arXiv:2405.20516v1 [cs.LG] 30 May 2024

WaveCastNet: An Al-enabled Wavefield Forecasting Framework
for Earthquake Early Warning

Dongwei Lyu'2 Rie Nakata?34*

Arben Pitarka®

Nori Nakata??7

Pu Ren? Michael W. Mahoney?3°

N. Benjamin Erichson?3*

'Department of Mathematics, UC Berkeley
International Computer Science Institute
3Lawrence Berkeley National Laboratory

‘Earthquake Research Institute, University of Tokyo
®Department of Statistics, UC Berkeley

SLawrence Livermore National Laboratory

"Massachusetts Institute of Technology

Abstract

Large earthquakes can be destructive and quickly wreak
havoc on a landscape. To mitigate immediate threats, early
warning systems have been developed to alert residents,
emergency responders, and critical infrastructure operators
seconds to a minute before seismic waves arrive. These warn-
ings provide time to take precautions and prevent damage.
The success of these systems relies on fast, accurate pre-
dictions of ground motion intensities, which is challenging
due to the complex physics of earthquakes, wave propaga-
tion, and their intricate spatial and temporal interactions.
To improve early warning, we propose a novel Al-enabled
framework, WaveCastNet, for forecasting ground motions
from large earthquakes. WaveCastNet integrates a novel
convolutional Long Expressive Memory (ConvLEM) model
into a sequence to sequence (seq2seq) forecasting frame-
work to model long-term dependencies and multi-scale pat-
terns in both space and time. WaveCastNet, which shares
weights across spatial and temporal dimensions, requires
fewer parameters compared to more resource-intensive mod-
els like transformers and thus, in turn, reduces inference
times. Importantly, WaveCastNet also generalizes better
than transformer-based models to different seismic scenar-
i0s, including to more rare and critical situations with higher
magnitude earthquakes. Our results using simulated data
from the San Francisco Bay Area demonstrate the capabil-
ity to rapidly predict the intensity and timing of destructive
ground motions. Importantly, our proposed approach does
not require estimating earthquake magnitudes and epicenters,
which are prone to errors using conventional approaches; nor
does it require empirical ground motion models, which fail
to capture strongly heterogeneous wave propagation effects.

1 Introduction

Large earthquakes can rapidly devastate landscapes, toppling
buildings and rupturing infrastructure, posing a substantial
risk in seismically active regions. These seismic events
happen when a fault ruptures. The released seismic en-
ergy propagates through the Earth in form of seismic waves,
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eventually reaching the Earth’s surface. To mitigate the im-
mediate threats posed by large earthquakes, early warning
systems have been developed and implemented [4, 33, 34].
These systems aim to detect fast-traveling P-waves by sen-
sors located in proximity to the earthquake epicenter. Once
detected, a processing center estimates the earthquake loca-
tion, magnitude (M), and fault geometry. Then, the system
predicts ground motion intensity parameters (e.g., Modi-
fied Mercalli Intensity, Peak Ground Acceleration, and Peak
Ground Velocities), which provide information regarding
potential damages. Subsequently, warnings are issued, typ-
ically a few seconds to a minute before the arrival of the
more destructive S-waves and surface waves. These warn-
ings serve as an early alert to enable critical infrastructures
to initiate necessary precautions, such as stopping trains and
shutting down gas pipelines, which allow people to take
protective measures.

The performance of these systems relies on the detection
and isolation of earthquake signals, as well as on the ac-
curacy of the earthquake parameter estimation and seismic
wave propagation modeling [3]. Inaccuracies in the parame-
ter estimation, most commonly in over/under predictions in
earthquake magnitudes, lead to false alert or missing warn-
ing opportunities [55, 42]. The conventional use of empirical
ground motion models precludes high fidelity representation
of the complex source and path effects, and the site-specific
variability of ground motion intensities [26, 8, 9, 14, 6].
Alternative approaches forecast future ground motion inten-
sity measures or waveforms up to the time when a sensor
detects actual earthquake ground motions [31, 21]. These
approaches combine physics-based simulation (e.g., radia-
tive transfer theory or finite-difference wavefield simula-
tions) and data assimilation (e.g., optimum interpolation
techniques [32]) to remove the dependence on arrival detec-
tion and magnitude estimation, while handling the sparsity
of the data and incorporating source and path effects. How-
ever, typically their prediction accuracy remains insufficient
to be deployed in real cases [3], and they require substantial
computational resources [21].

Artificial Intelligence (AI) provides a promising alternative
approach for modeling ground motion propagation. That is
because deep neural networks are well posed to model the
nontrivial spatiotemporal properties of ground motions [19,
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Figure 1: Illustration of the problem setup and our proposed WaveCastNet model. In (a), the simulation area of interest
within the San Francisco Bay Area, highlighted by the black rectangular box, is shown. Point-source earthquakes are placed
along the thick white line, and an M6 earthquake rupture plane is indicated by the blue line. The red lines indicate known
faults, the black triangles show the actual sensor locations, and the red triangles highlight the two sensor stations used in
the discussion below. In (b), an example snapshot of visco-elastic wave propagation from the point-source earthquake at
T=21.79 seconds is shown. In (c), an illustration of using WaveCastNet to forecast the propagation of seismic waves is
shown. The framework consists of encoder and decoder components, which in turn consist of stacked recurrent cells. In
this work, we advocate a novel recurrent ConvLEM cell, which can model multiscale structures in space and time.

61, 11, 60, 20, 22, 57]. Moreover, Al methods have the
advantage of being computational efficient during inference
time, which is of great importance for early warning systems.

Figure 1(a-b) illustrates our problem setup alongside an
example snapshot demonstrating visco-elastic wave prop-
agation. Our objective is to predict future wave motions
over a time horizon of up to 100 seconds. We approach this
as a spatio-temporal sequence prediction task. Specifically,
we are given a sequence of J elements, X}, Xs, ..., X,
and our goal is to forecast the subsequent K elements,
Xry1,Xj49,..., X571 k. Each element &; within the se-
quence belongs to RE*#*W representing a 3-D seismic
wavefield. Each wavefield provides spatial information, for

a RF*W grid, about the particle velocity of the wave propa-

gation across C' spatial directions (i.e., X, Y, Z directions).
One of the main challenges in modeling ground motion data
lies in the necessity to handle multi-scale structures that are
complex to model. Thus, it is crucial for a forecasting model
to effectively capture the joint correlations present across
both spatial and temporal dimensions.

