
Automated Root Causing of Cloud Incidents using
In-Context Learning with GPT-4

Xuchao Zhang, Supriyo Ghosh, Chetan Bansal, Rujia Wang,
Minghua Ma, Yu Kang, Saravan Rajmohan

Microsoft
{xuchaozhang, supriyoghosh, chetanb, rujiawang, minghuama, yu.kang,

saravan.rajmohan}@microsoft.com

ABSTRACT
Root Cause Analysis (RCA) plays a pivotal role in the incident di-
agnosis process for cloud services, requiring on-call engineers to
identify the primary issues and implement corrective actions to
prevent future recurrences. Improving the incident RCA process is
vital for minimizing service downtime, customer impact and man-
ual toil. Recent advances in artificial intelligence have introduced
state-of-the-art Large Language Models (LLMs) like GPT-4, which
have proven effective in tackling various AIOps problems, ranging
from code authoring to incident management. Nonetheless, the
GPT-4 model’s immense size presents challenges when trying to
fine-tune it on user data because of the significant GPU resource
demand and the necessity for continuous model fine-tuning with
the emergence of new data. To address the high cost of fine-tuning
LLM, we propose an in-context learning approach for automated
root causing, which eliminates the need for fine-tuning. We conduct
extensive study over 100,000 production incidents from CompanyX,
comparing several large language models using multiple metrics.
The results reveal that our in-context learning approach outper-
forms the previous fine-tuned large language models such as GPT-3
by an average of 24.8% across all metrics, with an impressive 49.7%
improvement over the zero-shot model. Moreover, human evalua-
tion involving actual incident owners demonstrates its superiority
over the fine-tuned model, achieving a 43.5% improvement in cor-
rectness and an 8.7% enhancement in readability. The impressive
results demonstrate the viability of utilizing a vanilla GPT model
for the RCA task, thereby avoiding the high computational and
maintenance costs associated with a fine-tuned model.

KEYWORDS
incident diagnosis, root cause analysis, large language model, in-
context learning

1 INTRODUCTION
Over the last decade, the IT industry has transitioned away from the
traditional practice of distributing software in shrink-wrapped pack-
ages. Instead, these companies are increasingly embracing cloud
platforms as their favored approach for deploying applications and
services. Within these extensive cloud services, incidents such as
unplanned interruptions or performance degradation can have a
significant negative impact on customer satisfaction, resulting in
revenue loss and a decline in customer trust. At present, the process
of diagnosing such incidents still heavily relies on manual investiga-
tion or the use of specialized service tools. Nevertheless, due to the

escalating scale and complexity of modern cloud systems, relying
solely on human capabilities is inadequate for effectively and effi-
ciently handling incidents, leading to extended Time-to-Mitigate
(TTM).

Root cause analysis, as a pivotal task during incident manage-
ment lifecycle [10], plays a vital role in identifying the underlying
cause behind the occurrence of the incident. By conducting a root
cause analysis, the on-call engineers can uncover the primary issues
that caused the incident and take appropriate corrective actions to
prevent similar incidents from recurring in the future. This task is
crucial for effective incident resolution, enhancing system reliabil-
ity, and improving overall incident response processes.

Although LLMs have demonstrated impressive performance in
incident diagnosis tasks [1] through model fine-tuning on the in-
cident data, they still face several challenges when applied to the
root cause analysis task. Firstly, the current fine-tuned model oper-
ates under the assumption that it can learn all the intricate details
of past incidents. However, it is widely recognized that the large
language model is susceptible to hallucination (producing distorted
or exaggerated facts), as it cannot accurately recall the details from
the training data. Secondly, fine-tuning large language model is
associated with high costs and may even be infeasible for certain
cutting-edge models with an extremely large number of parameters
such as GPT-4. Lastly, the fine-tuned model struggles to address
the issue of staleness, where emerging knowledge makes previ-
ous information obsolete. It is challenging to update the LLM with
recent knowledge unless it is continuously fine-tuned with latest
data. Consequently, this limitation hinders the model’s capacity to
seamlessly ingest new knowledge.

To address the aforementioned challenges, we propose an in-
context learning based method for the root cause analysis task.
Rather than relying on fine-tuning with incident management data
to acquire domain-specific knowledge, we directly include relevant
historical incidents as in-context examples to equip the LLM with
knowledge from the incident management domain. When applying
in-context learning to our task, several considerations and decisions
need to be taken. Specifically, given the high cost associated with
fine-tuning a LLM, is it possible to achieve comparable performance
in the RCA task using a vanilla LLM model without fine-tuning?
(RQ1) Is it feasible to employ a traditional retrieval augmented
approach to enhance the performance of a vanilla GPT model in the
RCA task? (RQ2) How does the in-context learning method help
the vanilla LLM in root cause analysis task? (RQ3) Does having
more in-context examples result in better performance? (RQ4) How
does the performance vary with the relevance of the in-context

ar
X

iv
:2

40
1.

13
81

0v
1

 [
cs

.C
L

]
 2

4
Ja

n
20

24

Zhang et al.

examples (RQ5)? How does the ordering of in-context examples
affect the performance (RQ6)?

To answer these questions thoroughly, we conducted an exten-
sive evaluation involving a large-scale dataset of 101,308 incidents
across over a thousand services from CompanyX, one of the largest
cloud service providers. In addition to the commonly reported lexi-
cal and semantic evaluation metrics for such experiments, we also
present the results from a human validation, where we sought the
input of incident owners to assess the correctness and readability
of suggested root causes. Since the original incident owners possess
the highest level of expertise regarding their incidents, their evalua-
tion provides valuable insights into the performance of the models.
Our contribution can be summarized as: (i) This work represents
a pioneering effort in showcasing the practicality of cutting-edge
Large Language Models (LLMs) like GPT-4 for accomplishing root
cause analysis tasks without the need for fine-tuning, achieved
through an innovative in-context learning approach. (Section 3)
(ii) We present a rigorous and large-scale study in CompanyX on
over 100,000 incidents from 1000+ cloud services with multiple
evaluation metrics. The proposed in-context learning approach
outperforms the fine-tuned GPT-3 model by an average of 24.7%
across all metrics. (Section 4.2) (iii) Our human study with the ac-
tual incident owners of production incidents serves as compelling
evidence for the effectiveness of the proposed approach, show-
casing notable improvements of 43.5% in correctness and 8.7% in
readability. (Section 4.3) The key takeaways of our work is (i) Our
proposed in-context learning RCA approach not only circumvents
the high cost of fine-tuning incident data but also achieves even bet-
ter performance compared to the existing fine-tuned LLMs. (ii) In
comparison to the traditional retrieval augmentation approach, in-
-context examples can serve not only as task exemplars but also
facilitate the integration of domain knowledge into vanilla LLMs,
resulting in a substantial performance improvement.

To reproduce our proposed approach, we will make the source
code publicy availabel at http://to_be_released. However, due to
privacy concerns with customer data in our dataset, we cannot
release the full dataset. Instead, we include a detailed guide in our
code repo on how to create a similar dataset step-by-step, along
with some sample data for reference. Researchers can then use this
guidance and the sample data to build their own datasets and apply
our code to replicate our results.

2 BACKGROUND
In this section, we begin with an introduction to the root cause anal-
ysis task and the recent developments in LLM models. Following
that, we delve into a thorough discussion of the research questions
and the human evaluation conducted in this study.

2.1 Incident Root Cause Analysis
In large-scale cloud services, it is inevitable to encounter production
incidents that can significantly impact the customer experience
and incur substantial engineering resources for troubleshooting.
The incident life-cycle typically consists of four stages: detection,
triaging, diagnosis and mitigation. In the incident diagnosis stage,
root cause analysis plays a critical role in identifying the underlying
cause of the reported incident. This process is complex and demands

Title: Completion Mismatches Between Service-A and Service-B
Summary: Recent availability issues in Learner Service have resulted in
lost data for Service-A completions for many users. This ticket will track
those incidents.
Reference root cause: Service-A sync job was not able to handle depen-
dent service unavailability.

