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ABSTRACT
Large scale cloud services use Key Performance Indicators (KPIs)
for tracking and monitoring performance. They usually have Ser-
vice Level Objectives (SLOs) baked into the customer agreements
which are tied to these KPIs. Dependency failures, code bugs, in-
frastructure failures, and other problems can cause performance
regressions. It is critical to minimize the time and manual effort
in diagnosing and triaging such issues to reduce customer impact.
Large volume of logs and mixed type of attributes (categorical,
continuous) in the logs makes diagnosis of regressions non-trivial.

In this paper, we present the design, implementation and experi-
ence from building and deploying DeCaf, a system for automated
diagnosis and triaging of KPI issues using service logs. It uses ma-
chine learning along with pattern mining to help service owners
automatically root cause and triage performance issues. We present
the learnings and results from case studies on two large scale cloud
services inMicrosoft where DeCaf successfully diagnosed 10 known
and 31 unknown issues. DeCaf also automatically triages the iden-
tified issues by leveraging historical data. Our key insights are that
for any such diagnosis tool to be effective in practice, it should a)
scale to large volumes of service logs and attributes, b) support
different types of KPIs and ranking functions, c) be integrated into
the DevOps processes.
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1 INTRODUCTION
The move from boxed software to cloud services has changed how
these products are built and deployed. It has simplified critical
aspects of software development like shipping updates and compat-
ibility with client hardware. This has also introduced a new role of
DevOps where the service owners are responsible and accountable
for meeting Service Level Objectives (SLOs) on Key Performance
Indicators (KPIs). Large scale cloud services companies like Ama-
zon, Facebook, Google and Microsoft have 100s of cloud services
powering consumer and enterprise apps and websites. These cloud
services use KPIs like latency, failure rate, availability, uptime, etc.
to continuously monitor service health and user satisfaction. For
a lot of commercial services, meeting SLOs with respect to these
KPIs is often baked into the customer contracts and tied to service
revenue. For instance, Amazon AWS Compute gives 10% service
credit if uptime is less than 99.99% and 30% service credit if uptime
is less than 99.0% [2]. There can also be indirect impact of regres-
sions in performance, for instance, a 400 ms increase in latency
causes about 0.5% drop in Google search volume [16].

Root causing and diagnosing performance issues in distributed
systems is a well studied problem in the Systems and Software
Engineering communities. Existing work on log based performance
diagnosis for services mainly relies on either anomaly detection
[15, 19] or association rule mining based methods [6, 33]. However,
DeCaf is not comparable to these methods because of several rea-
sons. Anomaly detection methods cannot scale to high dimensional
and high cardinality data. For instance, [15, 19] have used anomaly
detection on 100 numerical counters, while we have applied De-
Caf on data with categorical attributes with up to 1M cardinality.
Similarly, association rule mining based methods are not applicable
to data with continuous attributes and KPIs, for instance, latency.
Also, high dimensional and cardinality data will lead to a combina-
torial explosion. Further, anomaly detection based methods also fail
to detect pre-existing performance issues. We designed and built
DeCaf with these limitations in mind. It is an end-to-end system for
diagnosing and triaging performance issues in large scale services.
We deployed and integrated it into the DevOps processes for 2 large
scale cloud services in Microsoft, where it was able to successfully
diagnose 31 unknown issues.
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Contributions: In this work, we designed and implemented
DeCaf, a generic system for automated diagnosis and triaging of
KPI issues. Figure 1 shows the overall workflow of DeCaf. Using
existing service logs, it is able to diagnose known and unknown
issues in 2 large scale services resulting in significant time savings
and minimizing customer impact. It is also able to handle large
volumes and large cardinality of logs as well as different types of
KPIs. Lastly, it builds a knowledge base of results over time and can
automatically triage newly detected issues. We share the results
and learnings from deploying and evaluating DeCaf on 2 cloud
services in Microsoft. We make the following contributions in this
paper:

(1) We propose DeCaf, an end-to-end system for automatic diagnosis
and triaging of performance issues in large scale cloud services
from service logs.

(2) It introduces a novel approach which combines machine learning
and pattern mining for diagnosing and triaging different types
of KPI issues from large volume and high cardinality logs.

(3) We have integrated DeCaf into the DevOps processes ofMicrosoft
starting from data collection to reporting and alerting DevOps
engineers.

