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Abstract: In this work we introduce and evaluate a model of Hierarchical Rein-
forcement Learning with Parameters. In the first stage we train agents to execute
relatively simple actions like reaching or gripping. In the second stage we train a
hierarchical manager to compose these actions to solve more complicated tasks.
The manager may pass parameters to agents thus controlling details of undertaken
actions. The hierarchical approach with parameters can be used with any opti-
mization algorithm.

In this work we adapt to our setting methods described in [1]. We show that their
theoretical foundation, including monotonicity of improvements, still holds. We
experimentally compare the hierarchical reinforcement learning with the standard,
non-hierarchical approach and conclude that the hierarchical learning with param-
eters is a viable way to improve final results and stability of learning.

Keywords: Hierarchical learning, Learning in simulation, Grasping, Trust Region
Policy Optimization

1 Introduction

The field of robotic control has witnessed striking advances in recent years, many of them due to
applications of reinforcement learning and deep learning techniques [2, 3, 4, 5, 6, 1]. Nevertheless
a long term goal of learning complicated tasks with sparse rewards still seems elusive. So far it
requires a substantial human intervention or prolonged learning on a very large number of samples.
In this work we attempt to achieve difficult objectives dividing a complex problem into subproblems
with a Manager deciding when a given subproblem should be solved. The hierarchical approach to
reinforcement learning has been considered in foundational works [7, 8] and recently advanced in
[9, 10]. A similar idea of a hierarchical decomposition of complicated tasks was also used in the
context of optimal control [11, 12].

In the field of robotics it seems to be particularly justified to define a set of elementary actions
used for more complicated tasks. For instance, the reach-and-move task (see Figure 2 and videos)
considered in Sections 1.3 and 4 divides into two simpler actions of reaching of an object and
moving it to a target destination. Ultimately, a library of reusable agents performing basic actions
can be utilized in new complex tasks. We argue that challenging reinforcement learning problems
often have a natural hierarchical structure. For instance one can attempt to solve a difficult Atari
2600 game considered in [13], combining an exploratory strategy forcing the agent to visit more
rooms in the maze with a strategy focused on maximizing rewards. In [10] an agent learns basics of
locomotion as a part of a more complicated navigational task. In [5] is considered a task of moving
a LEGO brick which can be divided into a task of gripping of a brick and moving it to another
location.

* All authors contributed equally to this work.
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As shown by experiments presented in Section 4, combining hierarchical learning with passing of
parameters can potentially lead to better utilization of resources and as a result to more expressive,
sample-efficient and easier to train models. In Section 3 we present mathematical foundations of our
work. In Section 2 we describe other methods which can be used to solve control tasks considered in
this work and in particular in Section 2 we discuss relation of Hierarchical Reinforcement Learning
with Parameters to other hierarchical models present in the literature. In the rest of the introduction
we define the concept of Hierarchical Reinforcement Learning with Parameters and briefly discuss
mathematical foundations of our work and the experimental setting.

1.1 Definition of Hierarchical Reinforcement Learning with Parameters (HRLP)

The main contribution of this papers consists in combining of hierarchical learning with
parametrized tasks with a modern reinforcement learning algorithm and with deep learning. Hi-
erarchical reinforcement learning with parameters (HRLP) consists of the following components
(see Figure 1, left): (1) the Manager, which selects one of N available macro-actions and passes
a vector of parameters to the selected macro-action; (2) the macro-action executes a sequence of
lower-level control actions, such as changing of a torque of a selected actuator; (3) after the se-
lected macro-action is executed, the Manager observes updated information about the state of the
Environment and can pass this information back to macro-actions. In experiments in Section 4
the full information is passed to macro-actions, but in general part of it can be hidden from some

macro-actions.

Figure 1: An abstract version of HRLP (left) and an example of HRLP for reach-and-grip rask.
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In training of HRLP models we first train all macro-actions and then train the Manager, assuming
that models of macro-actions are fixed. In some of our experiments we also allow a special macro-
action which gives the Manager a direct access to all control actions. That is, in principle we allow a
possibility that the Manager can resort to micro-management of control actions, such as adjustments
of torques, if in the process of training it appears that macro-actions are not sufficiently effective.
Presence and absence of this micro-management facility is explored in experiments in Section 4.
Figure 1 (right) shows components of HRLP in the case of the reach-and-grip experiment.