Figure 1: A sample production incident.

a significant amount of manual effort, as well as domain knowledge
about the services involved. Incidents can stem from various issues,
such as code bugs, dependency failures and infrastructure problems.
The abundance of possibilities makes it challenging for On-Call
Engineers (OCEs) to pinpoint the exact cause of the incidents. Errors
made during the root cause analysis not only result in additional
effort and labor but also have a direct impact on customers and
revenue. It is essential to avoid such human errors to minimize
disruptions and provide a better experience to customers. Figure 1
illustrates a real incident from a service, displaying the customer-
provided title and summary, along with the actual root cause.

2.2 The Promise of LLMs
In recent years, Large LanguageModels (LLMs) like GPT-4 [37] have
become a prominent trend in natural language processing. With bil-
lions of model parameters, LLM models are trained on meticulous
collections of textual content, ranging from books to web texts and
Wikipedia articles. This comprehensive learning process enables
LLMmodels to comprehend a wide range of prompts and questions,
resulting in higher accuracy and precision when handling complex
tasks. GPT models, particularly the GPT-4 model, have demon-
strated their superiority over state-of-the-art models in various
NLP tasks, including machine translation, question-answering, and
close tasks. Furthermore, GPT-4 has shown that unsupervised lan-
guage models trained with sufficient data can perform at the same
level as fine-tuned models with only a few examples of new tasks,
leading to significantly improved performance. With enhanced
capabilities, GPT-4 allows a token limit of 32,000 (equivalent to
25,000 words), a substantial increase compared to GPT-3.5’s previ-
ous limit of 4096 tokens. This enhancement empowers GPT-4 to
handle even complex questions by synthesizing information from
diverse sources.

2.3 Research Questions
We investigated several OpenAI GPT-3.x and GPT-4 models to
generate root causes for the incidents without model fine-tuning.
This leads to several RQs.
RQ1 Given the high cost associated with fine-tuning a LLM, is it
possible to achieve comparable performance in the RCA task using a
vanilla LLM model without fine-tuning?
Vanilla GPT models, which lack training with incident management
data and domain knowledge, are not expected to perform well in
zero-shot settings. On the other hand, even though the fine-tuned
model can acquire incident domain knowledge from the training
data, it still faces the burden of high training and maintenance
costs. To tackle these issues, we explore the in-context learning
approach, which integrates LLMs with in-context examples as task

http://to_be_released

exemplars and augmented domain knowledge, eliminating the need
for time-consuming fine-tuning. To demonstrate the effectiveness
of the in-context learning approach, we compare its performance
with the fine-tuned model in the root cause analysis task.
RQ2 Is it feasible to employ a traditional retrieval augmented approach
to enhance the performance of a vanilla GPT model in the RCA task?
Retrieval-augmented approaches [16, 25, 31] have emerged as a
powerful technique to enhance the performance of LLMs by incor-
porating external documents. This integration allows languagemod-
els to leverage external domain knowledge, leading to improved con-
textual understanding. However, some approaches [6, 42], require
fine-tuning a specific decoder to leverage the retrieval-augmented
knowledge, which contradicts our motivation to avoid fine-tuning
the model. On the contrary, there are other methods that directly
integrate the documents into the model input, wherein the aug-
mented document can only furnish domain knowledge but lacks
the functionality of a task exemplar. Furthermore, using chunked
retrieval documents may reduce the effectiveness of the retrieval
compared to the format of in-context examples. It also remains a
question whether chunked retrieval documents can surpass the
performance of the format of in-context examples. To assess the
significance of in-context examples, we conducted a comparison
between our in-context learning approach and the traditional re-
trieval augmentation method. In the latter, we divided incident
details, comprising incident title, summary and root cause, into
chunks, disregarding the original format of incident fields. The
resulting document was presented as a sequence of chunks rather
than as in-context examples. This comparison allowed us to illus-
trate the importance of using in-context example format while we
maintain content consistency for the two approaches.
RQ3 How does the in-context learning method help the vanilla LLM
in root cause analysis task?
In-context learning methods have proven their capability to bridge
the domain knowledge gap for LLMs by utilizing demonstrated
examples in many domains. In this research, we aim to explore how
this method can aid the vanilla LLM model (without fine-tuning)
in enhancing the root cause analysis task. We utilize four different
GPT models with varying capacities and observe their performance
with in-context examples to compare with their zero-shot version
for the root cause analysis task.
RQ4 Does having more in-context examples result in better perfor-
mance?
When considering the significance of in-context examples for LLM,
especially without fine-tuning on domain-specific data, the question
arises of whether more in-context examples lead to better results.
Ideally, we expect the LLM to be capable of analyzing the integrated
in-context examples and distinguishing the useful ones. Our aim is
to find a balance between the quantity and quality of these exam-
ples. To achieve this, we conduct experiments using various sizes
of in-context examples and observe how it affects the root cause
analysis task. Moreover, LLMs like the GPT-4 model have been
developed to accommodate an exceptionally large number of input
tokens. For example, the GPT-4-32K model can handle up to 32
thousand tokens in its prompt. This substantial increase in capacity
significantly enhances the LLMs’ ability to incorporate more back-
ground information, thereby further improving their contextual

understanding for specific tasks. In our case, we utilized the GPT-4
model in our experiment, testing both the 8K and 32K prompt limits.
This allowed us to integrate a greater amount of historical incidents
as reference data, serving as background knowledge for the LLM.
RQ5 How does the performance differ between highly relevant in-
context examples and irrelevant (random) examples?
In-context examples typically serve two main functions. Firstly,
they can be utilized as task demonstrations. By providing input
and output through in-context examples, LLMs can learn how to
perform the task based on these examples. Secondly, the content of
in-context examples can also provide LLMs with domain-specific
knowledge to tackle new incidents. In this paper, we aimed to
investigate whether the relevance between in-context examples and
new incidents plays a crucial role in determining the performance.
We compare the in-context examples most relevant to the new
incident with randomly selected examples.
RQ6 How does the ordering of in-context examples affect the perfor-
mance?
Previous research has revealed that LLMs are influenced by the
arrangement of in-context examples. The main question we aim
to address is whether we should place our in-context examples
closest to the task description (at the beginning of prompt) or the
new incident (bottom of prompt). To examine the impact of the
order of in-context examples, we compare the performance of three
different settings. Firstly, we present the examples in descending
order of relevance, with the most relevant example coming first
and the least relevant example last, relative to the new incident. In
the second setting, we arrange the examples in ascending order,
meaning that the most relevant example is positioned closest to
the new incident. Lastly, we select the top k most relevant exam-
ples and then randomize their positions to study the effect of this
arrangement.

3 METHODOLOGY
We present our in-context RCA approach that uses the in-context
examples to enhance the performance of LLM. First, we provide an
overview of our approach in Section 3.1. Then we delve into the
details of the data preparation and in-context example extraction
in Section 3.2 and Section 3.3. Last, the root cause generation step
is described in Section 3.4.

3.1 Overall Architecture
Figure 2 illustrates the overall architecture of our proposed ap-
proach. Initially, we gather incident data created between January
1, 2021, and September 30, 2022, from our incident database. The
data is then cleaned by removing lengthy stack traces and embed-
ded images. To avoid overwhelming amounts of incident details, we
utilize GPT-35-turbo1 to summarize the incident summary and root
cause for constructing the retrieval corpus and in-context examples.
After summarization, we employ a sentence transformer model
[39] to generate embedding vectors for each incident’s summarized
summary. Subsequently, we construct a retrieval index using the
Faiss library [20], enabling efficient similarity search based on these
embeddings. When a new incident arises, we use its description

1https://platform.openai.com/docs/models/gpt-3-5

Zhang et al.