(4) We have deployed DeCaf on 2 large cloud scale services in Mi-
crosoft. The results confirm the usefulness of the system both in
terms of diagnosing 41 known and unknown performance issues
and, also, significantly reducing the manual effort in diagnosing
performance issues.

The rest of the paper is organized into following sections: In Section
2, we discuss the challenges in diagnosing and triaging of perfor-
mance issues in large scale services. In Section 3, we discuss the
related work. We provide an overview of the DeCaf system in Sec-
tion 4. In Section 5, we describe our approach in detail. In Section
6, we describe the implementation details. In Section 7, we present
the results from case studies on 2 large scale cloud services in Mi-
crosoft. In Section 8, we do an experimental evaluation of DeCaf
for accuracy and runtime performance. We discuss the applicability
along with future work in Section 9. Finally, we conclude with a
summary in Section 10.

2 CHALLENGES
In Microsoft, we operate O(100) external cloud services power-
ing several collaboration and cloud compute services running on
O(100K) servers with O(10K) developers checking in code every
week. This results in a huge amount of code, dependency and in-
frastructure churn which can lead to various kind of performance
regressions. Diagnosing such issues using existing techniques is
not only time consuming but also requires custom dashboards and
manual investigations. Moreover, there could be important issues
which are left undiscovered, as we show in our case studies. We
studied several large scale cloud services in Microsoft and made
the following observations regarding the diagnostic practices and
challenges:

(1) Logging: These services log key request attributes and metrics.
The attributes are of mixed types (categorical, continuous) and
contain both structured and unstructured information. Attributes
which are useful for monitoring and large-scale diagnosis (such
as backend server, component latencies, etc.) are logged in a

structured manner. Information like exception stack traces used
for diagnosing request level problems are serialized and logged
in an unstructured format. These services produce massive vol-
umes of logs, up to O(1TB) per hour. So, the logs are aggregated
periodically and stored in a central HDFS like massive data store
with a Hadoop like map reduce system for data analytics.

(2) Performance regressions: Performance degradation can be
due to various reasons, such as code bugs, infrastructure fail-
ure or overload, design gaps and dependency failures. These can
also be local or global depending on various factors such as the
root cause, deployment scope, etc. For instance, a hardware fail-
ure in a data center can increase the load on the other servers,
degrading the request latency for that data center. Similarly, a
thread contention bug can impact the performance of the entire
service.

(3) Diagnosis: DevOps engineers usually do performance diagnosis
for two purposes:

(a) Reactive: To resolve an issue discovered through active moni-
toring or customer complaints.

(b) Proactive: To proactively improve the service performance
and address performance gaps / bugs in the current codebase.

For both proactive and reactive diagnosis, the service owners use
custom KPI dashboards and the logs. Based on the issue, DevOps
engineers might use the dashboard to manually narrow down the
scope of the regression. Subsequently, they run custom queries
to extract the request logs and, also, determine the impact of
the issue. Sometimes, the diagnosis can also require additional
logging or gathering performance counters from other sources.

Challenges: We made the following key observations about the
challenges faced in diagnosing performance issues in large scale
cloud services:

(1) Triaging - Triaging is the process of prioritizing and determining
which issue should be investigated and subsequently fixed. This
is critical since it can take anywhere from hours to days to root
cause and fix an issue. DevOps engineers consider various factors
while triaging issues:

(a) What is the impact of the issue? How many customers or
requests are being impacted?

(b) Is the issue localized or global?
(c) Is it a known issue? If yes, has the impact increased?
(d) Has this issue occurred in the past?
Triaging performance issues is non-trivial because engineers
have to estimate the scope and impact of issues by taking into
account historical data.

(2) Volume of logs - A large scale service can generate anywhere
from gigabytes to 100s of terabytes of logs every day. Manual
querying and processing of logs for root causing issues is not
scalable. Also, it is very expensive in terms of time and space to
load such large amount of data in tools like Excel or in an SQL
database.

