

If an LDPC code has M SPC check nodes and its row degree is denoted as
(d1, d2, . . . , dM), then the ith SPC check node corresponds to a (di, di − 1) SPC subcode.

When the ith row is extended from the SPC check node to the first type of algebra-check
node, the subcode related to it has di − 1 information bits, and its check bits are more than
1. If the subcode length is ni, this subcode can be represented as an (ni, di − 1) code. The
specific structure of the first type of algebra-check node is displayed in algebra-check node 1
of Figure 1. The added check bits of the first type of algebra-check node are corresponded to
the variable nodes with dv = 1, as shown in the right of the algebra-check node 1. In order
to simplify the encoding and decoding operations of LDAC codes, when constructing the
first type of algebra-check nodes, the first di variable nodes still satisfy the SPC constraint.
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When the ith row is extended from the SPC check node to the second type of algebra-
check node, the length of the associated subcode is di. If the information bits have a length
of ki, the corresponding subcode can be represented as a (di, ki) code. The specific structure
is displayed in algebra-check node 2 of Figure 1.

Compared with LDPC codes, due to the enhanced error correction capabilities of the
two types of algebra-check nodes, LDAC codes can construct low-rate to ultra-low-rate
codes without introducing short cycles. The utilization of two types of algebra-check nodes
provides more flexibility and reliability in LDAC code design, facilitating the construction
of ultra-low-rate codes.

Figure 1. The Tanner graph of LDAC codes.

2.2. The Decoding Algorithm of LDAC Code

The decoding algorithm designed for LDAC codes must be suitable for SPC check
nodes and two types of algebra-check nodes. Except for the check nodes, the general
structure of the LDAC code closely resembles that of LDPC codes. Consequently, the
Log-MAP-SPA decoding algorithm of LDAC codes is a combination of the Maximum a
Posteriori Probability (MAP) decoding algorithm and the Log-Sum-Product Algorithm
(Log-SPA). The key difference between Log-MAP-SPA and Log-SPA is in the update of
check nodes.

Let {Lcv(i, j)}i∈{1,...,M},j∈{1,...,di} represent the message passing from check nodes to
variable nodes, and {Lvc(i, j)}i∈{1,...,M},j∈{1,...,ni} represent the message passing from vari-
able nodes to check nodes. The codeword set of the subcode is denoted by C. At the
beginning of the iteration, the message Lvc(i, j) is from the extrinsic information received
by the channel.

The iterative decoding message update of check nodes is

Lcv(i, j) = ln

ϕxk=1

∑
t

e
0.5

N
∑

j=1
(Lvc(i,j)ω(ct,j))


ϕxk=0

∑
t

e
0.5

N
∑

j=1
(Lvc(i,j)ω(ct,j))


− Lvc(i, j) (1)

where ϕxk = 1/0 denote the subsets of C with the jth is 1 or 0.



Entropy 2024, 26, 1118 29 of 41

The iterative decoding message update of variable nodes can be written as

Lvc(i, j) = ∑
i′∈VN(j)\{i}

Lcv(i′, j) (2)

where VN(j) represents the set of the check nodes positions connected to the jth vari-
able node.

The range of j in Lcv and Lvc is different. The index j of message Lcv(i, j) ranges from 1
to di, while the index j of message Lvc(i, j) ranges from 1 to ni. For the SPC check node, or
the second type of algebra-check node, since ni = di, all the variable nodes can be updated
according to Formula (2). However, when it comes to the first type of algebra-check node,
since ni > di, it implies that the ni − di variable nodes cannot be updated. These ni − di

variable nodes have dv = 1. The message Lvc(i, j) with j ∈ {di + 1, . . . , ni} (when ni > di)
is the extrinsic information from the channel and remains unchanged during the iterative
decoding process.

2.3. Iterative Decoder

EXIT charts are utilized to analyze the input–output mutual information interactions
between the Check Nodes Decoder (CND) and the Variable Nodes Decoder (VND), which is
an effective method to predict the convergence of the iterative decoding process. Specifically,
the CND updates the decoding message in accordance with Formula (1), while the VND
updates the decoding message based on Formula (2).