Incident
Retriever

Historical Incidents

GPT-based
RCA Model

Generated
Root Cause

Data Collection &
Cleaning

Retrieval Corpus

Incident
Summarization

query

return results

Incident-1

In-context Examples Prompting

Incident-2 … … Incident-K

In-context Learning

I want to act as … for root cause of incidents
Title: Unable to restart app …
Summary: Customer is unable to restart app and is receiving a
500 error … (summarized incident summary)
Root cause: config server was down ….

Title: Production Logic App not Scaling …
Summary: S500 RCA Process … the RCA be given extra effort
Root cause:

(more in-context examples)

(new incident)

(task description)

New Incident

Figure 2: Overview of our In-context Learning RCA Frame-
work

as a query to find relevant incidents based on the retrieval index.
The extracted incidents are then integrated into the prompt of the
Large Language Model (LLM) in the form of in-context examples.
Finally, we utilize the LLM, such as GPT-4, to generate the root
cause based on the new incident description and all the provided
in-context examples.

3.2 Data Preparation
Our data preparation process involves two steps. Initially, we extract
the data from the incident database using specific criteria. Next, we
proceed to clean the incident samples.

3.2.1 Data Collection. Numerous incidents from different services
and severities are detected and created at CompanyX through both
automated systems and human monitoring. A team of dedicated
on-call engineers (OCEs) is always ready to address these incidents
promptly, ensuring seamless service for our valued customers. To
effectively manage this high volume of incidents, CompanyX has
developed a specialized platform tailored for reporting and handling
such occurrences. This platform includes a comprehensive database
that tracks all activities related to incident reporting, from data
insertion, modification, to deletion, starting from the moment an
incident is created until it is successfully resolved.

We gathered 101,308 incident data2 created between January 1,
2021, and September 30, 2022 that had both a non-empty summary
and root cause field. These incidents were part of the "Resolved"
or "Mitigated" incidents, with severity levels ranging from 0 to 4,
where level 0 represented the most severe incidents. Furthermore,
we applied filters to include only incidents whose titles contained
specific keywords like "ignore," "test," or "dummy." Once the filtering
process was completed, we sorted the remaining data based on the
creation date. We then selected the first 98,308 incidents for the
retrieval set, 2,000 for the validation set, and 1,000 for the testing
2Unfortunately, we are unable to share the incident dataset as it contains confidential
information about the cloud services and infrastructure.

set. To enable a comparison with the fine-tuned model, we further
refined the retrieval set by choosing themost recent 20,000 incidents
to be used as the training set for fine-tuned baseline models.

3.2.2 Data Cleaning. Because of the urgency in resolving incidents,
the OCEs typically don’t adhere to a strict template when providing
incident summaries and root causes. This leads to the content of
these incidents being challenging to parse and understand using
rule-based models. Moreover, both the summary and root cause
often contain information presented in various formats, including
screenshots, tables, stack traces and code snippets. However, since
GPT-3.x or GPT-43 only support textual data, we had to exclude
the images from the incident summaries and root causes. There-
fore, we conduct the following steps for incident data cleaning:
(i) eliminate lengthy stack traces. Based on our observations, we
have encountered stack traces that exceed 10,000 tokens. These
lengthy stack traces obviously cannot be accommodated within
the LLM’s prompt and tend to distract the LLM with unnecessary
details. Our proposed solution involves using a regular expression
pattern to search for function calls within the incident summary.
This pattern allows us to identify lines that are part of the stack
trace, specifically by recognizing all lines in the incident summary
that contain at least one function call. (ii) remove Base64 image.
The incident contains images encoded in Base64 format, which is
an encoding algorithm used to convert images into readable strings.
This allows the images to be saved or transmitted over a network
without any data loss. However, as LLM cannot comprehend Base64
images, we address this issue by utilizing the BeautifulSoup library
to parse the tag and subsequently remove these images from
the incident.

3.3 In-context Example Extraction
In this stage, we construct the retrieval corpus to find relevant
incident examples that share similarities with the new incident.
The process involves two key steps. First, we use incident summa-
rization to condense the length of the original incident, making it
more manageable. Next, we create a retrieval index that facilitates
efficient semantic search based on the incident descriptions. This al-
lows us to effectively find and retrieve incidents that closely match
the semantics of the new incident.

3.3.1 Incident Summarization. Before we delve into the approach
of summarizing the incident summary and root cause, let’s first
explain why such summarization is necessary. Incidents often con-
tain an overwhelming amount of details that may not be helpful
in reflecting the core information of the incident. For instance, Fig-
ure 3 illustrates how incidents can include detailed logs, which, if
included as is, would occupy most of the space in the in-context
examples and limit the number of examples that can be used. In
extreme cases, if the length of the summary exceeds 8K tokens,
not even a single example can fit into the prompt for GPT-4 model.
Furthermore, incorporating excessive unnecessary information can
diminish the retrieval module’s effectiveness. Existing retrieval
models are typically pre-trained on smaller queries, which poses

3The GPT-4 model does have support for image input, but it is currently not available
for public usage.

Original Incident Summary (864 tokens):
Customer XXX/Severity A ICM Ticket Template: Project ID:XXX
- PREMIER SUPPORT CASE Project Name:XXX Environment
Name:XXX Application/Platform Versions:XXX (10.0.XXX.XXX) : PU
36 (X.X.XXXX.XXXXX) Case Info:XXXXXX - Open Unify Environment
Urgency Reason: Job is critical to the customer, issue affects prod Potential
Downtime window: NA Issue Description: <core description>
...
- Export job failed due to error(s) in ABCStagingWriter.execute(): ...
Summarized Version (89 tokens):
This customer is experiencing an issue with a ABC job that is stuck during
execution and not creating new records. The customer has attempted to
delete the job and recreate it, but is still having the same issue. The urgent
reason is that the job is critical to the customer and affects production.
The activity ID is ExcecutionID: XXX and the engineer has requested
assistance in getting the job to complete. Kusto URLs have been captured
for this incident.

Figure 3: Example of Original and Summarized Incident

significant challenges when searching through lengthy documents
with extended queries.

Based on our observations, we employ the prompt shown in
Figure 4 to summarize the incident summary and root cause using
the GPT-3.5-turbo model4. The objective of this prompt is to make
the GPT model function as a software engineer and incorporate
specific information into the summarized version, including: in-
cident symptoms, references to external services, distinguishing
features such as error codes, and contextual details like the service
name. Additionally, we ensure that the length of the summarized
version does not exceed 5-6 sentences and is written in the third
person’s tone. To apply the prompt to new incidents, we substi-
tute the placeholders "description" with the incident summary and
root cause, respectively. An illustrated example of a summarized
incident can be seen in Figure 3. In this example, the summarized
incident includes the key symptom "ABC5 job is stuck during execu-
tion and not creating new records," along with the associated error
code and initial troubleshooting steps provided by customers. The
summarization process helps reduce the original summary from 864
tokens to just 89 tokens, which can be highly beneficial in saving
space for the LLM prompt.

3.3.2 Retrieval Index Building. Once the incident has been summa-
rized in the previous step, we proceed with encoding the incident
summary using the Sentence Transformer (ST) model [22], specif-
ically all-mpnet-bse-v26. This model has been fine-tuned on 32
datasets comprising 1 billion sentence pairs with a contrastive learn-
ing objective [11]. The ST model utilizes a sentence transformer
encoder to convert sentences or paragraphs into a 768-dimensional
dense vector space, which can help to encode the incident descrip-
tion into vector space. In our approach, we utilize this model to
encode the concatenation of the title and summarized incident sum-
mary for historical incidents in the retrieval corpus. Likewise, for
new incidents, we also use the same setting to generate the query
embedding.