(3) High cardinality attributes - Log attributes from large scale
services usually have high cardinality, making it infeasible to
manually explore various combinations for root causing issues.
For instance, in the Orion service, which is one of the case studies
for DeCaf, there are more than O(1M) organizations. The KPIs
can regress for a subset of these organizations which makes it
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Figure 1: Diagnosis and triaging workflow in DeCaf

Attribute Type Cardinality
Organization Categorical ~1M
Server Categorical ~10K
ApiPath Categorical ~1K
AppCategory Categorical ~10
AppId Categorical ~100
CapacityUnit Categorical ~100
UserAgent Categorical ~100
DataCenterTarget Categorical ~10
DataCenterOrigin Categorical ~10
Forest Categorical ~10
UserCategory Categorical ~10
BuildVersion Categorical ~10
UserCache L1 Latency Continuous -
L2 Cache Latency Continuous -
LoadBalancer Latency Continuous -
Auth Latency Continuous -

Table 1: Sample attributes from the Orion logs

important to include such high cardinality data in diagnosing
regressions. In Table 1, we list the type of cardinality of the some
of the attributes from the Orion logs.

(4) Mixed attributes and KPI labels - Logs can contain both cate-
gorical and continuous features. For instance, in the Orion service
logs, we have both categorical features like backend, front end
machines, and continuous features like sub-component latencies.
Similarly, the log attributes for KPIs can also be categorical and
continuous. While latency is a continuous metric, request status
is a binary categorical variable (success or fail).

(5) Interpretability - It is easier for DevOps engineers to investi-
gate issues if the scope, performance impact and historical data is
provided. One of the key insights which enabled us to successfully
deploy DeCaf to multiple services within Microsoft is to make
the results interpretable both quantitatively and qualitatively.

3 RELATEDWORK
Leveraging machine learning techniques to perform diagnostics
on service logs has been the focus of much research over the past
couple of decades [5, 9, 34]. Bodik et. al [5] rely on anomaly signa-
tures of known issues along with regression models for diagnosing

failures in data centers. Chen et. al [9], use classification trees to
root cause failure rates in a large internet website like eBay. Co-
hen et. al [10] use Tree-Augmented Bayesian Networks to identify
combinations of system level metrics which are correlated with
non-compliance of SLOs. Nair et. al [24] using hierarchical detectors
with time series anomaly detection to diagnose issues. A combi-
nation of clustering and anomaly detection techniques for root
causing has also been proposed [12, 14]. However, these methods
are not feasible for high cardinality data. We distinguish our work
by proposing a simple end-to-end system which can a) handle het-
erogeneous and high cardinality O(1M) data, b) diagnose different
types of KPIs, c) can automatically rank and triage the discovered
issues, d) detect previously unknown issues.

A lot of prior work has also focused on analyzing raw service
logs to extract meaningful events and diagnose abnormal system
behavior. Xu et. al [32] jointly analyze source code and console
logs to extract features and perform anomaly detecting on these
feature collections. Deeplog [11] models the sequence of events
producing log files using LSTMs and constructs workflows to aid
in root causing when it is inferred that the log patterns have de-
viated from the trained model. LogCluster [29] groups together
log messages to construct representative log sequences thereby as-
sisting engineers in diagnosing failures. Distalyzer [23] consumes
two sets of logs, one with good performance and one with bad
performance to extract systems behaviors that diverge the most
across the two sets of logs and are correlated with bad system per-
formance. AUDIT [22] takes a slightly orthogonal path by setting
up lightweight triggers to identify the first instance of a problem
and then uses blame-proportional logging to when the problem
reoccurs. Zawawy et. al [35] propose a log reduction framework
which filters and interprets a subset of streaming log data in order
to perform root cause analysis. In this work, we diagnose issues
by using existing structured data logged by cloud services. It is
a reasonable constraint to work under because most large-scale
services log structured data to simplify monitoring, debugging and
analytics.

The empirical software engineering community has done a lot
of work on automated bug triaging and characterization. Tian et
al. [28] and Alenezi et al. [1] use textual features from bug reports
for identification of duplicate bug reports. Xia et al. [30] uses topic
modelling to assign the bug re-ports to the appropriate developer.
Lamkanfi et al. [20] extract textual features from the bug reports to
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predict the severity of the bug reports to assist in triaging. These
techniques are complementary to DeCaf since they are applicable
only after a detailed bug report has been filed in the bug tracker.
To the best of our knowledge, DeCaf is the first end-to-end system
which uses historical results for triaging the issues.