To address this challenge, we propose an Al-enabled frame-
work for forecasting ground motions. Specifically, we de-
velop a wavefield forecasting network (WaveCastNet), which
is based on the sequence-to-sequence (seq2seq) framework
introduced by [54]. Central to WaveCastNet are two com-
ponents: an encoder and a decoder. The encoder processes
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a sequence of seismic wavefields with the aim to summa-
rizes the input sequence into a single encoder state. The
decoder, in turn, generates a target sequence of seismic
wavefields which is conditioned on the encoder state. Fig-
urel(c) illustrates the architecture of our WaveCastNet for
predicting seismic waves. Within this architecture, both
the encoder and decoder are composed of stacked recur-
rent units designed to model sequential data. There exist
various formulations of modern recurrent cells, including
unitary recurrent units [5], gated recurrent units (GRUs)[13],
and long-short-term memory (LSTM) units[30]. However,
these recurrent cells, with their reliance on fully-connected
layers, tend to destroy the intrinsic multi-scale spatial infor-
mation present in 2-D or 3-D spatial data. The Convolutional
Long Short-Term Memory (ConvLSTM) architecture [52]
addresses this shortcoming by integrating convolution op-
erations into the LSTM’s update and gating mechanisms,
a modification that has proven particularly beneficial for
modelling spatio-temporal sequences. ConvLSTM can ef-
fectively capture multiscale spatial patterns through convo-
lutional filters, however, this model falls short in modeling
temporal multiscale structures. To address this shortcoming,
we design a novel convolutional long expressive memory
(ConvLEM) model, which extends the LEM model [50] by
integrating convolutional layers into the LEM architecture.
This ConvLEM model is used as backbone for designing the
WaveCastNet’s encoder and decoder.

Our results demonstrate that WaveCastNet improves the
predictive accuracy compared to seq2seq frameworks that
leverage ConvLSTM, or gated variants. Our WaveCastNet
even surpasses the capabilities of newly introduced trans-
former networks in the context of ground motion forecasting.
Importantly, our approach shows robustness and enhanced
generalization capabilities, especially in scenarios involving
wavefields of greater magnitudes unseen during the training
phase. The versatility of our framework is further evidenced
by its flexibility, transitioning seamlessly from scenarios
with dense, fully captured wavefields to those characterized
by sparse, selectively sampled measurements. Expanding
on these findings, we show that we can use an ensemble
of WaveCastNets to produce uncertainty estimates. This is
a critical component for demonstrating and verifying the
reliability of our proposed framework. Our work not only
showcases WaveCastNet’s improved forecasting accuracy,
but it also shows its potential for improving warning times
and thus advancing early warning systems.

2 Results

We evaluate our methodology by forecasting particle-
velocity waveforms near the Hayward fault, simulating earth-
quake scenarios in the San Francisco Bay Area (SFBA),
northern California, United States, as depicted in Figure
1(a-b). San Francisco, positioned approximately 20 km west
of the Hayward fault, ranks among the most densely popu-
lated metropolitan regions in the United States. Given the
heightened seismic risk associated with the Hayward fault —
estimated by the United States Geological Survey (USGS)
to exceed 30% — the enhancement of early warning sys-

tems is imperative for minimizing infrastructural damage
and disruptions, as well as reducing human casualties. Our
work focuses on the prediction of ground motion waveforms
extending over 120 km along the X direction, parallel to, and
80 km along the Y direction, perpendicular to, the Hayward
fault, as outlined by the black rectangle in Figure 1(a-b).

Metrics. The performance of WaveCastNet is assessed by
analyzing the intensity of the ground motions using peak
ground velocity (PGV) values, which are defined as:

PGV(X) = max \/AZex] + X2ley], (1)
where X?[cx] and X?[cy | represent the velocity data in the
X and Y directions, respectively. Additionally, we exam-
ine the corresponding arrival time, 7,4, determined by the
equation:

Tpgo(X) = arg {nax \/Xf [ex] + X2 [ey], 2)

indicating the moment when the horizontal amplitude of the
particle velocity reaches its peak.

Furthermore, to evaluate the accuracy of the predicted wave-
field A" against the target ground truth X', we use the accu-
racy (ACC) metric, expressed as:

Zt,h,w Xile, hyw] - Xye, b, w]

\/ (ztw X2[c, h, w]) : (zt,,w X2[c, h, w]) 7

and the relative Frobenius norm error (RFNE), defined as:

ACC =

RENE = \/Z”"“’ (Xt[c’ h, w] — Xi[c, h, w])

Vb Xl By w]

2.1 Point-source Small Earthquakes

We first use WaveCastNet to predict ground motions from
point-source earthquakes with magnitudes smaller than
M4.5. The training dataset is generated using simulated
waveforms at frequencies below 0.5 Hz, with a minimum S-
wave velocity of 500 m/s. A total of 960 point sources are po-
sitioned at 1 km intervals along the white line shown in Fig-
ure la, with sources placed at depths between 2 and 15 km
(note, the white line represents a rectangular plane extending
60 km horizontally and 13 km vertically). These simulations
use a fourth-order finite-difference visco-elastic wave model
provided by the open-source SW4 package [46, 47]. The sub-
surface elastic properties are derived from the San Francisco
Bay region 3D seismic velocity model v21.1, developed by
the USGS [1, 29]. The source wavelet, modeled as a delta
function low-pass filtered at 0.5 Hz, assumes that the corner
frequencies of small earthquakes exceed 0.5 Hz, maintain-
ing relatively flat frequency spectra within our simulation
bandwidth. A uniform double-couple source mechanism is
used for all simulations. These simulated data are used as
the ground truth throughout our study.

Our goal with WaveCastNet is to generate forecasts for fu-
ture 100-second intervals based on data observed during the
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Figure 2: Point-source earthquake prediction: (a) Point-source earthquake wavefield snapshots for the Y component data
at T=17.4, 21.75, 26.1, and 30.45 s from (top) ground truth, (middle) densely and regularly sampled predicted data, and
(bottom) sparsely and irregularly sampled predicted data. (b) Map of PGV values, and (c) corresponding prediction errors;
(d) map of Tpgv, and (e) corresponding prediction errors. The errors are calculated by subtracting the ground truth values
from the predicted values; thus, positive values indicate over-prediction and negative values indicate under-prediction.

Circles in the bottom figures indicate the location of stations.

initial 15.6 seconds post-rupture. The input sequence, de-
noted as X7, Ao, ..., Xy, comprises 60 elements, while the
target sequence, Xj41, Xyya, ..., Xyt K, includes 388 ele-
ments, with each timestep At = 0.26 seconds. The encoder
component of WaveCastNet processes the input sequence to
derive an encoding state, which subsequently is used by the
decoder in generating the target sequence. Instead of fore-
casting the complete target sequence in one go, we consider
iterative predictions of smaller subsequences, each spanning
60 elements. Specifically, we use the predicted subsequences
as new inputs to forecast the next 60 elements, and so on.
We obtain the entire target sequence in under one second.