4https://platform.openai.com/docs/models/gpt-3-5
5To ensure the confidentiality of sensitive information, we employ the placeholders
"ABC" instead of the actual service name and "XXX" for error codes and IDs.
6https://huggingface.co/sentence-transformers/all-mpnet-base-v2

Incident Summary Prompt:
I want you to act as an expert software engineer. Consider the following
incident report was submitted on the IcM portal.
Incident Description: {description}
Your task is to summarize this incident report. Focus on the following
aspects of the incident:
· The symptoms of the incident that lead to this incident report
· References to external services or tools that contain relevant information.
· Distinguishing features of the incident such as precise error codes,
specifics from logs etc.
· Context of the incident such as the name of the service, region, etc.
Your summary should be at most 5-6 sentences and should be in third
person. You must end your summary with <|endoftext|>.
Concise Summary:
Incident Root Cause Prompt Summary:
I want you to act as an expert software engineer. Your task is to summarize
the following root cause of an incident report. Your summary must clearly
state what the root cause of the incident was.
Incident Root Cause: {description}
Concise Summary:

Figure 4: Summarization Prompt for Incident Summary and
Root Cause

After obtaining the embedding vectors from the sentence trans-
former model, we utilize the FAISS [20] library for efficient similar-
ity search and clustering of the dense vectors derived from historical
incidents. Since the incidents are represented as vectors, we can
compare them using L2 (Euclidean) distances. The vectors with the
lowest L2 distance from the query vector are considered similar to
the query vector. The FAISS library employs a compressed repre-
sentation of the vectors, eliminating the need to store the original
vectors. Although this may lead to a slightly less precise search, the
benefit lies in its ability to scale to billions of vectors in main mem-
ory on a single server. This scalability allows for efficient searches
on our thousands of historical incidents, making it a feasible and
practical approach for our requirements. The index generated by
FAISS can be stored in the disk and loaded into memory for efficient
search.

3.3.3 In-Context Examples Retrieval. In this stage, our goal is to
search for relevant in-context examples using the retrieval index
that was generated in the previous step. Given an incident descrip-
tion 𝑑 , the main objective of the retriever is to select the top-k
most relevant incidents D𝑟 = {𝑑1, . . . , 𝑑𝑘 } from a large retrieval
corpus D, where D𝑟 ⊆ D. To achieve this, we adopt the approach
used in prior research [25]. We utilize the sentence transformer
model to encode the concatenation of the new incident title and
summary, which produces an embedding representation known as
the incident query vector. Afterward, we make use of the FAISS
library to retrieve the top-k most relevant incidents based on the
retrieval index created in the previous step. Once we have retrieved
the relevant incidents, we combine their title, summary, and root
cause to serve them as in-context examples.

3.4 Root Cause Generation
To generate the root cause, our initial step involves constructing
the prompt for the LLM using the retrieved in-context examples. As

https://platform.openai.com/docs/models/gpt-3-5

Zhang et al.

I want you to act as a software engineer to figure out the root cause of
incidents. I will provide some examples to start with.

Title: {incident title}
Summary: {summarization of incident summary}
Root Cause: {summarization of incident root cause}
... ...
Title: {incident title}
Summary: {incident summary}
Root Cause:

Figure 5: In-context Examples Prompting

illustrated in Figure 5, the prompt consists of the task definition, in-
context examples and the description of the new incident. Initially,
we define the root cause analysis task and prompt the LLM to act
as a software engineer. Next, we present the retrieved in-context
examples, organized with their titles, summaries, and root causes,
with double new lines used to separate multiple incidents. It is
worth noting that we utilize the summarized incident summary
and root cause in the example to prevent excessive prompt space
occupation while retaining the core information of the incident
as reference knowledge for addressing new incidents. Following
the list of in-context examples, we add the description of the new
incident, including its title and summary. Notably, the incident
summary used here is the original version, allowing for the inclu-
sion of more details about the new incident. Finally, we conclude
the prompt with the phrase "Root Cause:" to prompt the LLM to
generate the root cause. Once the prompt is prepared, we utilize
the OpenAI API7 to call upon GPT models for generating the root
cause. In particular, we set the temperature to zero to ensure a more
deterministic output from the model. Additionally, we configure
the completion length to 200 for the root cause generation.

4 EXPERIMENT
4.1 Experiment Setup
4.1.1 Datasets and Labels. As outlined in Section 3.2, our dataset
comprises incident data collected from various services and severi-
ties at CompanyX, totaling 101,308 incidents. To construct our data
set, we select the first 98,308 incidents for the retrieval set, 2,000
for the validation set, and the remaining 1,000 for the testing set.
Regarding the GPT3 fine-tuning model, we designate the last 20,000
incidents from retrieval set as the training set for fine-tuning the
model. As for the labels, we use the extracted root cause from each
incident data sample.

4.1.2 Evaluation Metrics. We choose two types of quantitative
metrics for evaluating our model: lexcial and semantic metrics.
For lexical metrics, we opt for four classic metrics. Firstly, we em-
ploy the Rouge metric (Recall Oriented Understudy for Gisting
Evaluation) [28] to compare a candidate document against a set of
reference texts. Specifically, we choose ROUGE-L [28], which con-
siders sentence-level structural similarity and identifies the longest
co-occurring n-grams using Longest Common Subsequence (LCS)
statistics [17]. Also, we utilize ROUGE-1 [28] to consider the 1-gram
matching . Moreover, we include METEOR (Metric for Evaluation

7https://azure.microsoft.com/en-us/products/ai-services/openai-service

of Translation with Explicit Ordering) [4], which is based on the
harmonic mean of unigram precision and recall, and it also incor-
porates additional features like stemming and synonymy matching
to enhance its accuracy. The last lexical metric we have chosen is
GLEU [43], a deriative of BLEU (Bilingual Evaluation Understudy)
[29]. The metric was proposed to overcome some undesirable prop-
erties when the BLEU metric is used for single sentences.

To assess our results based on the semantic meanings of words,
we choose to use two semantic metrics instead of lexical metrics, as
the latter only consider exact word matches without taking word
meaning into consideration. The first semantic metric we utilize
is BERTScore [47]. It leverages pre-trained contextual embeddings
from the BERT model [12] to compare candidate and reference sen-
tence words using cosine similarity. This method enables a more
nuanced evaluation of semantic similarity. Next, we incorporate the
NUBIA (NeUral Based Interchangeability Assessor) [21], a recently
developed neural-based measure. NUBIA integrates various aspects
of semantic evaluation, including semantic similarity, logical infer-
ence, and sentence legibility. It achieves this by exposing layers
of pre-trained language models like RoBERTa STS [32], RoBERTa
MNLI, and GPT-2 [38]. This comprehensive approach allows us
to obtain a more accurate and comprehensive evaluation of the
semantic quality of our results.

4.1.3 Baseline Methods. Traditional RCA models usually depend
on preselected features to predict the root cause label from a set list
of predefined labels, which doesn’t work for our goal of directly
generating textual root causes. To address this, we’ve chosen to
fine-tune three recent small or medium-sized language models for
our task: OPT [46], CodeGen [36] and Bloom [41]. Specifically, OPT
[46] is decoder-only model that was pretrained using a diverse
and extensive dataset compiled from publicly available sources on
the internet, encompassing a wide range of topics and text types
to ensure comprehensive language understanding and generation
capabilities. CodeGen [36] is an autoregressive language model for
program synthesis trained sequentially on the Pile, BigQuery, and
BigPython datasets to gain better capability of program synthesis.
BLOOM [41] is a decoder-only Transformer language model that
was trained on the ROOTS corpus, a dataset comprising hundreds
of sources in 46 natural and 13 programming languages.