The LDAC codes employ an iterative decoding method, which is similar to LDPC
codes. Therefore, the model of the LDAC iterative decoder can be derived from the model of
the LDPC iterative decoder. The update message between the CND and VND is quantified
by mutual information. As shown in Figure 2, the iterative decoding of LDPC codes is
conceptualized as the reciprocal transmission of mutual information between the CND
and the VND. Of which, Ich denotes the mutual information originating from the channel.
The subscripts A/E represent input/output, while C/V represent check nodes/variable
nodes, respectively. The relationships IEV = IAC and IEC = IAV are maintained throughout
this process.

Figure 2. Block diagram of the iterative decoder for LDPC codes.

For the VND of LDPC codes, IEV is a function of degree dv, input mutual information
IAV , and channel mutual information Ich.

IEV = f (IAV , Ich, dv) (3)

For the CND of LDPC codes, IECis a function of degreedc and input mutual information
IEV .

IEC = g(IAC, dc) (4)

However, a CND with an algebra-check extension cannot be described by Function (4).
The output IEC is a function of input mutual information IEV , channel mutual information
Ich, and degree dc.

IEC = g(IAC, Ich, dc) (5)
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Depending on the selection of the check nodes, the input channel mutual information Ich

may be zero. The block diagram of the iterative decoder for LDAC codes is presented in
Figure 3, and the meaning of symbols in the figure refers to Figure 2.

Figure 3. Block diagram of the iterative decoder for LDAC codes.

2.4. Calculation of Mutual Information

The mutual information can be calculated according to the log-likelihood ratio (LLR)
of the transmitted bits. Consider the AWGN channel with BPSK modulation. Assume that
the transmitted bit is x, and the information received from the channel is y. The calculation
of LLR is presented as follows:

l = log
p( x = 1|y)
p( x = 0|y) =

2
σ2

n
y (6)

σ2
n is noise variance. Then, the conditional probability density function of the LLR is

fL( l|X = x) (7)

Define mutual information IL:

IL = I(X; L) (8)

Through derivation, we can obtain

IL =
1
2 ∑

X

∫ +∞

−∞
fL(l|X = x ) · log2

2 fL(l|X = x )
fL(l|X = 0 ) + fL(l|X = 1 )

dl (9)

Among which, X is the transmitted bit, and L is the LLR of extrinsic information.
If L satisfies symmetry and consistency:

fL(l|X = 1 ) = fL(−l|X = 0 ) (10)

fL(−l|X = x ) = e−l fL(l|X = x ) (11)

and the conditional probability density function of L follows a Gaussian distribution. The
corresponding distribution function is

fL(l|X = 1 ) =
1√
2πσ

e−
(l−σ2

/
2)

2

2σ2 (12)

fL(l|X = 0 ) =
1√
2πσ

e−
(l+σ2

/
2)

2

2σ2 (13)

Substitute (12) and (13) into (9) to obtain

IL = 1 − 1√
2πσ

∫ ∞

−∞
e−

(l−σ2
/

2)
2

2σ2 log2

(
1 + e−l

)
dl (14)
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Definition function:

J(σ) = 1 − 1√
2πσ

∫ ∞

−∞
e−

(y−σ2
/

2)
2

2σ2 log2
(
1 + e−y)dy (15)

Obviously, σ = J−1(I). The functions J and J1 can be segmented for several approximate
and simplified calculations as cited in [20].

3. EXIT Curves of LDAC Codes
In LDAC codes, the EXIT curves of VND are identical to those of the LDPC code.

However, the CND of LDAC codes contains three possible cases. In this section, the EXIT
curves for both the VND and the three different types of CND are introduced, respectively.

3.1. VND

Similar to LDPC codes, the VND of LDAC codes can be regarded as a repetition (REP)
code decoder. We define the normalized signal-to-noise ratio (SNR) as Eb/N0 = 1/

(
2Rσ2

n
)
,

where R is the rate of the LDAC code. The mutual information between the input and
output of the VND at the same degree dv can be calculated by Formula (9).

IEV = J
(√

(dv − 1)[J−1(IAV)]
2
+ [J−1(Ich)]

2
)

(16)

σ2
ch =

[
J−1(Ich)

]2
= 8R · Eb/N0 (17)

R is the rate of the LDAC code. The EXIT curves of VND with different degrees dv are
shown in Figure 4.