1.2 Mathematical foundations of HRLP

HRLP has solid mathematical foundations when combined with optimization procedure introduced
in [1]. The underlying algorithm in [1] derived from [14] guarantees monotonic improvements in
the process of policy optimization. In Theorem 1 in Section 3.2 we show that this guarantee extends
to the hierarchical setting. In Corollary 1 we also provide a lower bound on a policy improvement.
In our view the bound may be easier to interpret than the one originally proposed in [1]. The bound
in Corollary 1 is expressed solely in terms of the distance between the current and updated policies.
Corollary 1 is applicable both to the hierarchical and non-hierarchical tasks.

1.3 Experiments with HRLP

As a testbed for HRLP we adopted reach-and-grip and reach-and-move tasks simulated in the
physics engine MuJoCo [15] embedded inside of an OpenAIGym [16] environment (see Figure 3
and videos). Tasks reach-and-grip and reach-and-move are divided into subproblems of reaching
and gripping and respectively of reaching and moving. The Gripper, Manager, Mover and Reacher
take as input positions and velocities of joints. The Gripper, Mover and Reacher output torques
applied to actuators. The Gripper, Mover and Reacher are trained beforehand, see Section 4.1 for
description of these experiments. The Reacher and Mover are trained so that they can reach various
locations of the target. In Sections 4.2 and 4.3 we describe a number of hierarchical and analogous
non-hierarchical experiments for the reach-and-move and reach-and-grip tasks respectively.
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Figure 2: Stages of the reach-and-move task (from the left): (1) randomized starting position, (2) reaching the
capsule, (3-4) attempting to move the capsule to the designated target position which is visible as a shadow
capsule.

Virtually any model-free RL learning algorithm can be adapted to HRLP. In experiments we use
the Trust Region Policy Optimization (TRPO) algorithm [1], which proved to be highly effective on
a number of robotic benchmarks [17]. TRPO is designed as a model-free reinforcement learning
algorithm. Its applicability, as well as the applicability of the hierarchical TRPO implemented in
this work, is not limited to robotic tasks. An expected downside of this generality is a relative
poor sample efficiency and difficulties in achieving long-term goals (see [18, Section 6] for a broad
comparison of model-free algorithms involving trust region policy optimization). At the current
stage of our experiments it would be difficult to provide a complete assessment of sample efficiency
of our method, however preliminary results suggest that training of the Manager requires up to ten
times less samples then training of the agent solving the complete task. Hence we believe that our
hierarchical approach can partially address request 2 on page 85 of [6] and an OpenAl request for
research [19] and overall be a step towards resolving both the problem of sample efficiency and the
problem of achieving long-term goals.

Figure 3: Stages of the reach-and-grip task (from the left): 1) randomized starting position, (2) reaching the
capsule, (3-4) attempting to grip the capsule.

2 Related work

Hierarchical reinforcement learning. Temporally extended macro-actions were introduced by Sut-
ton et al. in [7]. This framework does not directly describe our setting yet is general enough to
encompass it. Namely, a parameterized macro-action can be considered as an infinite set of options
indexed by parameters, the manager is then a policy over options and micro-actions are primitive
actions.

The paper [20] pinpoints important conceptual advantages of explicit parameterization. The authors
introduced parametrized skills and indicated that a parameter space having some structure enables
generalization. During training an agent can synthesize its knowledge about a parametrized task and
later on-demand solve the task for previously unseen parameters.

In our work we use pretrained macro-actions. This in particular requires that in advance we define
their intended behavior. There has been several attempts to discover macro-actions automatically,
for example [21, 22, 23]. We note that parameterizations are also considered in [22, 23].