4 OVERVIEW
One of the major guiding principles while designing DeCaf was
to build a generic system using simple interpretable techniques so
that service owners can themselves own and deploy DeCaf. We
have deployed DeCaf to two large scale services in Microsoft, Orion
and Domino (name changed):

(1) Orion - Orion is a stateless routing service that proxies requests
to the correct backend / mailbox server (the one hosting the user’s
active mailbox database). It handles about O(100B) requests every
day and logs about O(100) attributes per request, generating
O(100) terabytes of logs daily. Request latency is a key metric in
Orion which impacts the latency of all clients.

(2) Domino - Domino is a global scale internet measurement plat-
form built for one of the major cloud providers. It is designed to
perform client-to-cloud path measurement from users around the
world to the first-party and third-party endpoints. Failure rate is
one of the KPIs for Domino since it is tied to service availability.

Goal: With DeCaf, our goal was to build a system which can auto-
matically help the DevOps engineers narrow down a performance
regression to a subset of requests. So, for each identified issue, it
outputs a root-cause which consist of a set of predicates along with
impact metrics and a triage category. These predicates help narrow
down a regression to a subset of log rows and columns which can
then be further used for mitigation of the issue. A predicate is a
boolean valued function defined as:

P(X ) → {true, f alse} (1)

Predicates can be defined for both continuous and categorical log
attributes, for example:

AuthLatency > 50ms → {true, f alse} (2)
Reдion = NorthAmerica → {true, f alse} (3)

A DeCaf result consists of the following data:
• Correlated predicate: Predicate correlated with performance
regression.

• Scope predicates: Predicates which define the scope of the re-
gression.

• Count of impacted requests in sampled data.
• Performance impact: Impact on the KPI.
• Triage result (r): r ∈ {new, existing, regressed, improved, re-
solved}

Example: To better understand the problem and the goals, here is
an actual incident from the Orion service which was root caused
using DeCaf:
In the Orion service, DeCaf discovered a latency regression in the
AN150C01 server rack which was causing 90,000% higher latency
than SLO for requests from offbox requests. On investigation, it

was root caused to an auth component which was not being logged
and was causing timeouts and errors. It was impacting the latency
of ~1 Billion requests worldwide daily. Here is the output of DeCaf
from this incident:
• Correlated predicate: Rack:AN150C01
• Scope predicates: {RequestType:Offbox ∧ LocDataCenter:AN
∧ CrossDataCenter:true}

• Requests impacted: ~1 Billion
• Latency impact: 4419ms
• Triage result: new

5 OUR APPROACH
In this section, we describe the details of DeCaf, which consists of
4 major steps: data preparation from the raw service logs, training
of ML models, rule extraction from the learnt models and triaging
of issues based on historical data. Out of these 4 steps, only the
data preparation and model training steps require one time manual
effort while deploying DeCaf for the first time.

5.1 Data preparation
Data sampling and feature selection is key to any machine learning
or data-mining based system. Cloud services can generate 100s of
terabytes of data every day and log hundreds of attributes. This
makes any manual or automated analysis challenging both in terms
of space and time. To solve this problem, we leverage data sampling
and feature selection.

5.1.1 Data pre-processing. Often the service logs are distributed
across multiple data streams. For instance, different components
of a service can write logs to different data stores while logging a
distinct correlation Id per request to help join the logs at a later
stage. So, as a one time step, service owners write queries for aggre-
gating / joining data from various streams/sources. Similarly, often
the data is serialized while being logged, so, we also de-serialize
the data into a structured schema. To handle missing values, we
replace any missing value in categorical attributes by a placeholder
("<EMPTY>") while for continuous attributes we use the median
value.

5.1.2 Feature selection. Not all features present in the service
logs are useful for root causing issues. For instance, features such
as Request Id or Correlation Id which uniquely identifies individ-
ual rows are not useful in root causing widespread issues. These
features can also have very high cardinality and can cause state
explosion. To be able to select the right features, we follow a hybrid
approach:
• DeCaf automatically classifies features into continuous and cat-
egorical types and measures the cardinality of the categorical
variables. It provides recommendations for pruning the high
cardinality features.

• Service owners further prune the features based on their domain
knowledge and the recommendations provided by DeCaf.