Figure 4. The EXIT curves of VND with Eb
/

N0 = 2 dB, R = 1/2.

3.2. CND

The check nodes of LDAC codes include the SPC node, the first type of algebra-check
node, and the second type of algebra-check node.

The SPC can be considered as the dual of repetitive codes, and the EXIT curve of the
SPC node is only related to the degree dc of the check node. The relationship between the
input and output mutual information of the VND with only one degree dc is as follows:

ISPC
EC = 1 − IREP = 1 − J

(√
(dc − 1)[J−1(1 − IAV)]

2
)

(18)

The EXIT curves of the SPC nodes decoder with different degrees of dc are shown in Figure 5.
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Figure 5. The EXIT curves of the SPC nodes decoder.

In LDAC codes, the two types of algebra-check nodes are distinct from the SPC nodes.
The decoding output of an algebra-check node decoder is related to the specific algebra-
check constraint. The calculation is more complex than the SPC decoder, and it is difficult
to obtain the specific expression of each constraint. Therefore, for the algebra-check nodes
decoder, the Monte Carlo method is employed to plot the EXIT curves.

For a given input mutual information value IAC, according to the experimental results
in Reference [20], when the number of experiments is large enough, the conditional prob-
ability functions P(LA|X = 0) and P(LA|X = 1) can be considered to follow a Gaussian
distribution. Therefore, under the circumstances of fulfilling the symmetry and consistency
conditions, when the variance is σ2

A, the mean can be calculated as σ2
A/2. The expression of

the conditional probability functions is as follows:

P(LA = l|X = x ) =
1√

2πσA
e
− (l−(σA

2
/

2)ω(x))
2

2σA
2 (19)

Substitute Formula (19) into the mutual information calculation Formula (9) to obtain

IAC = J(σA) (20)

When the input mutual information value IAC is known, obtain

σA = J−1(IAC) (21)

When the output LLR sequence LE is known and the sequence size is sufficiently
large, the empirical distribution of the output can be obtained via the Monte Carlo method,
which is regarded as an approximation of the probability distribution. As a result, the
conditional probability density function P(LE = l|X = x) can be obtained, and the output
mutual information IEC can be calculated according to Formula (9). In addition, according
to Formula (17), the variance of channel information σch

2 can be obtained. Two types of
algebra-check nodes of LDAC codes are analyzed below.

According to the decoding algorithm of LDAC codes [18], if the ith check node is the
first type of algebra-check node, only the first di variable nodes connected to it partici-
pate in the decoding iteration. The latter ni − di variable nodes only provide the extrinsic
information from the channel but remain unchanged during the iterative decoding pro-
cess. Therefore, for the first type of algebra-check node, the output mutual information
IEC of the CND is a function of the input mutual information IAC and the extrinsic mu-
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tual information from the channel Ich. And the vector input of the CND is the vector
(LA,1, LA,2, . . . , LA,dc , Lch,1, Lch,2, . . . , Lch,n−dc). If the ith check node is the second type of
algebra-check node, the output mutual information IEC of the CND is only related to
the input mutual information IAC, and every variable node connected to the check node
updates during the iterative decoding. Therefore, for the second type of algebra-check
node, the vector input of the CND is the vector (LA,1, LA,2, . . . , LA,dc).

For the first type of algebra-check node, the process for plotting the EXIT curves of the
CND by the Monte Carlo method is as follows:

1. Set the value of input mutual information IAC ranging from 0 to 1, and set the target
rate R and Eb/N0;

2. Calculate σch according to R and Eb/N0, and randomly generate the channel informa-
tion Lch;

3. Calculate σA according to IAC and randomly generate the input LA of the CND.
4. Input Lch and LA into the CND and calculate the output message LEC according to

Formula (1);
5. Accumulate sufficient output messages LE for empirical distribution. Consider it as a

probability distribution to obtain the conditional probability density function of LE

and calculate the output mutual information IEC;
6. Plot the EXIT curves of the first type of algebra-check node decoder, according to the

input mutual information IAC and output mutual information IEC.