Relation to [24, 12]. Papers [24, 12] consider the hierarchical setting which on a high level is
equivalent to ours. They differ on the algorithmic level. In [12] the authors use methods of optimal
control. Two model-free algorithms are developed in [24]. The authors of [24] use two approxi-
mators, one to choose a macro-action and another determining parameters of its execution. Their
Q-PAMDP(k) learning algorithm alternately updates the parameters of one of the approximators
keeping the other fixed (they experiment also with a joint optimization procedure, but obtain weaker
results). In our experiments we use a single deep neural network depicted in Figure 9 in Appendix



B and joint optimization. The results of [24] are in line with our findings that hierarchical approach
is beneficial.

Relation to [9]. Instead of dividing a complicated task into simpler subproblems, authors of [9]
propose a general scheme in which simpler skills are discovered and acquired in pre-training and
then re-used in actual training. Simpler skills are not specified upfront, but it is required to define
a reward function which will ‘encourage learning of simpler skills. That is, instead of devising
a hierarchy of subtasks, authors of [9] propose focusing on a hierarchy of reward functions. The
Manager used in [9] does not pass parameters to the agent performing lower level tasks. Experiments
presented in [9] are based on an appropriately modified TRPO algorithm.

Relation to [10]. Authors of [10] explicitly divide a more complicated task into a low-level task
such as locomotion and a high-level task such as navigation. The high level agent passes a vector
of parameters to the low-level agent. The low-level agent a priori is not specialized in one specific
task. Experiments presented in [10] are based on the actor-critic algorithm introduced in [25].

The reach-and-grip and reach-and-move tasks (relation to [2, 5]). In papers [2, 5] impressive
results are achieved in tasks very similar to reach-and-grip and reach-and-move . Nevertheless, the
hierarchical model presented in this work allows for a systematic learning of a spectrum of re-usable
low level skills.

Trust Region Policy Optimization as the core algorithm (relation to [6, 1]). The dissertation [6]
and paper [1] introduced the Trust Region Policy Optimization (TRPO) algorithm which we use in
experiments presented in Section 4. The algorithm is characterized by a very good practical perfor-
mance [17] and simultaneously offers good mathematical guarantees, which in the next Section in
Theorem 1 we generalize to the hierarchical case.

3 Hierarchical Reinforcement Learning with Parameters and monotonic
improvements

In the paragraph below we introduce basic notions related to Markov Decision Processes in the con-
text of reinforcement learning. In Section 3.1 we introduce the hierarchical version of the Kullback-
Leibler divergence and in Section 3.2 we show that monotonicity of improvements established in
[6, 1] for the non-hierarchical scenario extends to the hierarchical case. The most important results
in this Section are inequalities (2), (5) which rephrase results of [1, Section 3] in the context of
HRLP and two new inequalities (4) and (6), which are analogous to (2) and (5) but arguably easier
to interpret. All four inequalities are also valid in the non-hierarchical case.

Markov Decision Processes.Following [26, Section 3.6] we define a Markov Decision Process
(MDP) as a tuple (S, A, P, r, po,7), where S is a state space, A is a set of actions available to an
agent, P is the transition kernel, r is the reward function, pg is the distribution of the initial state,
and v € (0,1) is the discount factor. We assume that S, A are finite and in particular rewards are
bounded by a number R < +o00, but definitions and results below hold also in the continuous setting.

Given a stochastic policy 7, which for a given state assigns probability distribution over possible
actions, we define the action-value function (), the value function V. and the advantage func-
tion A, using the following formulas: Q,(s,a) = E, [Z:fg Yirivalso = s,a0 = a}, Va(s) =

E. [Z;OS Yirip1lso = s], Ar(s,a) = Qr(s,a) — Vi (s). The symbol E, refers to the fact that the

trajectory, and thus also rewards {r;}, are generated by an agent following the policy 7. As a short-
cut we use 7() for the value function, when the initial state is sampled according to py. We define

also p, the discounted visitation frequency?® pr(s) = > oo V' Pr(s: = s) = Ex [Z;OS ytlst:s} .
Further let L (7) = n(m) + >, cs Pr(8) Do qca T(als)Ax (s, a), with n(m) = EV,(so), where s is
the initial state (possibly random). Following [1, Formulas (2,3)], we take L (7) as a proxy for n(7)
and instead of directly solving the maximization problem for 7, we solve a problem for L. Theo-

rem 1 in [1] for the non-hierarchical learning and Theorem 1 in this work for hierarchical learning
guarantee that if 7 and 7 are close enough, then through improving L, (7) we also improve n(7).