In the following, we consider two scenarios: (i) input se-
quences consisting of densely sampled wavefields; and (ii)
input sequences consisting of sparsely sampled wavefields.

Densely sampled input data. Here, we use densely sam-
pled wavefields as inputs, where each element of the input
and target sequences is a 3-D tensor, X}, with dimensions of
3 (components) x 344 (X direction) x 224 (Y direction).

Figure 2a displays a series of ground truth wavefield snap-
shots in the top row, while the middle row visualizes the
wavefields predicted by WaveCastNet. Our model demon-
strates exceptional capability in capturing the patterns of P-
and S-wavefronts, as well as the scattered coda waves. Addi-
tionally, we assess WaveCastNet’s performance by analyzing

the intensity and timing of the ground motions, focusing par-
ticularly on the PGV values.

Spatial distributions of PGV and its timing (Tpgy) are
shown in Figure 2b-d. The results show accurate repro-
duction of large PGVs and their arrival times, notably near
the earthquake hypocenter at X = 40, Y = 38 km, within
the Livermore basin at X = 60 — 80 km, Y = 40 — 60 km,
and in the northeast corner of the model at X = 20 — 40
km. The deviations in PGV values are minimal, less than 5%
from the ground truth. Errors in Tpgy are generally negligi-
ble, although larger discrepancies are observed where T'pgy
exhibits discontinuities, likely influenced by the underlying
geological structures.

These findings show that WaveCastNet can capture com-
plex kinematics and dynamics of wave propagation, and its
capability to model phenomena such as amplitude decay
— stemming from both geometrical spreading and intrinsic
attenuation — and the amplification effects associated with
wave reverberation within geological basins.

Sparsely sampled input data. Here, we simulate a sce-
nario more representative of real-world conditions, where
seismograph distributions are sparse and irregular, as de-
picted in Figure 1a. We derive sensor locations from wave-
forms recorded over the past decade, available through the
Northern California Earthquake Data Center database [44].
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Figure 3: Waveforms from (a) San Francisco (NC.J020) and (b) San Jose (NP.1788) for a point-source earthquake. The

blue lines indicate the ground truth, the red lines show the

mean of the predicted waveforms, and the red shaded areas

represent three times the standard deviation from the mean waveforms.

To obtain sparsely sampled data, we determine the row and
column indices [h, w] of each sensor on the wavefield snap-
shot X;. After eliminating sensors with overlapping indices,
we retain data for 564 sensors, forming an input sequence
where each element comprises a 2-D tensor with dimen-
sions 3 (components) X 564 (sparse measurements). The
corresponding target sequence consists of densely sampled
wavefields, akin to the previous experimental setting. To
handle the sparsely sampled input sequences, WaveCastNet
incorporates a specialized embedding layer, while all other
components of the model architecture remain unchanged.

The bottom row of Figure 2 demonstrates that WaveCast-
Net effectively predicts wave propagation, PGV, and Tpgy
across the entire area, even when provided solely with
sparsely sampled data. Although the errors are larger com-
pared to those from the dense sampling scenario, sparse
measurements are sufficient to capture the dynamics of wave
propagation. Table 1 quantitatively evaluates WaveCastNet’s
performance across these two different scenarios, showcas-
ing its adaptability to varied sampling conditions.

Uncertainty estimation. Quantifying uncertainty in
ground motion forecasting is crucial. To address this, we em-

Input - setting ACC RFNE
Dense and regular sampling 0.98 0.20
Sparse and irregular sampling  0.96 0.27

Table 1: Performance Metrics for the dense and sparse sam-
pling scenarios. Providing the model with more information
(i.e., dense inputs) helps to improve performance.

ploy an ensemble approach by training 50 instances of Wave-
CastNet with different seeds and bootstrapped training data.
This approach allows us to calculate the mean and standard
deviation of both time-series and their frequency-domain
amplitude spectra for stations located in San Francisco and
San Jose, as illustrated in Figure 3. Our ensemble success-
fully captures each waveform in detail, and the predicted
amplitude spectra align closely with the ground truth.

Furthermore, WaveCastNet’s performance remains reliable
even in scenarios where no seismic waves reach a station
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Figure 4: Uncertainty estimates for the dense point-source
ground motion prediction. (a,d) Mean, (b,e) errors, and (c,f),
standard deviation of (a-c) In PGV and (d-f) Tpgy. A hole
in (c), centered at X=40, Y=38 km, indicates the location
where T'pgy is within our initial time window.
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within the initial input sequence, such as at station NC.J020
in San Jose (see Figure 3b). The mean values of PGVs and
their arrival times (1 pay ) exhibit excellent agreement with
the observed data, as demonstrated in Figures 4a, b, d, and e.
The standard deviations for the logarithmic values of PGVs
and Tpgy are consistently less than 1% of their mean values,
indicating that WaveCastNet provides reliable predictions.
Notably, slightly higher deviations are observed within the
Livermore basin, potentially reflecting WaveCastNet’s sen-
sitivity to the complex interactions of multiple wavefronts
arriving from different directions.

2.2 Generalization to Finite-fault Large
Earthquakes

Earthquake early warning systems are designed to mitigate
the hazards posed by large magnitude earthquakes. Unlike
small earthquakes, which can be modeled as point sources,
large earthquakes necessitate representation as finite-size
rupture planes. An earthquake rupture initiates at the epicen-
ter and propagates along the fault, emitting seismic waves
from each point. This allows for modeling the effects of
a finite-size fault as an aggregation of point sources, each
initiating seismic activity at a predetermined time. By us-
ing a Green’s function response for a point source along
the entire fault, it is possible to compute the ground mo-
tion from a large magnitude earthquake by integrating the
response of multiple point sources regularly distributed
on the fault, following a physics-based kinematic rupture
model [28, 25, 24, 48].

Inspired by this concept, we evaluate the capabilities of
WaveCastNet to predict finite-fault earthquake waveforms
using point-source simulations. For this, we employ kine-
matic rupture models, suitable for earthquakes ranging from
M4.5 to M7, developed in accordance with [24]. These
models allow us to generate synthetic waveforms using the
same simulation method as that for the point sources. The
rupture plane is designed as a vertical rectangle, strategically
aligned with the locations of the point sources. The dimen-
sions of the rupture planes are scaled in accordance with
the earthquake magnitude to adequately release seismic en-
ergy (see Table 2), following the guidelines by [35]. Source
parameters such as slip, slip rate, rupture initiation time,
and local dip exhibit spatial variability and include stochas-
tic fluctuations at minor scales, allowing the simulation to
aggregate the linear responses of numerous point sources
with varying parameters. WaveCastNet does not incorporate
these parameters even during the inference time. Moreover,
as the duration of energy release extends with increasing
magnitude [56, 45] and the early waveforms remain simi-
lar across a range of magnitudes [43], predicting accurate
ground motion waveforms presents a significant challenge.