For the second type of algebra-check node, the process for plotting the EXIT curves of
the CND by the Monte Carlo method is as follows:

1. Set the value of input mutual information IAC ranging from 0 to 1;
2. Calculate σA according to IAC and randomly generate the input LA of the CND;
3. Input LA into the CND and calculate the output message LEC according to Formula (1);
4. Accumulate sufficient output messages LE for empirical distribution. Consider it as a

probability distribution to obtain the conditional probability density function of LE

and calculate the output mutual information IEC;
5. Plot the EXIT curves of the second type of algebra-check node decoder, according to

the input mutual information IAC and output mutual information IEC.

According to the above steps, for the two types of algebra-check nodes, the EXIT
curves of the CND are simulated respectively, as shown in Figures 6 and 7. The curves
indicated by dc = 3, dc = 4, and dc = 5 are the EXIT curves of the SPC node decoder
with the corresponding degree. The curves labeled by sub1H(31, 6), sub1H(15, 5), and
sub1H(7, 4) are the EXIT curves of the first type of algebra-check node with the modified
BCH codes. Specifically, the code lengths are 31, 15, and 7, respectively. Associated with
the information bit length are 6, 5, and 4, respectively. Corresponding to the row degree,
dc = 7, dc = 6, and dc = 5, respectively. The curves labeled by sub2H(7, 4), sub2H(6, 4), and
sub2H(5, 3) are the EXIT curves of the first type of algebra-check node with the Hamming
codes. Specifically, the code lengths are 7, 6, and 5, respectively. Associated with the
information bit lengths are 4, 4, and 3, respectively. Corresponding to the row degree,
dc = 7, dc = 6, and dc = 5, respectively.

In Figures 6 and 7, the shape of the EXIT curves of the algebra-check nodes significantly
differs from that of the SPC nodes. Especially for the first type of algebra-check nodes, the
EXIT curves of the CND do not pass through the origin but intersect with the X-axis. This
is because there is mutual information from the channel inputted into the CND.
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Figure 6. The EXIT curves of the first type of algebra-check node decoder.

Figure 7. The EXIT curves of the second type of algebra-check node decoder.

4. Simulation Results and Analysis
4.1. The Analysis of the VNDs and SPC Node

Figure 8 shows the VND EXIT curves with dv = 2 and dv = 5 given different code rates
R and Eb/N0. Comparing the EXIT curves about the rate of 1/2 and 1/12, it is observed
that the intersection of the EXIT curves with the Y-axis approaches the origin as the code
rate decreases. Moreover, when the bit rate is 1/12, increasing the Eb/N0 from 0.001 dB to
2 dB, the EXIT curves are significantly smaller than the EXIT curves with the rate of 1/2.
It is observed that the impact of varying Eb/N0 on the VND EXIT curves diminishes as
the code rate decreases. This indicates that reducing the code rate makes it increasingly
challenging to enhance the output performance of the variable node decoder by merely
increasing Eb/N0.

To achieve the iterative decoding, the VND curve in the EXIT chart must surpass
the CND curve, ensuring that the two curves remain non-intersecting and establishing a
decoding channel. Figure 9 depicts the VND EXIT curves for dv = 2 at different bit rates.
Additionally, the figure presents CND EXIT curves with different degrees dc. It can be
directly observed that when R = 1/2 and Eb/N0 = 2dB, the CND EXIT curves with dc ≤ 7
are below the VND EXIT curve with dv = 2. When R = 1/2 and Eb/N0 = 0.001 dB, the
CND EXIT curves with dc ≤ 5 are below the VND EXIT curve with dv = 2. When R = 1/12
and Eb/N0 = 2 dB, only the CND EXIT curves with dc = 3 and dc = 2 are below the VND
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EXIT curve with dv = 2. When R = 1/12 and Eb/N0 = 0.001 dB, only the CND EXIT curve
with dc = 2 is below the VND EXIT curve with dv = 2.

Figure 8. EXIT curves of VND under different conditions.

Figure 9. EXIT curves of VND and SPC node decoder at different rates.