*In the continuous case we would define pr(s) = 352, 7" gr(s), where gx(s) is the density of the state s
at a time ¢ under policy 7. Then the definition of L. (7) would use integrals instead of sums.



3.1 Hierarchical action space

Let n > 1 be the number of hierarchical macro-actions. Each takes as an argument a vector from
the space A;, = R? (note that dj, might be 0 in the case when a given macro-action is parameter-
less). We define the parameters space A = | |;_, Ay, where | | denotes the disjoint union. We
will consider probability distributions on .A. Any such distribution x4 decomposes naturally into
p = (p1,...,pk), where p a distribution on {1,...,n} and {p}}_,, which are distributions
on Aj, respectively. In experiments in Section 4 pu; are multivariate-Gaussian distributions. As-
sume that there are given distributions v, ;1 on a space X'. The total variation distance is defined as
Dry(v,pu) = supg |v(B) — u(B)|, where the supremum ranges over all measurable B C X. If
moreover v is absolutely continuous with respect to u, following [27, 28], we define the Kullback—

Leibler divergence as D, (v, 1) = [ + log (g—;) dv, where Z—Z is the Radon-Nikodym derivative.

The following Lemma provides a convenient characterization of the Kullback—Leibler divergence in
the hierarchical setting.

Lemma 1. Let p, fi be distributions on A such that p is absolutely continuous with respect to [i.
Then

Dicr (s 1) = Dcr(p, D) + > peDicr (b fik)- ()
k=1
Proof of the above Lemma is presented in Appendix A.
3.2 Monotonic improvement guarantee for hierarchical policies

As was explained at the end of the paragraph defining Markov Decision Processes, L. (7) is a good
approximation of 7(7) in a neighborhood of the trajectory generated by m. This is formalized by the
following lower bound for 7)(7) (for a proof sketch see Appendix A):

Theorem 1. Let 7 and 7 be two A—valued policies. Then

2 -
T (DR (. 7)), @)

where € = sSup¢ s |Ex(a)s)[A™ (5, a)]| and D (7, ) = supges Dry (7(:]s), 7(:]s)).

7](ﬁ) > L‘rr(ﬁ—) -

The following Lemma is needed to derive the bounds in Corollary 1.
Lemma 2. Let 7 and 7 be two policies. Then
s 4R max jod
I;leaéi |]E7~r(a|s) [A (57 CI,)H S SDTV (ﬂ-a 7T) ) (3)
where R is the maximal reward.
Proof of Lemma 2 is presented in Appendix A. From Theorem 1 and the above Lemma follows

Corollary 1. Let  and 7 be two policies. Then

0(7) > La(7) — CLCAR (D (m,7))°, C1=8,CL =7/(1—7)>. )
N(7) > La(7) — CoC2€ (DRFm, %), C2=2,C2 =~/(1—7)" (5)
0(7) > Lo (7) — C3C3R (DS (m,7))*%, O3 =2v2,0% = ~/(1—)° 6)

where D7 (m,7) = sup,es D (7(+]s), 7(:]s)).

Proof. The proof follows by simple calculations and the Pinsker inequality [28, Theorem 1.4]:

Dpy(v,p) < M, which holds for any distributions v, 1 on the same space. O

Remark. Inequalities (2) and (5) are analogues of [1, (7) and (9)] and provide theoretical foundations
of the TRPO algorithm for A valued polices. Our proof of these two inequalities follows the lines
of the argument in [1, Section 3].

Additionally we also prove (4) and (6). Consider the right-hand sides. The dependence on the
policies is expressed in terms of the Kullback-Leibler distance between 7 and 7. This is more
explicit than (2) and (5) which also depends on e defined in the formulation of Theorem 1, thus
arguably easier to interpret and might be of theoretical interest.