Initially, we normalize the data for finite-fault earthquakes us-
ing the same pixel-wise mean and standard deviation tensors
derived from the point-source training dataset. Subsequently,
we scale the data by the standard deviation calculated from
the initial 15.6 seconds of waveform data. WaveCastNet ex-
hibits robust forecasting performance for earthquakes rang-
ing from M4.5 to M5.5. However, as shown in Table 2,
performance deteriorates for earthquakes of M6 and above.
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Figure 5: Evolution of M6 ground motion prediction at
the station NP.1788 located in San Jose by using the time
window of (a) 15.68, (b) 18.29, and (c) 20.90 s.

Mw Faultsize 7,,, ACC RFNE
(km x km)  (s)
4.5 1.8 x 1.8 3.5 095 0.35
5.0 34 x3 37 095 0.37
5.5 8 x4 6.0 095 0.42
6.0 125 x 8 9.6 0.88 0.52
6.5 26 x 12 132 0.66 0.84
7.0 66 x 15 26.6 0.53 0.86

Table 2: Fault size and performance metrics of finite-fault
earthquake data predictions using 15.6-second input time
window. 7., indicates the end time of the rupture. See
Figure D.1-D.6 for the rupture models.

This degradation in performance correlates with the duration
of rupture, which extends up to 13.2 seconds for M6.5 and
26.2 seconds for M7 earthquakes, reaching or exceeding the
length of the input time window. Consequently, the input
waveforms fail to encompass the full extent of the excited en-
ergy. This leads to underestimations of amplitude, although
the kinematics are reasonably well reproduced, as illustrated
in Figure 5a.

To address this limitation, we extend the length of the input
time window, a modification feasible in real-world applica-
tions. The extended results for the M6 earthquake are shown
in Figures 5b-d and 6. As anticipated, the fidelity of wave-
form recovery is enhanced notably with the expansion of
the time window, particularly evident in the low-frequency
components. WaveCastNet forecasts phases of waveforms
extremely well, but continues to slightly underestimate am-
plitudes, especially of early arrivals. Nonetheless, the errors
in PGV remain within 1.5 log units, but the timing errors
can be large. As shown in Figure 5, multiple wavelets show
similar peak values challenging to be differentiated espe-
cially when the reverberations occur. These results affirm
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Figure 6: M6 earthquake ground motions for (top) ground truth and (bottom) prediction using 18.2-second input time
window. (a) Snapshot waveforms for Y components, (b) PGV, (c) PGV error, (d) Tpgy and (e) Tpgy error.

WaveCastNet’s substantial potential to generalize effectively
to finite-fault earthquake simulations.

3 Discussion and Conclusions

Our experiments confirm that WaveCastNet holds consider-
able promise for accurately forecasting wavefields derived
from both point-source and finite-fault simulations of large
magnitude earthquakes. WaveCastNet shows, for both dense
and (irregular) sparse sensor configurations, that it can reli-
ably predict seismic wave propagation as well as that it can
capture PGV values. The excellent fit from the first arrival
to later coda waveforms is remarkable. We may interpret
that this behavior as WaveCastNet captures the Huygens
principle, i.e., each spatial point is represented as a new
source point. Notably, WaveCastNet can process an entire
100-second sequence in just 0.56 seconds using a single
NVIDIA A100 GPU. Moreover, we anticipate that inference
time can be even further improved by optimizing both the
model architecture, and inference pipeline.

These findings are particularly significant as they demon-
strate the practicality of integrating WaveCastNet into earth-
quake early warning systems. This integration would signifi-
cantly advance the systems’ capabilities, facilitating a more
rapid response during seismic events.

Generalization. WaveCastNet demonstrates robust general-
ization up to MS5.5, and show that it effectively generalizes
up to M6 when employing a sliding window approach. This
modification, which accounts for energies released later in
the earthquake rupture process, which was also used for
data-assimilation-based earthquake early warning systems,
is easy to implement and does not need additional training
or alterations to the existing framework. Importantly, our Al-
based forecasting approach does not require prior knowledge

of earthquake magnitudes or epicenters. This suggests that
WaveCastNet can be effectively trained on a limited dataset,
while generalizing to different seismic scenarios, including
higher magnitude earthquakes.

It is important to stress that applying a model trained on
point-source earthquakes to a larger magnitude earthquake
is challenging. This is because the physical representation of
the rupture process changes from a point source to a finite-
size fault, which is represented by a complex kinematic
model. The amplitude of waveforms varies substantially
between M4.5 and M7, with differences exceeding 80 times.
Additionally, the spatial amplitude decay rate of ground mo-
tion intensities varies with magnitude due to changes in the
fault size. Empirically, we observe that this can complicate
the data normalization process, and lead to undesirable un-
derprediction of amplitudes. Moreover, our results suggest
that merely extending the input time window is insufficient.
Thus, expanding the training set to include waveforms from
finite-fault simulations is essential for overcoming these
challenges.

Comparative study. To demonstrate the advantages of our
proposed approach, we show performance comparisons with
baseline models. We evaluate WaveCastNet against seq2seq
frameworks which use ConvLSTM [52] and ConvGRU [7]
as backbones. Results, presented in Table 3, show better
accuracy and lower relative Frobenius norm error for Wave-
CastNet in predicting point-source earthquakes. These exper-
iments use data that are spatially downsampled by a factor of
four to ensure model convergence with less computational
resources. Nevertheless, the setup mirrors that discussed
in Sec. 2.1, with each X; within the sequence reduced to
ROX4 T The findings demonstrate WaveCastNet effec-
tiveness, achieving better accuracy and lower reconstruction
errors, while using the same latent space dimensions.
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Model Parameters Latent Space Patch Size Embed Dimension ACC RFNE
Seq2seq using ConvGRU[7] 4.99M (144, 21, 14) - - 0.94 0.34
Seq2seq using ConvLSTM [52] 6.65M (144, 21, 14) - - 0.95 0.32
WaveCastNet (ours) 8.15M (144, 21, 14) - - 0.96 0.27
Swin Transformer [39] 13.72M - (34,4 144 0.95 0.31
Time-S-Former [23] 10.21M - (1,8,8) 192 0.95 0.31
Swin Transformer* 24.27TM - 4,4,4) 192 0.97 0.25
Time-S-Former* 33.82M - (1,8,8) 192 0.98 0.20

Table 3: Performance comparison between seq2seq frameworks using different recurrent cells, and state-of-the-art
transformers for forecasting small point-source earthquakes. While larger vision transformers can perform better on this
task, we show that these models fail to generalize to domain-shifted settings in Figure 7.