The analysis reveals that when the code rate reduces, the variable node degree dv

necessary for achieving iterative decoding increases, while the check node degree dc

decreases. This implies that the matrix of the low-rate codes must be structured with the
higher column degrees and the lower row degrees. However, it is impossible to decrease the
row degree dc and increase the column degree dv at the same time, because the sum of row
degrees is always equal to the sum of column degrees. If the row degree dc decreases, the
CNDs will become insufficiently connected, leading to poor performance during decoding.
Conversely, if the column degree dv decreases, the number of short cycles tends to increase,
which also adversely affects the decoding performance.

The construction of low-rate LDPC codes presents considerable challenges, and the
introduction of algebra-check nodes provides a new ideal for constructing low-rate codes.
By modifying the structure of check nodes, its decoding capabilities can be enhanced. The
change in the shape of CND EXIT curves can optimize iterative decoding performance
without modifying dv and dc. This offers another option for constructing a low-rate code.

4.2. The Comparison of Algebra-Check Nodes

Initially, to evaluate and contrast the performance of the two types of algebra-check
nodes, the impact on the rate of LDAC codes following the substitution of these check
nodes is analyzed. The detailed derivation process is as follows.
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Suppose the increase of the code length due to the first type of algebra-check nodes is
b. The reduction of the information bits due to the second type of algebra-check nodes is a.
The LDAC code’s basis matrix is H0, with a code length of NH0 and a rate of R0. The final
rate of the LDAC code is R.

R =
R0NH0 − a

NH0 + b
(22)

If a = Rb, then

R =
R0NH0 − Rb

NH0 + b
(23)

When R > a/b, there is
R0NH0 − a

NH0 + b
>

R0NH0 − Rb
NH0 + b

(24)

When R < a/b, there is
R0NH0 − a

NH0 + b
<

R0NH0 − Rb
NH0 + b

(25)

Thus, the following relationships can be obtained:

• If R > a/b, substituting the first type of algebra-check nodes leads to a more significant
rate loss compared to replacing the second type.

• When R < a/b, replacing the first type of algebra-check nodes incurs a relatively
smaller rate loss than substituting the second type.

• In the case of R = a/b, the influence of both types of algebra-check nodes on the rate
of the constructed LDAC code is comparable.

For a specific analysis, the comparison of algebra-check nodes requires the combination
with parameters R, Eb/N0, and the ratio a/b. Here, the cases with code rates R = 1/12 and
R = 1/4 are discussed as examples.

(1) The constructed LDAC code with the target rate R = 1/12.

Figure 10 shows the EXIT curves of different algebra-check nodes with the target
rate R = 1/12 and Eb/N0 = 0.001 dB. The symbols sub1 and sub2 denote the first and
the second type of algebra-check nodes, respectively. The EXIT curves of the first type of
algebra-check nodes are all restricted by the modified BCH codes, while the EXIT curves
of the first type of algebra-check nodes are constrained by the modified BCH codes and
Hamming codes.

When the rate of the basis matrix is RH0 = 1/2, the degrees of the variable nodes are
mainly 3 and 4. Thus, the EXIT curve of variable node decoders with dv = 3 and dv = 4 is
presented in the figure as a reference.

For the second type of algebra-check nodes, the selected algebra-subcodes are the
(7,4) Hamming code and the (7,4) modified BCH system code. The EXIT curve of the
(7,4) Hamming code is always below the VND EXIT curve of the dv = 4, yet intersects
with the VND EXIT curve of dv = 3. While the EXIT curve of the (7,4) modified BCH
code below both the VND EXIT curves of dv = 3 and dv = 4. The simulation results
indicate that the second type of algebra-check node exhibits superior iterative convergence
performance compared to the SPC node, and the (7,4) modified BCH code outperforms the
Hamming code.

For the first type of algebra-check node, When the subcode of the information bit
Ksub1 = 6 and the length of code Nsub1 < 30, the first type of algebra-check node has a
rate advantage compared to the second type of algebra-check node with a (7,4) code. The
dotted lines in Figure 10 display the EXIT curves for the first type of algebra-check node
with Ksub1 = 6. The subcode lengths Nsub1 range from 12 to 31, increasing from left to right.
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The curves closest to dv = 3 and dv = 4 are the curves of the (15,6) code and the (19,6) code,
with code rates of 0.4 and 0.316, corresponding to a/b = 1/4 and a/b = 1/6, respectively.