5.1.3 Stratification. Stratification is the process of dividing the
data into mutually exclusive, homogeneous and collectively exhaus-
tive subsets or classes. While it is possible to have multiple classes
in stratification, we only consider binary classes in this work since
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it supports diagnosis of all the KPIs we have seen in practice. We
divide the service requests into two classes:

(1) Positive: Requests showing anomalous behavior or violating the
performance SLO for the KPIs.

(2) Negative: Requests which meet the KPI SLOs.
The stratification criteria is determined by the SLO and is an input
to DeCaf. For instance, in Orion, based on the latency SLO of the
service, the criteria is:

C =

{
positive, RequestLatency > 5ms,

neдative, RequestLatency ≤ 5ms .
(4)

5.1.4 Sampling. The Orion and Domino services generate more
than 100 terabytes and 10 terabytes of logs every day, respectively.
Using all this data will result in performance bottlenecks both in
runtime and computational resources. There are several different
statistical methods of sampling data: random sampling, systematic
sampling, stratified sampling, cluster sampling, etc. In this work,
we considered random and stratified sampling of data:
• Random sampling: Data is randomly selected from the entire
population.

• Stratified sampling: Data from the positive and negative sub-
sets is randomly sampled separately within each of the strata.

We selected the sampling method based on two empirical observa-
tions:

(1) Class imbalance: Most production services operate within SLO
requirements most of the time. For instance, we observed only
0.1% requests missing the SLO in Orion.

(2) Target variable: Percentage metrics like failure rate are com-
puted on the entire population, so, we do random sampling of
data for such metrics. For absolute metrics like request latency,
we use stratified sampling.
Also, sampling the data improves efficiency in terms of runtime

and compute resources.

5.2 ML model training
Random forest models [7] have been effectively utilized for various
tasks such as image processing [27], churn prediction [31], intru-
sion detection [13]. In DeCaf, we use Random Forest models for
learning predicates which correlate with performance issues. It is
an ensemble machine learning method for classification and regres-
sion that operates by constructing a multitude of decision trees
[26]. For training the models, we use the KPI (latency, failure) as
the target labels and the rest of the log attributes as the features or
independent variables. Also, unlike conventional machine learning,
we do not use the trained models for prediction since the goal is
not to predict the KPI for future service requests. DeCaf analyzes
the trained models to extract predicates which can help localize
performance regressions.

Decision trees: A decision tree consists of a set of split and
leaf nodes where each node is defined by a predicate. Essentially,
decision trees are a hierarchy of nodes in the form of a tree. Deci-
sion trees can be used for both categorical and continuous target
variables. If the target variable is categorical, classification trees
are used; if it is continuous, regression trees are used. Both clas-
sification and regression trees follow similar process for training.

At each training step, the best predicate is selected for partitioning
the data and this process is repeated. The splitting criteria varies
between classification and regression trees.

Classification trees: Classification trees are used to predict
categorical target variables (for instance, weather-outlook: rain
or sunny). At the training time, classification trees maximize the
information gain at each split by reducing the entropy of the parti-
tioned data after the split. Information gain when the tree is split
on attribute Ai is defined as:

IG(S,Aj ) = H (S) −
∑
Ai ∈A

|Ai |
S

H (Ai ), (5)

where H(S), the entropy of set S, is defined as:

H (S) = −
∑
c ∈C

pc loд2pc , (6)

where pc is the probability of S for the class c.
Regression trees: Regression trees are used to predict continu-

ous variables, for instance, temperature or age. Unlike classification
trees, instead of maximizing information gain, regression trees
minimize the mean squared error (MSE) at each split:

MSE =
1
n

n∑
i=1

(yi − ŷi )2, (7)

where yi is the actual value of the target variable and ŷi is the
predicted value.

We use random forest ML models in DeCaf for several reasons:
(1) It is one of the few classes of models that can support not only

continuous and categorical features but also continuous and
categorical target variables.

(2) It is one of the most interpretable machine learning models [18].
(3) It is highly scalable both in terms of feature cardinality and data

volume. Also, it is easily parallelizable on a MapReduce systems
like Hadoop and Spark [8, 17, 21].