Additionally, we compare WaveCastNet to state-of-the-art
transformer architectures designed for spatio-temporal mod-
eling, including the Swin transformer [38] and the Time-
S-Former [23]. Despite the good performance on the task
of predicting point-source earthquakes, these transformers
struggled with generalization in forecasting higher magni-
tude earthquakes, as indicated by large relative errors across
magnitudes in Figure 7. The comparative study reveals that
our WaveCastNet offers beneficial trade-offs: it requires
fewer parameters than transformers, facilitates faster infer-
ence times, and introduces a regularization effect through its
information bottleneck, aiding generalization.

Future Directions. Our experiments used synthetic, noise-
free data at frequencies below 0.5 Hz. Moving forward, we
plan to apply WaveCastNet to actual earthquake observations
— a process we are currently preparing to undertake. The
strong generalization capabilities observed suggest that it is
sufficient to train WaveCastNet on a large number of real,
small-magnitude earthquake recordings. We also expect that
the model can be trained on both synthetic and real ground
motion data, which may help to reduce uncertainties in visco-
elastic earth models and earthquake source parameters.

1.0
0.9 1
0.8 1
0.7 1
L i
> 0.6
L
X 0.5
0.4 1
Swin Transformer (13.72M)
0.3 1 Time-S-Former (10.21M)
Swin Transformer (24.27M)
0.2 - —o— Time-S-Former (33.82M)
: —e— WaveCastNet (8.15M)
Point-Source 4.5 5.0 5.5 6.0
Magnitude

Figure 7: Generalization performance as a function of the
earthquake magnitude. All models are trained on point-
source earthquakes only, and it can be seen that WaveCastNet
generalizes best to domain-shifted settings.

Future direction include also the exploration of data augmen-
tation schemes to further improve the robustness to domain
shifted settings [36, 37, 15], as well as recently proposed
state-space models for modelling sequences [27, 59, 58].

4 Method

In this section, we outline the methodology behind Wave-
CastNet. We begin with an overview of the sequence-to-
sequence (seq2seq) framework that serves as the basis for our
forecasting model. We then explain the ConvLEM model,
which is central to our approach. We then describe the data
normalization and preprocessing strategies we employed, as
well as the processes involved in generating the data used
for our experiments.

4.1 Wavefield Forecasting Network

Our WaveCastNet is based on the sequence-to-sequence
(seq2seq) framework, originally developed for natural lan-
guage processing [54]. Similar to other seq2seq models,
WaveCastNet comprises four primary components:

* Embedding layer. This layer maps input wavefields
into a latent space. We employ two types of embedding
layers: (i) convolutional layers enhanced with batch
normalization and LeakyReL U activation, optimized
for embedding densely sampled wavefields into a la-
tent space; and (ii) fully connected layers, followed by
convolutional layers, optimized for embedding sparsely
sampled wavefields into a latent space.

* Encoder. The encoder processes the embedded se-
quence into a fixed-size encoder state that provides a
compressed summary of the input sequence necessary
for generating the target sequence.

* Decoder. Operating sequentially, the decoder predicts
each element of the target sequence one at a time. It
uses the previously predicted output combined with the
encoder state to forecast the next element.

* Reconstruction layer. The reconstruction layer al-
lows us to recover detailed spatial information from
the predicted latent sequences by using transposed con-
volutional layers alongside pixel-shuffle techniques to
reconstruct the high-resolution wavefield.
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Both the encoder and decoder use our novel ConvLEM cell
(see Section 4.2 for details), which is designed to capture
complex multi-scale patterns in both spatial and temporal
dimensions. Additional technical details of the embedding
and reconstruction layers are discussed in the appendix.

The seq2seq framework seeks to find a target sequence

Y = Xjy,...,X54+k, from a given input sequence
X = AXy,...,X;. The objective is to optimize the con-
ditional probability:

y = arg)r}naxp(y|x) ~ Ddecoder(gencoder(x))' (3)

While it is challenging to compute the conditional proba-
bility directly, an encoder-decoder framework can be used
to generate an approximate target sequence [54]. In this
process, an encoder, denoted as Eepcoder, cOMpresses the em-
bedded input sequence X into a concise encoder state. This
state is subsequently used by a decoder, Dyecoder> tO gen-
erate the predicted latent sequence Y, which can then be
mapped to desired output space by a reconstruction layer.
This approach effectively leverages the encoded information
to produce a sequence that approximates the target sequence.

WaveCastNet tailors this seq2seq framework specifically for
the task of forecasting ground motions, treating the predic-
tion challenge as a regression problem. We aim to minimize
the sum of all the squared differences between the predicted
wavefields X’ and the actual wavefields X

T
1 N
L= ) |1% - Xl @)
t=1
where || - || denotes the Frobenius norm. Under the as-

sumption that prediction errors follow a normal distribution,
minimizing the £, loss corresponds to maximizing the like-
lihood of the data given the model. This approach guides
the learning of the model parameters through the minimiza-
tion of the loss across all forecasted and actual sequences.
During inference, the model uses these learned parameters
to generate target sequences for new input sequences.

To further enhance the model’s performance, we adopt the
Huber loss during training, defined as follows:

Zt,c,h,w L5 (‘XA’t [C, h’ w]’ Xt [C, h7 ’LU])

_ ®)
ACHuber - TCHW )
with the loss function L given by:
A 2 N
Ls (&,z) = %(xA—a:) X f0r|m—.x|§6,
§- (|2 —a| — 30) otherwise.
(6)

The Huber loss effectively balances the L1 and L2 norms,
which supports more robust fitting across various earthquake
conditions and depths during training. Specifically, we find
that the Huber loss improves WaveCastNet’s capability to
better capture the challenging PGV patterns. Moreover, we
observe that using this loss enables our model to better gener-
alize across different earthquake magnitudes and conditions,
while also ensuring faster convergence during training.