We also select the GPT-3 model as the sole fine-tuned large
language model since it’s the only GPT modelone for which we
have the capacity to fine-tune using a large amount of incident
data. However, even for the GPT-3 model, the fine-tuning process
demands 16 V100-32GB GPUs, and during inference, 4 V100-32GB
GPUs are required. Moreover, we choose four GPT models, namely
GPT-35-turbo8, Text-davinci-003, GPT-4 [37], and GPT-4-32K [37],
as our baseline models. We compare their zero-shot model output
with the results obtained from our in-context learning approach.
Lastly, we adopt the traditional retrieval augmentation method [25],
wherein we split the incident description into chunks and use these
chunks as retrieval documents, which are then compared to our
in-context examples. To enable these models to tackle root cause
analysis, we fine-tuned them on our incident management dataset
using the same approach as for the GPT-3 model. The key difference
is that we trained them in the traditional way, predicting the next
8https://platform.openai.com/docs/models/gpt-3-5

https://platform.openai.com/docs/models/gpt-3-5

token for both the incident description and the root cause. However,
with GPT-3, we could only fine-tune the root cause section due to
its fine-tuning pipeline limitations.

4.2 Experimental Results
4.2.1 Given the high cost associated with fine-tuning a LLM, is it
possible to achieve comparable performance in the RCA task using a
vanilla LLM model without fine-tuning? (RQ1). Table 1 presents the
effectiveness of our in-context learning approach using vanilla GPT
models. We conducted a comparison based on four GPT backbone
models against four fine-tuned models, including CodeGen, OPT,
Bloom and GPT3, on a training set of 20,000 examples. Due to the
high demand for GPU resources in fine-tuning GPT models, we
could only fine-tune the models that smaller than GPT-3 model
with our dataset. We employed an in-context learning model with a
few-shot examples setting, allowing a maximum of 20 instances, as
it demonstrated superior performance on our development dataset
compared to other configurations. From the results, we can con-
clude the following: 1) Our GPT-4 model shows remarkable perfor-
mance, outperforming CodeGen, OPT, and Bloom by 63.85%, 18.15%,
and 18.21% respectively, across six metrics on average. It also ex-
ceeds the GPT-3 fine-tuned model by 24.77%. Notably, it achieves
a 38.22% performance improvement in ROUGE-L and 7.50% in the
Nubia metric, showcasing its superior performance compared to
the fine-tuned LLM for root cause analysis. 2) The performance of
GPT-35-turbo still falls short of the fine-tuned model, indicating
that the in-context learning approach still relies on the potency of
the LLM to fully leverage the in-context examples. 3) GPT-4-32K
achieves results similar to the GPT-4 model, which can handle a
maximum of 8K input tokens. This is primarily because we utilize
20 in-context examples, which do not exhaust the 8K input limit of
the GPT-4 model. 4) The OPT and Bloom models notably exceeded
the performance of the CodeGen model and even slightly surpassed
GPT-3, with improvements of 5.39% and 5.44% respectively. This
enhanced performance can be largely attributed to the distinct
training methodologies we implemented.

We carried out significance testing for our proposed model as
well. In analyzing the Rouge-L scores and comparing the GPT-4
model with baseline models, we were able to confidently reject the
null hypothesis (H0) because the p-value is significantly lower than
0.05. For instance, the p-value when comparing our GPT-4 model
to the fine-tuned GPT-3 model stands at 1.64e-11. Such a result
strongly suggests that the observed differences in performance are
not just random occurrences, but are due to fundamental differences
in the models themselves.

4.2.2 Is it feasible to employ a traditional retrieval augmented ap-
proach to enhance the performance of a vanilla GPT model in the RCA
task? (RQ2). To demonstrate the superiority of in-context learning,
we conducted a comparison with the traditional retrieval augmen-
tation method, which involved chunking historical incident details.
In this process, we combined incident details, including their title,
summary, and root cause. Subsequently, we split these incidents
into chunks, each containing 128 tokens, and constructed a retrieval
index using the same sentence transformer model. For each new
incident, we retrieved the top-k most relevant chunks from the
retrieval corpus, and we experimented with four different chunk

number settings, varying from 10 to 40 chunks. The performance
of the chunked retrieval method was then compared to that of our
in-context learning model, and the results are shown in Table 2. Our
findings revealed that our in-context learning model outperformed
the chunked retrieval model. With 30 shots, our model achieved
an average improvement of approximately 22.37% across all six
metrics9. Additionally, we observed that the performance of the
chunked retrieval model consistently increased until the chunk size
reached 30, but it started to decline for chunk sizes larger than 30.

4.2.3 How does the in-context examples help the vanilla LLM in
root cause analysis task? (RQ3). In Table 3, we conducted a com-
parison between the results of the zero-shot model and in-context
learning models using 20 in-context examples, based on the four
GPT baseline models. The findings reveal a substantial performance
improvement with the in-context examples, showing significant
gains of 49.69% and 51.31% for the GPT-4 and GPT-4-32K mod-
els, respectively. When comparing to the zero-shot model with
the GPT3 fine-tuned model, we observe a performance drop of
approximately 18.89%. However, with 20 in-context examples, we
achieve an improvement of 24.77% over the fine-tuned model. Sim-
ilar trends are seen for the GPT-35-turbo and Text-Davinci-003
models, with performance improvements of 25.53% and 35.56%,
respectively, compared to the zero-shot model. Additionally, we
noticed that the performance improvement for the two semantic
metrics, BERTScore and Nubia, is notably smaller compared to the
lexical metrics, particularly for the two GPT3.5 models. Nonetheless,
the GPT-4 models manage to achieve a noteworthy 30% or higher
performance gain in the Nubia metric compared to the GPT3.5 mod-
els, which show only 2-3 times less improvement. This underscores
the superior ability of the GPT-4 models to enhance overall root
cause analysis task through the utilization of in-context examples.

4.2.4 Does having more in-context examples result in better per-
formance? (RQ4). To address the research question, we initially
employed the GPT-4 model on various few-shot settings, ranging
from 0 to 40 shots. The results are presented in Figure 6, with lexical
metrics displayed in Figure 6a, and semantic metrics depicted in
Figure 6b. We discovered that both lexical and semantic metrics
achieved optimal performance when the number of shots reached
20. Moving from 0-shot to 10 shots, we observed a significant im-
provement of 46.12% on average across all the metrics. However,
increasing the shots from 5 to 10 only resulted in a marginal 2.12%
improvement, and further increasing the shots to 20 showed an
even smaller improvement of 0.18%. Beyond 20 shots, we noticed
some performance degradation, likely due to the inclusion of more
irrelevant examples when using too many in-context examples.

Additionally, Table 4 presents a comparison between fixed 20-
shot examples and full prompts that fill up to the token limit of
the LLMs. It is evident that all the models exhibited worse perfor-
mance when too many examples were included in the prompt. For
instance, the GPT-4-32K model had an average of approximately
160 in-context examples, which proved to be sufficient to include
both relevant and irrelevant examples. The presence of irrelevant
examples had a detrimental impact, causing a performance decrease
of around 10.2%. One important observation is that the average

9Due to space limitations, we only presented four metrics in Table 2

Zhang et al.