(4) As we evaluate in Section 6, it is less prone to overfitting and
perform better than the decision tree baseline. The feature sam-
pling ensures that strong predictive attributes in the data do not
dominate all the trees.
Random forest models, like other machine learning models, have

several hyper-parameters which can be tuned to improve the pre-
diction accuracy and runtime performance. Much work has been
done to analyze the impact of the hyper-parameters on prediction
accuracy [3, 4]. However, in this work, instead of using the model
for prediction, we use the trained models for extracting rules for
diagnosis of KPI regressions. Based on empirical experiments, we
found the following hyper-parameters to be useful:

(1) Min rows in leaves: Specifies the minimum number of training
data in a leaf to avoid overfitting. If a leaf node contains less than
this threshold, it will not continue to split the training data. The
tree will stop growing on that leaf. This helps reduce the noise by
eliminating rules which impact very small number of requests.
Based on the discussion with the Orion and Domino teams, this
was set to 1% of the log size.

(2) Feature sample ratio: Specifies the sampling ratio used for sam-
pling features when learning each tree. Setting the sampling ratio
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to 1 will cause all trees in the forest to be identical. Based, on
empirical experiments we have set the sampling ratio to 0.6.

(3) Number of trees: Number of trees to train. This increases the
number of unique rules learnt for diagnosis while also increasing
the training time. In DeCaf, based on runtime constraints, we
train 50 trees.

While onboarding a new service to DeCaf, a one time effort will
be needed to tune the hyper-parameters based on the data schema,
size and the compute resources. We will work on automating this
manual step in future work.

Model output: After training the random forest model, we get a
set of regression or classification trees. We dump the binary model
into a text-based readable format. Each tree contains a hierarchical
partitioned list of predicates starting from the root node to the
leaf nodes. For each of the nodes, we also compute the following
metrics:

(1) Row count: Number of training samples in a node.
(2) Anomaly probability (Classification trees): Probability of a train-

ing sample belonging to the positive (anomalous) class.
(3) Predicted value (Regression trees): Average value of the target

variable for the samples in a node.
As we discuss in the next step, these metrics are used for ranking
and triaging the results.

5.3 Rule extraction
Once the random forest model is trained, we implement a novel
algorithm to analyze the model output to produce a ranked list of
rules as discussed in Section 4:

Step 1: The random forest model generates a set of decision or
regression trees. We parse the text output of the random forest
into an in-memory set of decision tree objects and then recursively
traverse each tree starting from the root node. At each node, we
compute aggregate scores of the left and the right sub-trees. DeCaf
exposes an interface so that the scoring function can be defined
based on the requirements of the service owners using a lambda
function.

The scoring function takes in as parameters the metrics gener-
ated by the random forest model. The scoring function is defined
by the service owners based on the SLO. For instance, in case of
Orion, the SLO included not just the latency impact but also the
number of requests impacted. Here are the scoring functions used
in the Orion and Domino deployments:
• Orion: Score(row count, predicted value) = row count x predicted
value

• Domino: Score(row count, failure probability) = failure probabil-
ity
Step 2: For each node predicate in the tree, we then compute

a score for performance impact. It is the difference between the
score of the left child node and the right child node, i.e., when the
predicate is true vs when it is false:

CorrelationScore = Score(Le f tChild) − Score(RiдhtChild) (8)

If the correlation score is positive, that means the predicate (P:X
→ true) is positively correlated with a performance degradation,
otherwise, it is negatively correlated.

Step 3: Using the above algorithm, we extract a set of rules from
the random forest model; where a rule consists of: (a) Correlated
predicate: predicate of the current node, (b) Scope predicates: logical
conjunction of the predicates from the parent nodes, (c) Correlation
score and (d) Request count: No. of requests impacted.

Step 4: Next, we de-duplicate the rule set by only keeping the
rules with the maximum impact score for each correlated predicate.
Also, based on the feedback from the service owners, we remove
the rules with negatively correlated predicates as they were not
deemed useful by the service teams in root causing. For instance:
ClientRegion:NorthAmerica→ False only tells us that the client
can be anywhere but in North America. While there might be cases
where negative correlations are useful, we have not observed it in
practice.

5.4 Triaging
The results from the DeCaf algorithm are uploaded to an SQL
database which allows us to build a historical knowledge base of
all the detected issues. We leverage this history to automatically
triage rules generated by DeCaf into the following categories based
on the correlated predicate and the correlation score:

(1) New: A new predicate is extracted which has not appeared in
the last 14 days.