4.2 Convolutional Long Expressive Memory

We propose Convolutional Long Expressive Memory (Con-
vLEM) to overcome the limitations of traditional recurrent
units in modeling complex multi-scale structures across spa-
tial and temporal dimensions. These limitations are high-
lighted when recurrent units are viewed as dynamical sys-
tems [12, 16], where the evolution over time is governed by
a system of input-dependent ordinary differential equations:

% =7 fp(h(t),x(t)),

(N
where inputs x(¢) € R? and hidden states h(t) € R! are
modeled as continuous functions over time ¢ € [0, 7]. How-
ever, this model is limited to modeling dynamics at a fixed
temporal scale 7. An intuitive approach to address this issue
involves integrating a high-dimensional gating function to re-
place 7, aiming to model dynamics occurring across various
time scales [13, 17]. Nevertheless, employing a single gat-
ing mechanism often falls short of adequately capturing the
complexities found in more challenging dynamical systems.

In this work, we enhance the modeling of multi-scale tem-
poral structures by extending the recently introduced Long
Expressive Memory (LEM) unit [50]. This approach is based
on the following coupled differential equations:

dii(tt) =8 O [f5,(h(t), x(t) — e(t)] ,
dh(t) ®)
— =& O [fo, (e(t), x(1)) —h(®)],

where h(t) € R! and c(t) € R! represent the slow and fast
evolving hidden states, respectively. The gating functions g,
and gy,, which are dependent on both the input and the states,
introduce variability in temporal scales into the dynamics of
the model. Here, © signifies the Hadamard product, ensuring
element-wise multiplication.

We advance the basic LEM unit by incorporating convolu-
tional operations that facilitate modeling of both input-to-
state and state-to-state transitions, akin to those used in the
ConvLSTM model [52]. By representing the hidden states
and inputs as tensors, we are better able to preserve and
model critical multi-scale spatial patterns. The ConvLEM is
thus formulated as:

%Et) =g O [f5. (M), X(t) —C(t)], )
% =g, O [ff,(C1), X (1) -H®)], (10

In this equation, H(t) € R™*P*? and C(t) € R"*P*? denote
the slow and fast evolving hidden states, respectively. The
input X' (t) € Re*"*¥ ig a three-dimensional tensor.

To effectively train this model, using an appropriate dis-
cretization scheme is essential, as it enables the learning
of model weights through backpropagation over time. Fol-
lowing the methodology presented in [50], we consider a
positive timestep At and use the Implicit-Explicit (IMEX)
time-stepping scheme. This approach aids in formulating
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the discretized version of the ConvLEM unit as follows:

At, = Atg, (11)
At, = Atgy, (12)
Crn=(1-At,) ©Ch1 + AL, O ff, (13)
Ho= (1 At,) OHnor + AL, O fF (14

with update functions
50 = tanh (th*%n—l +W’I‘('*XTL)7 (15)
fghh’ = tanh (Wch * Cn + th * Xn) ) (16)

and gating functions

gh :O'(ng*Xn+th*,Hn_1), (17
=Wy x X, + Wy xHp,_1). (18)

In this notation, W. . denotes the weight tensors, © repre-
sents the Hadamard product, and * indicates the convolu-
tional operator, with subscript n marking a discrete time
step ranging from 1 to /N. The matrix of ones, denoted as 1,
matches the shape of the hidden states. The sigmoid function
o, used in the gating functions, maps activations to a range
between 0 and 1. Note, for brevity, bias vectors are omitted
from the update and gating function.

Based on the model structures outlined above, we further
introduce a reset gate g..se¢ to refine the modeling of the
correlation between fast and slow hidden states:

Sreset = 0 (Wa:r * Xn + Whr * anl) . (19)

The reset gate is integrated into the update function for the
slow hidden states as follows:

thh = tanh (greset © (Wch * Cn) + Wg;h * Xn) . (20)

Intuitively, this additional gate helps to improve the flow of
relevant information from the updated fast hidden states into
updating the slow hidden states.

Enhancing the gating functions proves beneficial for model-
ing complex spatio-temporal problems in practice. Leverag-
ing the concept of “peephole connections” [53], we further
enhance the gates by injecting information about the fast
hidden states. We define these gates as follows:

gh=0(W Xy +WyixH,, 1 +W530C, 1),
8c = U(Wmt * Xn + Wht * anl + Wct ®Cn) 3
Breset = 0 (WZL”I‘ * Xn + Whr * anl + Wc’r‘ ® Cn) .

These modified gates show an improved ability to process
longer sequences more accurately. Intuitively, by incorporat-
ing additional contextual information, these gates are better
suited to model complex multi-scale dynamics, which in
turn improves the model’s expressiveness.

Figure 8 illustrates the discretized ConvLEM unit.

4.3 Normalization

Seismic waves exhibit varying residence times as they travel
through different geographic locations, leading to signifi-
cantly greater ground motion variance in certain regions.
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Figure 8: Schematic of the ConvLEM cell. Here, o1 and o5
represent g. and gy, respectively. Update function f is set to
tanh. Red links indicate peephole connections.

Therefore, normalizing is crucial in order to obtain a good
forecasting performance. In this work, we use a particle
velocity-wise normalization scheme for each snapshot.

Consider all @ sequences in the training set, whereas each
sequence is composed of T snapshots {X;?}. For each parti-
cle velocity X[c, h, w], we compute the mean and standard
deviation values across all snapshots in the training set:
{Xc,h,w]lg=0,1,2,...Q — 15t =0,1,2,...T — 1}.
The resulting mean and standard deviation tensors have the
same shape as the snapshot &}, denoted as Xjyean, X, re-
spectively. During the data preprocessing stage, for each
snapshot X}, we apply particle velocity-wise normalization
as follows:

7= Xile, hyw] — Xmean[c, b, W]
e Xsld [C7 h7 ’LU]

Particle velocity-wise normalization also prevents potential
spatial information leakage during the normalization process
for our sparse sampling scenario.

Normalization for domain-shifted settings. The ground
motion of earthquakes with higher magnitudes (e.g., M4.5-
M?7), once normalized, exhibits a considerably wider range
compared to the normalized M4 data. Thus, we need to
normalize the ground motions again to obtain a reasonable
range using the information present in the input window.
Given the input window from time step ¢ to t5, we conduct
a channel-wise normalization for each input snapshot X}
based on the standard deviation values computed for the
following set:

{Xi[e, h,w]|t = t1,t1 +1,...,t5;h =0,1,2,... H — 1;
w=0,1,2,... W —1}.