4 Experimental results

Information about the model, optimization frameworks and physics engine are contained in Ap-
pendix B.1. In the following experiments d is the Euclidean distance in R?, H is the location of
the hand (precisely a point where the center of the mass of the capsule would be if the capsule were
properly gripped by the hand) and C' is the location of the center of mass of the capsule.

4.1 Learning of macro-actions

Experiment 1. Gripper. Starting position: we assume that the capsule is on a circle centered
around the main axis of the arm. The palm is located close to the capsule. Objective: gripping the
capsule. Reward: c1d(H,C) + calaqm,cy<tr + c3d(FTy, FTy), where ¢, ¢c3 < 0,¢c2 > 0,tr > 0is
a certain threshold and F'T', F'T5 are positions of the finger tips. In practice it is required to consider
many “close” positions in order to make gripper usable in hierarchical experiments. To evaluate the
Gripper we use

Definition 1. (Sparse Rewards) We define a trajectory as successful if at least in one of its point
both the conditions d(H,C) < try and d(FTy, FTy) < tra, are satisfied for certain thresholds
tri,tryg > 0.

Experiment 2. Mover. Starting position: we assume that the palm is close to the capsule. Objec-
tive: moving capsule to a designated place. Reward: A weighted sum of —d(H, C) and —d(C, T),
where T is the location of the designated target. We trained two versions of the Mover - MoverPlain
and MoverNoised. MoverPlain is trained on pretty small set of starting positions. MoverNoised is
trained on much bigger set of starting positions.

Experiment 3. Reacher. Starting position: We used various initial conditions. Objective: moving
hand to the location of the capsule. Reward: —d(H,C'), sometimes we use additional reward to
encourage some specific behavior.

4.2 Task reach-and-move

The reward used for this task is a weighted sum of —d(H, C') — TargetCoeff-d(C,T). To compare
agents trained with different TargetCoeff we introduce TargetDistSum = ), —d(C,T).

Experiment.The position of the capsule is fixed. The designated target position of the capsule
is fixed across all experiments and located above the capsule. The starting position of the arm is
changing across episodes.

4.2.1 Non-hierarchical experiments

We managed to train a policy that successfully moves -2
the capsule to the target position. In figure 4 we show =
results depending on the value of TargetCoeff. From
movies (click to see video examples), we observed
that agents with roughly TargetDistSum > —23 ex-
hibit the proper reaching and moving behavior. Some
agents with TargetDistSum > —50 learn to push w0
the capsule towards the target position. Those with ' ’ Tagetoet B “
TargetDistSum < —50 managed only to reach the
capsule. We conclude that it is hard to train a well-
performing agent.

-40

TargetDistSum

Figure 4: Relationship between
TargetCoeffand TargetDistSum Each
point indicates a single run.

4.2.2 Hierarchical experiments

We managed to train a Manager using various Reacher and Mover macro-actions to successfully
perform reaching and moving. The macro-actions are executed for 8 steps. The Manager passes a
vector of 3 numbers to the Reacher. The vector is the desired position of the hand.

We tried three different Reacher macro-action policies. The first one, named the ReacherNormal,
was trained with a capsule standing on the ground at the beginning of the episode. The ReacherSta-
bilised was trained similarly but we included an addition reward to keep the forearm parallel to the
ground. This facilitates its usage in the hierarchical experiments. The third, Reacher3D was trained
with capsule placed randomly in R3. The best Reacher3D policy developed a strange behavior of
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closing the palm while reaching, which made it difficult to use the agent in hierarchical setting. We
use the Mover macro-actions as described in Section 4.1.

In Figure 5 we present our results. While results are worse compared to the non-hierarchical case,
from the movies (click to see video examples) we observed that successful reaching and moving
behavior is exhibited by agents with roughly TargetDistSum > —45.0.