ROUGE-L ROUGE-1 METEOR GLEU BERTScore Nubia

CodeGen 10.32 14.26 11.78 3.39 81.45 35.13
OPT 15.75 19.12 16.33 6.14 83.09 42.65
Bloom 14.68 18.81 17.67 6.46 83.01 40.94

GPT3 Fine-tuned 14.39 17.18 16.16 5.83 82.27 40.91

GPT-35-turbo w/ ICL 12.33 17.47 17.38 4.49 81.84 37.28
Text-Davinci-003 w/ ICL 18.01 23.72 19.51 5.70 84.50 43.13

GPT-4 w/ ICL 19.89 26.08 22.40 6.37 84.91 43.98
GPT-4-32K w/ ICL 19.86 26.05 22.41 6.39 84.96 44.19

Table 1: Comparison between fine-tuned model and in-context learning models w/o fine-tuning

(a) Lexical Metrics (b) Semantic Metrics

Figure 6: Performance for different few-shot examples

ROUGE-L METEOR GLEU Nubia

Chunked (10 shots) 13.87 17.92 4.90 38.48
Chunked (20 shots) 14.01 17.31 4.77 39.88
Chunked (30 shots) 14.22 17.50 4.93 39.73
Chunked (40 shots) 14.01 17.11 4.73 40.18

In-context Examples 19.89 22.4 6.37 43.98

Table 2: Comparison between hunked incidents and in-
context examples

number of in-context examples for the two GPT3.5 models is ap-
proximately 17.0, which is even lower than the 20-shots setting.
However, some samples might still contain significantly larger in-
context examples than the 20-shots setting, which could potentially
impact the performance due to the presence of irrelevant examples.

4.2.5 How does the performance differ between highly relevant in-
context examples and irrelevant (random) examples? (RQ5). Figure 7
presents the comparison between the most relevant incidents and
random incidents, both consisting of 20 in-context incident exam-
ples. It is evident that using the most relevant examples leads to
a considerable performance improvement of approximately 41.2%
when compared to randomly selected incidents that lack any se-
mantic relevance to the current incident. Notably, the ROUGE-L

metric exhibits the most significant improvement, showing a re-
markable 64.93% boost, while BertScore, a metric with minimal
variation between different methods, demonstrates a more mod-
est 1.9% difference. Additionally, Nubia shows an improvement of
around 17.6%, albeit the improvement for lexical metrics appears
to be more significant than for semantic metrics. The reason for
this observation can be attributed to two factors. Firstly, lexical
metrics tend to have relatively lower values, which can amplify
the percentage change. Secondly, lexical metrics heavily rely on
word-level matching, favoring incidents that share more similar
expressions, thereby providing a greater advantage in performance
improvement. Moreover, when comparing the random examples
to the zero-shot model in Table 3, we observe a 5.9% performance
improvement, which is significantly lower than the 49.7% improve-
ment achieved on relevant examples. These results indicate that
the relevance of the in-context example contributes more than its
functionality as a task exemplar in the RCA task.

4.2.6 How does the ordering of in-context examples affect the per-
formance? (RQ6). Once the relevant incidents have been retrieved,
a remaining research question is how to best arrange the order of
these examples for achieving the best performance. To assess the
impact of different ordering methods for the in-context examples,
we conducted three experiments. Initially, we sorted the examples
in descending order based on their relevance scores. Next, we tried

ROUGE-L ROUGE-1 METEOR GLEU BERTScore Nubia

GPT-35-turbo Zero-shot 8.25 13.64 14.03 3.21 80.60 33.78
GPT-35-turbo w/ ICL 12.33 17.47 17.38 4.49 81.84 37.28

%gain for GPT-35-turbo +49.45% +28.08% +23.88% +39.88% +1.54% +10.36%

Text-Davinci-003 Zero-shot 11.08 16.77 14.39 3.62 82.63 37.81
Text-Davinci-003 w/ ICL 18.01 23.72 19.51 5.70 84.50 43.13

%gain for Text-Davinci-003 +62.55% +41.44% +35.58% +57.46% +2.26% +14.07%

GPT-4 Zero-shot 10.27 16.40 16.21 3.71 81.95 33.33
GPT-4 w/ ICL 19.89 26.08 22.40 6.37 84.91 43.98

%gain for GPT-4 +93.67% +59.02% +38.19% +71.70% +3.61% +31.95%

GPT-4-32K Zero-shot 10.13 16.15 16.10 3.68 81.93 32.99
GPT-4-32K w/ ICL 19.86 26.05 22.41 6.39 84.96 44.19

%gain for GPT-4-32K +96.05% +61.30% +39.19% +73.64% +3.70% +33.95%

Table 3: Comparison between zero-shot model and in-context learning model with 20-shot examples

ROUGE-L ROUGE-1 METEOR GLEU BERTScore Nubia

GPT-35-turbo 20 shots 12.33 17.47 17.38 4.49 81.84 37.28
full prompt (≈ 17.0 shots) 11.03 16.28 15.91 4.13 81.41 36.68

Text-Davinci-
003

20 shots 18.01 23.72 19.51 5.70 84.50 43.13
full prompt (≈ 17.0 shots) 17.73 23.49 19.53 5.45 84.44 42.41

GPT-4 20 shots 19.89 26.08 22.40 6.37 84.91 43.98
full prompt (≈ 37.6 shots) 17.18 23.13 19.90 5.41 84.37 41.43

GPT-4-32K 20 shots 19.86 26.05 22.41 6.39 84.96 44.19
full prompt (≈ 160.0 shots) 17.13 23.09 19.66 5.29 84.36 41.48

Table 4: Comparison between in-context examples with 20-shots and full prompt examples

Criteria GPT3 Fine-tuned Text-Davinci-003 GPT-4 GPT-4-32K
Mean Median Mean Median Mean Median Mean Median

Correctness 1.72 1 1.69 (-1.9%) 1 2.47 (+43.5%) 2 2.13 (+23.6%) 2
Readability 4.34 5 4.47 (+3.0%) 5 4.72 (+8.7%) 5 4.59 (+5.8%) 5

Table 5: Correctness and readability scores assigned by the incident owners

Title BreakFix | Networking | Device: Cable Reseat is blocked and needs assistance.

Summary Parent GDCO Task (Sev 3): xxx Blocking Description: Report Incorrect Ops Model for Servicing Vendor Dell for ... Block Reason: xxx Logs
Attached? False KB Article Number: Did Server show POST? Alias of Senior Tech

Groud
Truth

Data is inherited incorrectly due to a bug based on other factors from spares and sourcing or other attributes about the Rack itself

Model Pre-
diction

Data was inherited incorrectly due to a software bug that was based on other factors from spares and sourcing or other attributes about the
Rack itself.

In-context
Examples

BreakFix | Networking | Cable Reseat is blocked and needs assistance. The incident report refers to a Sev 3 issue with the Parent xxx Task with
a blocking task, related to the Operations Model being wrong for the xxx. The Block Reason is provided, but no xxx logs were attached. The
incident report also lists the Device Name, Device Type, Rack, Slot and other details for reference. The incident was caused by the incorrect
inheritance of data due to a bug. This bug was influenced by other factors such as spares, sourcing, or attributes of the Rack itself.

Table 6: Case study of our in-context learning approach.

the ascending order, and finally, we experimented with a random-
ized order. The results of these three ordering settings for all six
metrics are depicted in Figure 8, with a chosen in-context exam-
ple size of 20. We observe that the order had minimal impact on

performance. On average, the standard variance among the three
settings was 0.12 across the six metrics. Notably, we observed a
slightly larger variance for the Nubia metric, reaching up to 0.55,
while all other metrics had a standard variance of less than 0.1.

Zhang et al.