(2) Regressed: Score of the predicate is more than 1 standard de-
viation above the mean score computed over the previous 14
days.

(3) Known: Score is within 1 standard deviation of the mean score
computed over the previous 14 days.

(4) Improved: Score is at least 1 standard deviation below than the
mean score computed over the previous 14 days.

(5) Resolved: Correlated predicates which were extracted in the
previous day are not extracted.

The regression and history thresholds were determined based on
inputs from the service owners and empirical validation on 1 month
of Orion data. To avoid the cold start problem, the auto-classification
is enabled only once we have a 14 day history.

6 IMPLEMENTATION
We have implemented DeCaf using Microsoft Azure Cloud and a
Hadoop like MapReduce cluster in Microsoft for large scale data an-
alytics, called Cosmos. The overall architecture of DeCaf is shown
in Figure 2. Cosmos supports an SQL like query language for run-
ning MapReduce jobs called Scope. We wrote modules using this
query language for the data sampling and model training. Also,
we implemented the rule extraction and triaging module using C#
(.NET Framework v4.5) and SQL. DeCaf is operationalized in Mi-
crosoft both for retrospective analysis, i.e., diagnosing regressions
in the past and, also, for near real time analysis where service own-
ers root cause ongoing incidents which were caught using alerts
or customer complaints.

Data ingestion: Large scale cloud services like Orion andDomino
generate ~100 TB of logs daily which are initially stored in the local
storage of each server. A data loader process runs at scheduled
intervals and scrubs the users’ Personally Identifiable Information
(PII) from these logs and uploads these raw logs to an HDFS like
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Figure 2: DeCaf implementation

data store used by Cosmos. These logs are then processed by cus-
tom MapReduce jobs by the respective service owners for various
purposes like analytics, monitoring and debugging. We use these
processed logs in DeCaf.

We run the data ingestion job using a job scheduler for Cosmos
called Avocado. Avocado also allows us specify dependency be-
tween various jobs and, also, enables us to visualize the results of
the map-reduce tasks using a declarative JavaScript based frontend
interface. The cadence depends on the service requirements, it can
be in near real time or at fixed time intervals, like hourly. Sometimes
logs from multiple sources might also be aggregated for diagnostics.
For instance, in Orion, we used not only the Orion request logs but
also infrastructure logs to be able to root cause performance issues
related to infrastructure failures.

Model training and analysis: For the Random Forest model
training, we use an existing ML library for Cosmos available inter-
nally at Microsoft. It implements a distributed version of the CART
algorithm for training Random Forest models. Similar distributed
implementations are available for MapReduce systems like Hadoop
and Spark [8, 17, 21].

We implemented a custom library in C# .NET framework 4.5
for analyzing the random forest model output and generating the
ranked list of rules. The library uploads the results to a Azure SQL
cloud database. The Avocado job for model training and analysis
is triggered once the data is ingested. To avoid having race con-
ditions between the data and the model jobs, we have sequential
dependency between the two jobs.

DevOps integration: To integrate DeCaf into the DevOps pro-
cesses for the Orion and Domino services, we built a web dashboard,
shown in Figure 3, which can be used to see the latest and histori-
cal results of diagnosis and triaging. However, based on developer
feedback, we realized that a push-based notification mechanism is
better suited than a pull-based one. Therefore, we also created a
notification service which sends email notifications with the results
using the SendGrid SMTP service.

Dynamic query generation: Before DeCaf was deployed, De-
vOps engineers had to manually write MapReduce scripts for min-
ing the service logs for investigating service incidents. To reduce

Figure 3: DeCaf report for Orion

the manual effort, We implemented dynamic Cosmos MapReduce
query generation for the rules generated by DeCaf. Each rule has a
"Query Logs" link, as shown in Figure 3, which automatically runs
a Cosmos job for mining the logs satisfying that rule. Based on the
feedback from the Orion and Domino teams, it has significantly
reduced investigation time and effort for incidents.