ReacherNormal | ReacherStabilized | Reacher3D All - agents trained using

MoverPlain 52778 43552 -56.989 ReacherNormal and Mover-
MoverNoised 42239 41470 -55.369 Noised  exhibited  such
successful behavior.  This

Figure 5: Averaged values of TargetDistSumfor 10 runs. stands in sharp contrast with

the non-hierarchical setting
where substantial majority performed poorly. From Figure 5 we observe weak results for the
Reacher3D. This agent tended to close the palm, thus the agent was hard to utilize together with
the Mover, because the Mover was not trained in such conditions. The MoverPlain, trained on a
small space of initial states, showed a similar incompatibility with the ReacherNormal and overall
performed much weaker than the MoverNoised.

Describing our preferences using rewards can be hard ([29] describes a few interesting examples).
Constraining the space of polices which the agent can learn might be another way of expressing the
true objective. This can be realized using HRLP. In the constrained space of HRLP policies a good
policy can have lower rewards but still exhibit desired behaviors. For example, as mentioned above,
agents trained using HRLP with TargetDistSum > —45.0 exhibited successful moving behavior,
whereas in the non-hierarchical case the threshold was around —25.0.

4.3 Task reach-and-grip

Experiment 1 Starting position: we assume that the capsule is located in one position. The starting
position of the palm is located randomly on the circle. Objective: gripping the capsule. Reward:
The same as in the Gripper experiment in Section 4.1.

Experiment 2 The position of the capsule and the starting position of the palm are located on a
circle and changing independently across episodes.

Click here to see video examples illustrating Experiments 1,2.
4.3.1 Hierarchical experiments
In this section to evaluate the results we use sparse rewards as described in Definition 1.

Ad. Experiment 1.Table 6 presents results of Experiment 1, when the Manager can use a Gripper
and a Reacher. Experiments showed little dependency on other parameters, in particular on the
random seed. On average every experiment required 1 million of samples, with the best agents
being able to learn after 0.5 million samples. This accounts for 5 to 10 millions of interactions with
the environment as the length of macro-actions is set to 10.

Ad. Experiment 2.Our results, summarized in the table in 0.03 0.06

mean
Figure 7, consist of four types of experiments differing by 3 0.984 1 0.955 | 0.970
the macro-actions available for the Manager.> We managed 4 0.989 | 0.902 | 0.940
to train a Manager using various Reacher and Mover macro- mean | 0.987 | 0.929 | 0.957

actions to successfully perform gripping. The macro-actions
are executed for 15 steps. The Manager passes a vector of 3 Figure 6: The rows are parametrized
numbers to the Reacher. The vector is the desired position by the parameter co and columns by
of the hand. Our base gripper+reacher experiment achieved the parameter tr of the Gripper reward
moderate results. We stress that they are still substantially function (see Section 4.1). The table
better than their non-hierarchical counterparts in Section 4.3.2 ~ presents results of 16 experiments.
(namely the ones with « > 7/ 10%). We reckon that moderate

results of HRLP stems from a problem already noticed in in Section 4.2.2 (and e.g. [9, Section
8]). Namely, when the Manager switches from one macro-action to another, the later might be in
a region of the state-space not used during its pre-training. The first attempt to fix this issue was
adding micro-actions, with the idea that the Manager can use “the direct control” to alleviate this
problem. This indeed happened, though we observed that the Manager tends to abandon the usage

3In a separate experiments we have established that omitting the Gripper results in a very poor performance.
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of the Reacher. We suspect that such a behavior will occur in a case of simple tasks, which can be
acquired directly, as micro-actions are more expressive and can be tuned better. We compare this
with the gripper+micro experiment, noticing that it achieves very good results and better stability
with respect to the hyper-parameters. This might seem surprising at first, a tentative explanation
is that more macro-actions leads to more parameters of the neural network leading to harder opti-
mization problem. In the gripper+s-reacher experiment we address the problem of gluing by using a
Reacher, similar to ReacherStabilized in Section 4.2.2. This again leads to much better performance
compared to the base experiment.