The reasons for not using the particle velocity-wise normal-
ization here are twofold. Firstly, the initial particle velocity-
wise normalization has already introduced varying standard
deviations for different spatial locations. Secondly, since
ground motion in the early warning area is observed to be
zero within the input window, the particle velocity-wise stan-
dard deviation tensor would consist mostly of zeros, making
the normalization process infeasible.
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4.4 Data Generation

We simulate point-source and finite-fault earthquake ground
motions up to 0.5 Hz within a three-dimensional (3D) vol-
ume extending 120 km in the fault parallel (FP) direction (X
direction), 80 km in the fault normal (FN) direction (Y direc-
tion), and 30 km in depth. These simulations are conducted
using the USGS San Francisco Bay region 3D seismic veloc-
ity model (SFVM) v21.1 [29]. Material properties, including
the Vp-Vs relationships, are defined for each geological unit
based on laboratory and well-log measurements, which in-
clude parameters such as P- and S-wave velocities [29, 10, 2].
Simulations are initiated with a minimum S-wave velocity
of 500 m/s. We generate visco-elastic wave fields using the
open-source SW4 package, which computes the 4th order
finite-difference solution of the visco-elastic wave equations
[47]. This software package is well-established, with its
accuracy validated through numerous ground motion simu-
lations [40, 41, 49].

The surface of the Earth is modeled with a free surface con-
dition, while the outer boundaries use absorbing boundary
conditions through a super grid approach spanning 30 grids.
We consider a flat surface, and to avoid numerical dispersion,
we consider a simulation grid with a mesh size of 150 m?
at the surface, designed to ensure a minimum of six grids
per wavelength. To optimize computational resources, the
mesh size is doubled at depths of 2.2 km and 6.6 km. The
largest grid size employed is 600 m?, covering a total of
approximately 9.59 million grid points. The attenuation and
velocity dispersion are modeled using three standard linear
solid models, assuming a constant Q over the simulated fre-
quency range. Each simulation runs for 120 seconds with
a time step of 0.0260134 seconds, resulting in 4,613 time
steps. The three component particle velocity motions are
recorded every 10 steps (i.e., 0.26014 sec) at 150 m x 150
m grids and then are downsampled to 300 m x 300 m grids
for the training and testing WaveCastNet. These simulations
are carried out on 12 nodes equipped with INTEL XEON
Gold 5218/6230 CPUs within the Lawrencium cluster at
Lawrence Berkeley National Laboratory.
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B TECHNICAL DETAILS

A Notation

Terms Definition
WaveCastNet | Wavefield forecasting network (WaveCastNet) based on a seq2seq model.
Seq2Seq Al-enabled sequence to sequence (seq2seq) modelling framework.
ConvLEM Convolutional long expressive memory (ConvLEM) recurrent unit.
time window Sequence length in temporal dimension.
arrival time Time step at which maximal waveform arrives.
particle velocity Single pixel X;[c, h, w] in the snapshot.
waveform Time series recorded for a single particle velocity.
wavefield Snapshot A} at a certain time step.
t Temporal coordinate (time point).
h,w XY -index of each input snapshot.
c Channel index for velocity in a certain direction.
X, Snapshot of shape C' x H x W at time step .
Cn Fast hidden state in latent space.
Hn Slow hidden state in latent space.
X (NS) North-South direction.
Y (EW) East-West direction.
Z (UP) Vertical direction, positive values signify upward movement.

Table A.1: Terms and Definitions

B Technical Details

B.1 Discretized ConvLEM

Here we derive the discretized formula of ConvLEM from the following time-dependent ODEs:

dc(t .

O — e (). 1), X(0) = g (). X(0) © [, (H(0). X)) - €] N

dH(t

U — iy (€0 100), (1) = s (H(E), X(0) © 14, (C(0), X(8) — H(t)]

The gating functions g., g, and update functions fg , 9hh are defined based on convolutional operation:

gC(H’X) :U(Wﬂct*X+Wht*H)7
gh(H,X):O'(WxE*X—FWh?*H), -
£5. (1, X) = tanh (Wie x H + W  X), (22)
f(C. X) = tanh (Wep % C + W,  X) .

In this notation, H(t) and C(¢) denote the slow and fast evolving hidden states in latent space R"*P*9 respectively.
X(t) € Re*"*% represents a three-dimensional input tensor. W. . denotes the convolutional kernels, ® represents the
Hadamard product, and * indicates the convolutional operator. For brevity, bias vectors are omitted in gating and updated
functions defined in 22.

We utilize the Implicit-Explicit IMEX) time-stepping scheme to write the ODEs in Eq. (21) in a discretized formula, with
subscript n as time steps index ranging from 1 to N. Given At > 0:

Cn - Cn— Cc
Tl = ¢c (Cn—h Hn—la Xn) = 8¢ (Hn,—la Xn) © [fec (HTL—la Xn) - Cn—l} ;
(23)
Hp — Hoe
i = U Co P, Xa) = g (M1, X) © (£, (Cn X) = Hoa] -

For discretized fast hidden state C,,, we have:
Cn - Cn—l =At- 8c © (fgc - Cn—l);
Ch=(At-g.)0o f5 +Cpoy — (At-g.)®Chy
= (At : gc) ® fecc +1 @Cnfl - (At : gc) ®Cn71
= (At-ge) O fg, + (L — At-gc) ©Cp,
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where 1 is the matrix of ones that matches the shape of hidden state C,, and H,,,.
Similarly, we have for H,,:
Mo = (At-gn) © fg, + (1 — At-g) © Hnr.
Define At,, = Atg., At, = Atgy,. By plugging in 22 and 23, we derive the discretized formula for ConvLEM:

At, = Atg.(Hpn-1,X)

A_tn = At gh(Hn—h Xn)
Crh=(1-At,) ©Cph1 + At, O f§ (Hn—1,Xn)
Ho = (1 - At) © Hnor + At, O ff (Cpy Xy). O

(24)

B.2 Gating Function Distribution

We visualize the distribution of At and At for the encoder ConvLEM cells in WaveCastNet on point-source small
earthquakes in Figure B.1. Here, we set the time step factor At in 24 to 1, so At and At equal to the gating functions g,
and gy, for the fast and slow hidden states C(¢) and #(t), respectively.

As shown in Figure B.1, the observed occurrences of At and At at each scale decays as a power law with respect to scale
amplitude [50].

M4.0 Encoder Gating Function Distribution

107_ —— Linear Slope=2.85 107- —— Linear Slope=4.00

10° 4

Frequency
=
N

10719 108 10°® 10*% 1072 1.0 1071 10°% 10°® 10* 1072 1.0
Atzgh At=gc

Figure B.1: Histogram of At and At for the encoder ConvLEM cells in WaveCastNet.

By setting all axes to log scale, we can observe the different linear slopes and amplitude ranges for At and At. At
exhibits a smaller linear slope and longer trailing tail, with distribution at the amplitude closer to 0 compared to At,
enabling () to better capture low-frequency features. In contrast, At is more centrally distributed near 1, showing a
smaller amplitude range and a larger linear slope, reflecting the rapid change of hidden state C(¢). These observations prove
that the temporal multiscale resolution structure of ConvLEM is essential for modeling the fast-slow dynamical pattern in
ground motion data.