Figure 7: Comparison between relevant and random in-
context examples

Figure 8: Comparing different orders of the in-context exam-
ples

4.3 Human Evaluation
To showcase the human evaluation results, we conducted a random
selection of 28 incidents from our incident pool. These incidents
are spread across 11 different owning services, covering 8 different
countries, and involving 18 distinct individual incident owners. Ta-
ble 5 showcases the human evaluation results, which were carried
out by incident owners to ensure the accuracy of the assessments.
The evaluations were based on two metrics: correctness and read-
ability. The correctness metric aimed to determine whether the
model offered helpful and relevant suggestions compared to the
actual root-cause of the incidents. On the other hand, the readability
metric assessed how easily readers could understand the generated
text. The scoring system used ranged from 1 to 5, with 5 being the
highest rating and 1 being the lowest. We utilized three in-context
learning models (Text-davinci-003, GPT-4, and GPT-4-32K) incorpo-
rating 20-shot examples for comparison with the fine-tuned GPT3
model. The results revealed that the GPT-4 model, enhanced with in-
context examples, significantly outperformed the fine-tuned GPT3
model, scoring 43.5% higher in terms of correctness. Moreover, the
GPT-4 model exhibited an 8.7% improvement in readability. The
comparison also indicated that the Text-davinci-003 model slightly

underperformed compared to the fine-tuned model by 1.9%. This
suggests that the in-context learning approach benefits from a
more powerful model. Additionally, the use of only 20-shot exam-
ples hindered the GPT-4-32K model from leveraging its advantage
of accommodating large prompt inputs, resulting in even poorer
performance than the GPT-4 model.

We also discovered that the majority of the lowest-scoring inci-
dents are connected to incidents that have a responsible incident
linked to them. This linkage may lead to inaccuracies in the inci-
dent descriptions. Quoting a comment from the incident owner, “I
guess when dependency has issues, this shouldn’t be treated as a
normal case for the service in question". If we exclude such cases,
we observe that the average score increases to 2.95, and nearly
two-thirds (58.3%) of the incidents achieve a score greater than 3.
Only 12.5% of incidents receive a score of 1. Moreover, crafting an
entirely precise description of the root cause at the moment an
incident is created is a non-trivial and challenging task. Our goal
is to provide engineers with accurate guidance, so even a partially
correct recommendation, such as a score of 3 out of 5, would be
tremendously beneficial.

4.4 Case Study
Table 6 presents a case study showcasing the application of our pro-
posed method using real-world incident data. The incident involves
a problem referred to as the "Cable reseat is blocked" issue. The root
cause of this problem was traced back to incorrect data inheritance,
which occurred due to a bug related to spares and sourcing fac-
tors. Our model’s prediction closely aligned with the ground truth,
though the wording may vary slightly. By examining examples
from our retrieval corpus, we identified similar incidents like the
one displayed in Table 6. The example shares the same issue but
differ in their parent task and description. Nevertheless, our model
effectively leveraged the root cause from these in-context examples
to accurately predict the correct root cause for the given incident.
This case serves as an illustration of the significance of using sim-
ilar in-context examples. In contrast to fine-tuning the LLM, our
approach relies entirely on extracted incidents, without concern for
the generation of false information or reliance on outdated facts.

5 DISCUSSION
We address the limitations and future directions of our approach
in the discussion section. Our approach has a limitation that its
effectiveness heavily relies on the coherence of root causes among
similar incidents. Consequently, we face challenges in dealing with
completely new incidents where the same issue has not been previ-
ously resolved in other cases. This limitation arises from the fact
that historical incident data cannot offer the necessary support for
causal reasoning, especially when online diagnosis information is
unavailable. However, practical systems often experience repeated
faults for two primary reasons. Firstly, these faults can emerge
from unavoidable issues like hardware malfunctions or unusual
operational behaviors. For example, a connection timeout between
two services might be caused by a disrupted network connection
or a task in one service becoming unresponsive. Such issues can
lead to problems reoccurring periodically. Secondly, the recurrence
of these faults is often because implementing a fix in the product,

Figure 9: Relevance distribution of historical incidents

or having customers apply a patch, usually takes a considerable
amount of time. This delay can span several weeks to months, con-
sequently extending the time it takes to fully resolve these faults.
To uncover the ratio of proportion of recurring versus novel in-
cidents, we compared the relevance of current incidents against
our historical incident corpus. Figure 9 illustrates the relevance
distribution based on relevance scores for the most relevant inci-
dent. We discovered that 18.8% of incidents can find highly relevant
incident from the history, with relevance scores exceeding 0.8. In
contrast, 10.7% of incidents were entirely unique, characterized by
their highest relevance scores falling below 0.2. Another limitation
is that our approach does not consider the age of the incident when
referencing in-context examples. Therefore, when an incident’s root
cause becomes outdated, our current design lacks the capability to
prioritize the new incident as the correct reference.

For future work, we can investigate how to incorporate online
diagnosis tools into the approach and leverage LLMs to conduct
step-by-step causal reasoning using the information obtained from
these online tools. Furthermore, we can enhance the reasoning
process by supplementing it with domain knowledge derived from
the detailed diagnosis logs of historical incidents.

6 RELATEDWORK
6.1 LLMs in Software Engineering
In recent year, the emergence of LLMs has opened up new prospects
in the software systems field, enabling various tasks such as pro-
gram synthesis [18, 36], log analysis [34], vulnerability repair [13],
software testing [40], and incident management [1, 9]. For example,
Jain et al. [18] propose an approach that enhances large language
models with post-processing steps based on program analysis and
synthesis techniques, resulting in improved performance of pro-
gram synthesis. Mastropaolo et al. design LANCE system [34] that
utilizes fine-tuned T5 to automatically generate logging statements
for Java methods. Similarly, VulRepair [13] tool automatically sug-
gests vulnerability fixes with a fine-tuned T5 model based on their
vulnerability repair datasets. In constrast to previous studies, our
approach harnesses the cutting-edge LLMs to generate root causes
without requiring model fine-tuning, relying instead on the in-
context learning method.

6.2 Incident management
Incident management within large cloud services has emerged as
a popular research topic in the systems and software engineering
communities. Several empirical studies have analyzed incidents
and outages in production systems, specifically delving into inci-
dents caused by particular types of issues [2, 14, 24, 48] or issues
arising from specific services and systems [15, 30, 44]. Moreover,
researchers have explored the use of machine learning and data-
driven techniques to automate various aspects of the incident life-
cycle, including triaging [3, 7, 8], diagnosis [5, 33, 35], and mitiga-
tion [19]. For root-cause analysis tasks, several research studies
(e.g., TraceRCA [27], CIRCA [26], DiagFusion [45], Eadro [23]) have
been proposed for anomaly detection and root cause positioning.
While these methods are useful to locate either categories of the
root causes [23, 45] or to identify the potential problematic mi-
croservice [26, 27] to investigate, these does not provide a detailed
description of the root cause. In contrast, we propose to generate
the actual descriptive root cause information to guide On-Call Engi-
neers (OCEs) into right direction by leveraging the power of LLMs.
More specifically, our approach is designed as a generative task,
which sets it apart from traditional RCA methodologies that treat
problems as classification tasks. These traditional methods typically
rely on predefined features to predict the root cause label from a
fixed set of predefined root cause labels.

Recently, Ahmed et al. [1] proposed a method to generate the
textual root cause by fine-tuning GPT models using historical inci-
dent data. However, fine-tuning these models on state-of-the-art
language models like GPT-4 poses significant challenges, such as re-
quiring substantial GPU resources and incurring high maintenance
costs for customizing the LLM for future use. Recently, Chen et al.
[9] developed a retrieval-augmented LLMmodel for root cause anal-
ysis but limited its application to specific service data, demanding
domain-specific knowledge. In contrast, our approach leverages in-
context learning with a substantial dataset comprising over 100,000
incidents. This allows us to support On-Call Engineers (OCEs) in re-
solving incidents without requiring fine-tuning or specific domain
expertise in a broad context.