Figure 10. The EXIT curves of two types of algebra-check nodes with the target rate R = 1/12.

In summary, if the rate of LDAC code is 1/12, for a check node with row degree dc = 7,
the first type of algebra-check nodes with a code length greater than 15 and the second type
of algebra-check nodes with the (7,4) code can be considered as candidates.

(2) The constructed LDAC code with the target rate R = 1/4.

The second type of algebra-check nodes that participate in the comparison is the (6,4)
code and (6,3) code, corresponding to a = 1 and a = 2, respectively. The two EXIT curves
in Figure 11 are located below the EXIT curve of dv = 3 and are significantly lower than the
VND EXIT curve of dv = 4.

Figure 11. The EXIT curves of two types of algebra-check nodes with the target rate R = 1/4.
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The first type of algebra-check node with Ksub1 = 5 and Nsub1 < 14 has an advantage
over the second type of algebra-check node with the (6,3) code. And the first type of
algebra-check node with Ksub1 = 5 and Nsub1 < 10 has an advantage over the second type
of algebra-check node with the (6,4) code.

The dotted lines in Figure 11 display the EXIT curves for the first type of algebra-check
node with Ksub1 = 5. The subcode lengths Nsub1 increase from left to right, starting at 8
and ending at 15. Except the curves of (8,5) code intersect with the VND EXIT curve of
dv = 3, the other curves do not intersect with the VND EXIT curves of dv > 2.

In summary, for the LDAC code construction of the target rate R = 1/4, both types of
algebra-check nodes show great performance.

4.3. Examples of Optimized Constructions of LDAC Codes

In response to the severe channel conditions with extremely low SNR, we have con-
structed LDAC codes with a code rate of R = 1/12. The selection of check nodes is detailed
in Table 1.

Table 1. Selection of check nodes.

Degree dc
The Type of Check
Node Subcode Length ni

Information Bit
Length ki

5 sub1 7 4
6 sub1 15 5
7 sub1 31 6
7 sub2 7 4

The EXIT chart for the LDAC code at R = 1/12 and Eb/N0 = 0.001 dB is presented in
Figure 12.

Figure 12. EXIT chart of LDAC code with rate R = 1/12.

The LDAC decoding matrix H at R = 1/12 is shown in Figure 13.
Figure 14 shows the block error rate (BLER) of the LDAC code constructed based on the

above parameters in the AWGN channel, comparing it with the 1/2-LDPC repetition code,
1/3-Turbo repetition code, and the 5G LDPC code [27]. The simulation results show that
under QPSK modulation, the BLER of the LDAC code with R = 0.0834 is significantly lower
than the 1/2-LDPC repetition code and outperforms the 5G LDPC code and 1/3-Turbo
repetition code, demonstrating superior performance.
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Figure 13. Decoding matrix of LDAC code with code rate R = 0.0834.

Figure 14. The BLER of LDAC code with R = 0.0834.

5. Conclusions
In this paper, the optimization design of LDAC codes based on the EXIT chart is

studied. An iterative decoder model for LDAC codes is proposed, along with calculation
methods for the input–output mutual information curves of two types of algebra-check
node decoders. The paper simulates various EXIT curves of VNDs and CNDs with different
conditions, investigates the limitations of low-rate LDPC codes, and analyzes the perfor-
mance of the two algebra-check nodes. Finally, based on the EXIT chart, the optimitive
constructed LDAC code based on the EXIT chart. The simulation results show that the
optimized LDAC code greatly reduces the BLER compared with the 1/2 LDPC repeti-
tion code and has enhanced coding gain compared with 5G LDPC code and 1/3-Turbo
repetition code.
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The following abbreviations are used in this manuscript:

EXIT Extrinsic Information Transfer
LDPC Low-Density Parity-Check
LDAC Low-Density Algebra-Check
GLDPC Generalized Low-Density Parity Check
SPC Single Parity Check
CND Check Nodes Decoder
VND Variable Nodes Decoder
MEEC Minimum Essential Emergency Communication
GS Generalized Sparse
SNR signal-to-noise ratio
BLER block error rate
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