B.3 Structure of Embedding and Reconstruction Layers
Here we discuss the embedding and reconstruction layers.

The embedding layer for densely and regularly sampled inputs &z € R3*344x224 jg composed of three cascaded encoder
layers. A standard encoder layer comprises a convolutional layer, with kernel size =(4, 4), stride=2, padding=1, followed by
a LeakyRelu activation layer and BatchNorm layer. Each encoder layer reduces the input spatial dimensions by a factor of
2. After the input signal is passed through three encoder layers, the dimensions change from 3 x 344 x 224 to a fixed-size
latent space of 144 x 43 x 28. The channel transformation process is illustrated in Figure B.2.

The embedding layer for sparsely and irregularly sampled data maps the inputs 2 € R3*564 to a latent space of dimension
144 x 43 x 28. Specifically, this embedding layer uses a shallow multi-layer feed forward network [18], followed by two
convolutional layers, as illustrated in Figure B.2.
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The reconstruction layer retrieves the predicted wavefield snapshot, shaped 144 x 43 x 28, from the latent space. This process
involves increasing the spatial dimensions by a factor of 2 through transposed convolution, followed by a PixelShuffle
layer [51] to further upscale the output by a factor of 4. The dimensional transformation process is depicted in Figure B.2.

Embedding Layer: dense and regular sampling Reconstruction Layer
3 3 x 344 x 224
i 36 7 144 x 86 x 56 /
] 144 144 x 43 x 28
= N LN
Embedding Layer: sparse and irregular sampling 3 x86x56 72 x86x56

144 x 43 x 28

3 x 564 3x564 3x 1204 3 x 4816

Conv + LeakyRelu + BatchNorm2d

TransposedConv + LeakyRelu
PixelShuffle(4) + Conv

Linear + LeakyRelu + BatchNorm1d
GroupNorm + SelfAttention

SR 2

Figure B.2: Detailed structure for the embedding layers and reconstruction layer in dense and sparse sampling scenarios.

B.4 Other Related Methods

We implemented ConvLSTM and ConvGRU with peephole connections as follows. For brevity, bias vectors are omitted
from the activation and gating functions.

ConvLSTM
iy =0 (Wi x Xy + WpixHy 1 + Wey ©Cpa),
f, = O’(Wwf * X, —I—th * Hp_1+ ch @Cnfl) ,
Ch=5,0C1+inOf (Wae*x Xy + WyexH, 1),
0n =0 (Wao* Xy + Wi x Hp1 + Weo ©Cp),
Hp =0, 0 f(Cp).
ConvGRU

Z,=0(W,*xXy +Wp,xH, 1),
R,=0(Wgy « X, + Wp, xHp,_1),

0 = f(Wao*x Xy + Ry © (Wi x Hpo1)),
Hon=(1-2Z,) ©Hp1+Z, ®o0p.

C Additional Results

C.1 Moving MNIST

Here, we show experiments for the MovingMNIST dataset to further demonstrate the ConvLEM’s performance in
spatio-temporal forecasting. The MovingMNIST dataset [53] is a well-established benchmark for video prediction and
spatiotemporal modeling tasks. This dataset consists of a total of 10, 000 videos, each comprising 20 fixed-size frames
with dimensions of 1 x 64 x 64 pixels. Each video sequence features two handwritten digits selected from the original
MNIST dataset, which move within the frame at various speeds and directions. The digits exhibit diverse velocities and
trajectories, including linear motion, bouncing off the frame edges, and occasional overlap, presenting a complex and
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challenging scenario for spatio-temporal forecasting models. The diversity in motion patterns makes the MovingMNIST
dataset an ideal benchmark for evaluating the ability of models to capture and predict dynamic changes over time.

We use the first 10 frames as input to predict the subsequent 10 frames. The models consist of 3 stacked recurrent
layers with no embedding or reconstruction layers involved. Table C.1 shows the results for this task. While using
fewer parameters, ConvLEM is able to outperform the prediction performance of the ConvLSTM model. This further
demonstrates ConvLEM’s potential for spatio-temporal forecasting tasks.

t=1

Input Frames

ConvLEM Groundtruth

ConvLSTM

Figure C.1: An example on MovingMnist dataset.

Model Parameters Latent Space Layers BCELoss |
Stacked ConvLSTM 3.10M (64, 64, 64) 3 206.13
Stacked ConvLEM 2.31M (64, 64, 64) 3 166.75

Table C.1: Results for Moving Mnist. The ConvLEM demonstrates improved forecasting capabilities while requiring fewer
parameters than ConvLSTM.

D Supplementary figures

* Figure D.1: Kinematic rupture model of the M4.5 earthquake

Figure D.2: Kinematic rupture model of the M5 earthquake
* Figure D.3: Kinematic rupture model of the M5.5 earthquake

* Figure D.4: Kinematic rupture model of the M6 earthquake

Figure D.5: Kinematic rupture model of the M6.5 earthquake

* Figure D.6: Kinematic rupture model of the M7earthquake
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Figure D.1: Kinematic rupture models for the M4.5  Figure D.2: Kinematic rupture models for the M5.0
earthquake. (Top) slip (middle) rise time and (bot- earthquake. (Top) slip (middle) rise time and (bot-
tom) 5 Hz slip rate distributions. tom) 5 Hz slip rate distributions.
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Figure D.3: Kinematic rupture models for the M5.5
earthquake. (Top) slip (middle) rise time and (bot-
tom) 5 Hz slip rate distributions.
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Figure D.4: Kinematic rupture models for the M6
earthquake. (Top) slip (middle) rise time and (bot-
tom) 5 Hz slip rate distributions.
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Figure D.5: Kinematic rupture models for the M6.5
earthquake. (Top) slip (middle) rise time and (bot-
tom) 5 Hz slip rate distributions.
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Figure D.6: Kinematic rupture models for the M7
earthquake.(Top) slip (middle) rise time and (bot-
tom) 5 Hz slip rate distributions.



	Introduction
	Results
	Point-source Small Earthquakes
	Generalization to Finite-fault Large Earthquakes

	Discussion and Conclusions
	Method
	Wavefield Forecasting Network
	Convolutional Long Expressive Memory
	Normalization
	Data Generation

	Notation
	Technical Details
	Discretized ConvLEM
	Gating Function Distribution
	Structure of Embedding and Reconstruction Layers
	Other Related Methods

	Additional Results
	Moving MNIST

	Supplementary figures