7 CONCLUSION
In this paper, we present the effectiveness of utilizing cutting-edge
language models like GPT-4 in root cause analysis task. We pro-
pose an in-context learning method that integrates historical in-
cident knowledge into vanilla language models without the need
for fine-tuning. Through extensive experiments on a large-scale
incident dataset consisting of over 100,000 production incidents, we
demonstrate that our in-context learning approach outperforms the
fine-tuned GPT-3 model by an average of 24.8% across six metrics.
Additionally, the incorporation of in-context examples results in an
impressive 49.7% improvement over the zero-shot model. Human
evaluation involving incident owners also indicates promising en-
hancements compared to the fine-tuned model, achieving a 43.5%
improvement in correctness. Considering the challenges of fine-
tuning such massive incident data, our work provides valuable
insights into utilizing cutting-edge language models effectively in
our incident management domain without the necessity for fine-
tuning.

Zhang et al.

REFERENCES
[1] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao

Zhang, and Saravan Rajmohan. 2023. Recommending Root-Cause and Mitiga-
tion Steps for Cloud Incidents using Large Language Models. arXiv preprint
arXiv:2301.03797 (2023).

[2] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany.
2018. An Analysis of {Network-Partitioning} Failures in Cloud Systems. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
51–68.

[3] Amar Prakash Azad, Supriyo Ghosh, Ajay Gupta, Harshit Kumar, Prateeti Mo-
hapatra, Lena Eckstein, Leonard Posner, and Robert Kern. 2022. Picking Pearl
From Seabed: Extracting Artefacts from Noisy Issue Triaging Collaborative Con-
versations for Hybrid Cloud Services. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36. 12440–12446.

[4] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for
MT evaluation with improved correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evaluation measures for machine
translation and/or summarization. 65–72.

[5] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier Midy, and
Mathru Janakiraman. 2020. DeCaf: Diagnosing and Triaging Performance Issues
in Large-Scale Cloud Services. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[6] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, et al. 2022. Improving language models by retrieving
from trillions of tokens. In International conference on machine learning. PMLR,
2206–2240.

[7] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and D.
Zhang. 2019. An Empirical Investigation of Incident Triage for Online Service
Systems. In 2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 111–120.

[8] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang, and D. Zhang.
2019. Continuous Incident Triage for Large-Scale Online Service Systems. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 364–375.

[9] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie
Cao, Xuedong Gao, Hao Fan, Ming Wen, et al. 2023. Empowering Practical Root
Cause Analysis by Large Language Models for Cloud Incidents. arXiv preprint
arXiv:2305.15778 (2023).

[10] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Towards intelligent incident
management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1487–1497.

[11] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Ste-
fanie Jegelka. 2020. Debiased contrastive learning. Advances in neural information
processing systems 33 (2020), 8765–8775.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[13] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 935–947.

[14] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and Yongming Wu. 2018. An empirical study on crash recovery
bugs in large-scale distributed systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 539–550.

[15] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. 2022. How to
fight production incidents? an empirical study on a large-scale cloud service. In
Proceedings of the 13th Symposium on Cloud Computing. 126–141.

[16] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang.
2020. Retrieval augmented language model pre-training. In International confer-
ence on machine learning. PMLR, 3929–3938.

[17] Daniel S Hirschberg. 1977. Algorithms for the longest common subsequence
problem. Journal of the ACM (JACM) 24, 4 (1977), 664–675.

[18] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: Large lan-
guage models meet program synthesis. In Proceedings of the 44th International
Conference on Software Engineering. 1219–1231.

[19] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1410–1420.

[20] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[21] Hassan Kane, Muhammed Yusuf Kocyigit, Ali Abdalla, Pelkins Ajanoh, and
Mohamed Coulibali. 2020. NUBIA: NeUral Based Interchangeability Assessor
for Text Generation. arXiv:2004.14667 [cs.CL]

[22] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906 (2020).

[23] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. 2023.
Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-
source Data. arXiv preprint arXiv:2302.05092 (2023).

[24] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, andHaryadi S Gunawi.
2016. TaxDC: A taxonomy of non-deterministic concurrency bugs in datacenter
distributed systems. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems.
517–530.

[25] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[26] Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and
Dan Pei. 2022. Causal inference-based root cause analysis for online service
systems with intervention recognition. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 3230–3240.

[27] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,
Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. 2021. Practical root cause
localization for microservice systems via trace analysis. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS). IEEE, 1–10.

[28] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
In Text summarization branches out. 74–81.

[29] Chin-Yew Lin and Franz Josef Och. 2004. Orange: a method for evaluating auto-
matic evaluation metrics for machine translation. In COLING 2004: Proceedings
of the 20th International Conference on Computational Linguistics. 501–507.

[30] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019. What bugs
cause production cloud incidents?. In Proceedings of the Workshop on Hot Topics
in Operating Systems. 155–162.

[31] Ruibo Liu, Guoqing Zheng, Shashank Gupta, Radhika Gaonkar, Chongyang
Gao, Soroush Vosoughi, Milad Shokouhi, and Ahmed Hassan Awadallah. 2022.
Knowledge infused decoding. arXiv preprint arXiv:2204.03084 (2022).

[32] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[33] Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang,
and Zhe Wang. 2014. Correlating events with time series for incident diagnosis.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. 1583–1592.

[34] Antonio Mastropaolo, Luca Pascarella, and Gabriele Bavota. 2022. Using Deep
Learning to Generate Complete Log Statements. In Proceedings of the 44th Inter-
national Conference on Software Engineering (ICSE ’22). 2279–2290.

[35] Vinod Nair, Ameya Raul, Shwetabh Khanduja, Vikas Bahirwani, Qihong Shao,
Sundararajan Sellamanickam, Sathiya Keerthi, Steve Herbert, and Sudheer Dhuli-
palla. 2015. Learning a hierarchical monitoring system for detecting and di-
agnosing service issues. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2029–2038.

[36] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. Codegen: An open large language model
for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[37] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[39] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[40] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2023. Software Testing with Large Language Model: Survey, Landscape,
and Vision. arXiv preprint arXiv:2307.07221 (2023).

[41] BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni,
François Yvon, et al. 2022. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100 (2022).

[42] Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. 2022.
Memorizing transformers. arXiv preprint arXiv:2203.08913 (2022).

[43] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

https://arxiv.org/abs/2004.14667
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1908.10084

2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[44] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U Jain, and Michael Stumm. 2014. Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed {Data-
Intensive} Systems. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). 249–265.

[45] Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng Zhang, Sibo
Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin, et al. 2023. Robust
Failure Diagnosis of Microservice System through Multimodal Data. arXiv
preprint arXiv:2302.10512 (2023).

[46] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. [n. d.].
Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.
org/abs/2205.01068 ([n. d.]).

[47] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav
Artzi. 2019. Bertscore: Evaluating text generation with bert. arXiv preprint
arXiv:1904.09675 (2019).

[48] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues, Shan Lu,
and Ding Yuan. 2021. Understanding and detecting software upgrade failures
in distributed systems. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles. 116–131.

	Abstract
	1 Introduction
	2 Background
	2.1 Incident Root Cause Analysis
	2.2 The Promise of LLMs
	2.3 Research Questions

	3 Methodology
	3.1 Overall Architecture
	3.2 Data Preparation
	3.3 In-context Example Extraction
	3.4 Root Cause Generation

	4 Experiment
	4.1 Experiment Setup
	4.2 Experimental Results
	4.3 Human Evaluation
	4.4 Case Study

	5 Discussion
	6 Related Work
	6.1 LLMs in Software Engineering
	6.2 Incident management

	7 Conclusion
	References