gripper+micro gripper+reacher gripper+reacher+micro gripper+s-reacher
0.03 | 0.06 | mean || 0.03 | 0.06 | mean || 0.03 | 0.06 | mean 0.03 | 0.06 | mean
3 0.86 | 0.74 | 0.80 || 0.17 | 0.08 | 0.13 || 0.92 | 0.01 0.46 0.88 | 0.69 | 0.81
4 0.80 | 0.65 | 0.72 || 032 | 0.15 | 0.23 || 0.75 | 0.01 0.40 0.87 | 0.70 | 0.79
mean || 0.83 | 0.70 | 0.76 | 0.24 | 0.11 | 0.18 || 0.83 | 0.01 0.43 0.88 | 0.70 | 0.80
max 0.96 0.64 0.99 0.99

Figure 7: The rows are parametrized by the parameter ca and columns by the parameter tr of the Gripper
reward function (see Section 4.1). The table presents results of approximately 100 experiments.

4.3.2 Non-hierarchical experiments

Ad. Experiments 1,2.Figure 8 shows limited ability to generalize in the non-hierarchical case.
Every dot represents a single training which lasted through 50 millions interactions with the en-
vironment. All hyperparameters are fixed except for the maximal angle o from which the initial
position of the capsule and the initial position of the arm are drawn. After k-th episode we increase
the angle to k - «. In total 50 millions interactions happen over 10° episodes, hence the minimal o
for which at the end of the experiment we reach the full circle is & = 175. More results for this
specific hyperparameter can be found in Appendix B.2. On the horizontal axis are marked approx-
imate values of 10° - « at the end of training (logarithmic scale). Graphs in Figure 8 are shown for
tr =0.08,¢c1 = —1,¢c0 = 2.1, c3 = —4.

1D sy n om o e oh . .

- o8

Sparse reward
Sparse reward
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.

0z . 0z .
. . - R -
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a0 * ame s o coeese—— 0o . . o tocm e ’

o =360 >360 =360 >360 o =360 >360 =360 =360 >360
The maximal angle The maximal angle

Figure 8: The vertical axis shows sparse rewards in non-hierarchical experiments 1 (left) and 2 (right). The
horizontal axis shows the max. angle reached after 50 millions steps. Definition 1 describes the sparse reward.

5 Conclusion and further work

In this work we considered Hierarchical Reinforcement Learning with Parameters (HRLP) and
tested this model on reach-and-move and reach-and-grip tasks. From experiments in Section 4
we conclude that HRLP behaves reasonably well in practice and from the mathematical analysis in
Section 3 follows that combined with techniques proposed in [6, 1] it has good theoretical proper-
ties. Moreover, our approach seems to be conceptually and technically quite simple. This simplicity
is paired with competitive experimental results and easy to analyze mathematical structure.

As a further work we are planning to test HRLP on a camera input and on a real robot. We are
also planning to combine HRLP with other algorithms, in particular with those derived from [2, 25].
Another interesting direction would be building a library of re-usable polices for standard tasks
and standard robotic models. Recently very interesting attempts have been made to algorithmically
determine the hierarchical structure of a given problem [30, 22]. It would be interesting to extract
re-usable macro-actions generated by those algorithms. More details about possible further HRLP
experiments are presented in Appendix C.
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A  Proofs

A.1 Proof of Theorem 1

Proof. (sketch) The proof in [1] is neatly based on a coupling argument which also works in the
hierarchical case. According to [1, Def. 1] we say that a pair of policies is a-coupled for some
a € (0,1) if there exists a .A%-valued policy 7 such that marginal distributions of 7((a, @)|s) are
m(als), 7(als) and such that

supPz(a # a|s) < a. (7
s€S

Using [31, Theorem 2.12] one can find a-coupling with o < D&*(m, 7). The rest of the argument
follows the lines of [1, App. A]. O

A.2  Proof of Lemma 1
Proof. We recall that

p= ZpkleAkﬂkv L= ZpklxeAk,uk
k=1

The Radon-Nikodym derivatives ﬁ exist and we calculate

w3 s
reSg .
k= 1 d/,L

Now we can calculate the Kullback-Leibler divergence

DKL(u,ﬂ)—/Alog< ) Zpk/Ak log( T )duk

k=1
n
dp,
= Zpk/ <1Og - )duk
1 A Dk djay,
ipk10g~+2pk/ ( di )duk
= Pe o di

The last expression is equal to the right-hand side of (1). O

A.3 Proof of Lemma 2
Proof. Let 7 be the a-couping of 7 and 7 described in the previous proof. We calculate
|Ex(al)[A7(5,8)]]| = [Ex((a,a)s)[AT (5, a)]]
< Bi(aa)s) [AT(5,)]| + Ex(aays) [A7(s,a) — A™(s,a)|.

The first summand is 0 by the definition of the advantage and the fact that a under is distributed
according to m. One can readily check that for any policy m and s € S and a € A we have
Q™ (s,a)] < R/(1 —~)and V™(s) < R/(1 — ). Thus |A™(s,a)| < 2R/(1 — ). Further we

estimate AR AR
SPi(atd) <
- 1—y

This concludes the proof of inequality (3). O

sup Bz ((a,a)s) |A"(s,a) — A" (s,a)| < ——
sES
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B Additional information on experiments

B.1 Experimental setting

Experiments were conducted using Modular RL framework [32] with Theano [33] library.We de-
scribe below the model behind the Manager and the model of the arm used for simulation in the
MulJoCo [15] engine. In Section 4.1 we describe three non-hierarchical experiments in which we
trained Grippers, Movers and Reachers. In Sections 4.2 and 4.3 we describe hierarchical experi-
ments related to the reach-and-move and reach-and-grip task respectively.

The model of the Manager. The architecture of the neural network which we used to model the
Manager consists of the input layer of the size of the state space, 2 dense layers and the output layer
which is used to decide about the macro-action and its parameters. An example of a model of the
Manager is presented in Figure 9

FC1 FC2

Input layer

— Reacher R
distribution over

macro actions
— Gripper

distribution over
Reacher actions

Figure 9: A model of the Manager for reach-and-grip task without micro-actions. Notice that the output
contains 3 parameters which are passed to the Reacher.

Mujoco models. In our experiments we used the Arm Claw robotic arm provided in the MuJoCo
package [15], see Figure 3. The model has 9 joints and the state space consists in total of 24
dimensions, including 9 joints’ angles, 9 joints’ velocities, 3 dimensional position of the claw and 3
dimensional position of the target.

B.2 Dependence on the KL divergence

In the context of experiments described in Section 4.3.2, Figure 8, we verified obtaining of KL
divergence for an experiment which guarantees that at its end the full range of the capsule and the
arm reaches 360 degrees, that is in principle the agent should be able to reach the capsule for an
arbitrary considered entrance position.

04
03

02 s

Sparse reward
.

01 - .

.
0D  essssnnnss “sese s essss o ot ses seetes se®

4205 000033 00025 0018 013
The maximal KL divergence
Figure 10: Figure shows successes in obtaining alternative rewards in the non-hierarchical experiment 2. The

horizontal axis (logarithmic scale) shows the maximal KL divergence between the new and old policy. For the
definition of the sparse reward see Definition 1.
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C Detailed further experiments with HRLP

e In the process of training the Manager collect points from which more difficult non-
hierarchical tasks such as Mover, should be retrained. Use this idea combined with the
DAGGER algorithm [34].

e Verify dependency of hierarchical experiments on the maximal KL divergence, the length
of an action executed by the Manager, and the size of the Manager network.

e Verify implications of imposing a bound on micro-actions in terms of time or maximal
force; verify implications of introducing penalties for using micro-actions.

e Discover better cost function for gripping and moving using reverse reinforcement learning
[35] or a human-generated feedback [36].

e Combine two complicated tasks — in the current work we combined one more difficult task,
such as moving, with an easier task, such as reaching.

D Hyperparameters

Unless otherwise indicated, in our experiments we used the following hyperparameters for Trust
Region Policy Optimization: maximal KL divergence between new and old policy 0.01, v = 0.99,
the batch size 50000 for the non-hierarchical experiments and 5000 for hierarchical experiments, the
path length 300-500 for a single episode.

The policy network (see Figure 9) in all tasks consists of two hidden layers with 64 units each.
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