7 CASE STUDIES
In this section, we present the results and learnings from deploy-
ing DeCaf on Orion and Domino. In Orion, we deployed DeCaf
in production for 4 months, where the DevOps engineers used it
to diagnose and triage issues impacting Orion latency in produc-
tion. For Domino, we did a 10-day pilot where DeCaf was used to
diagnose high failure rates.
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No. Correlated predicate Scope predicates Triage category Issue description
1 CapacityUnit: CX20A1 Region:NorthAmerica ∧ App-

Name:AnonymizedApp ∧ LocDat-
aCenter:CX2 ∧ CrossDatacenter:True

New Gap in telemetry, latency of Auth token
extraction was not being logged.

2 RoutingLatency > 568ms Region:NorthAmerica Regression Shard based routing cross process calls
to routing service hang in RPC layer

3 UserLookup: L2 Region:AsiaPacific ∧MailboxCacheLa-
tency > 40∧CapacityUnit:Anonymized

New Regression in Asia Pacific region due to
large no. of requests with cache miss

4 RoutingLatency > 16145ms Forest: FC3 ∧ CapacityUnit:CF5015A Regression Regression in Europe region due to lock
contention bug in code

5 UserMapping Cache
Latency > 132ms

UserLookup:L1 ∧ Re-
gion:NorthAmerica

New High L1 cache latency due to DB page
misses and disk IO latency

6 ServerLookup Cache: L2 Forest: FA4 ∧ Region: Europe New Large no. of L1 cachemisses for backend
server lookup

7 AuthLatency Latency >

47ms
AppName:AnonymizedApp ∧ Address-
Resolution < 5ms

New High latency of requests due to timeout
of the auth service

Table 2: Some of the unknown issues diagnosed in Orion using DeCaf

7.1 Orion
Office365 is a large commercial collaboration and email service.
It employs a horizontal scale-out architecture based on sharding
by users across O(100K) servers across the globe that have both
compute and storage capacity. The basic transaction processing
model is to take compute as close to the data as possible, often to
the very same server. Hence, we need a system to route requests
efficiently to the specific server where the primary shard targeted
by the request is presently activated.

Orion is the system that does this smart request routing as the
request routing plane. Orion runs on an IIS web service and has
multiple dependencies on internal as well as external sub-systems
like shared caches, auth components, microservices, databases, etc.
It is a massively distributed service that currently sustains a peak
throughput of O(1M) requests/second, that target O(1B) shards,
provisioned across O(100K) Office365 servers, spread over O(100)
data-centers worldwide. Office365 has 1st party, 2nd party and 3rd
party partners. Each of these partners have their own SLOs, and
it becomes critical for the routing application layer to resolve the
shard location correctly and route requests with SLO of latency
less than RTT (round trip time) + 5ms at the 99th percentile. Before
a user request lands on its shard's location, it gets processed by
multiple routing applications like load balancer, network layer and
multiple hops in request routing.

The goal of using an automated root causing system for Orion
was to not only detect regression but also find existing bugs and
design flaws resulting in high latency. Given that Orion service
generates O(100TB) of diagnostics data daily, receives O(100B) re-
quests per day and logs O(100) request attributes resulting in a
cumulative cardinality of O(1M), it becomes challenging to perform
root cause analysis on latency regression through manual or tradi-
tional methods like big data processing, custom pivot dashboards,
etc. Previously, root cause analysis was done manually by running
queries on Cosmos as well as by analyzing Power BI [25] reports
over aggregated data in a cloud SQL database. Various limitations
prevented Orion developers from diagnosing and investigating la-
tency regressions at scale:

(1) Reporting limitation of maximum 1 GB data in their custom
dashboards.

(2) Refresh time out if data is huge which required manual interven-
tion.

(3) Given there are O(100) attributes, it was highly inefficient to click
through various pivots manually for root causing.

Results: We deployed DeCaf for root causing latency issues in
Orion and discuss the results from a deployment done between
March 2019 to September 2019. During this period, DeCaf was able
to diagnose 9 known and 15 unknown issues. This significantly
reduced the manual analysis overhead while also helping in finding
new issues which would not have been detected otherwise. Table 2
lists the details of some of the unknown issues discovered in Orion
impacting request latency. As per an analysis done by the Orion
engineers, using DeCaf saved them on average 20 hours per investi-
gation. Previously, most of this time was spent in finding the right
predicates manually using dashboards and running MapReduce
queries for validation and analysis.

7.2 Domino
Domino is a global scale internet measurement platform built for
one of the major cloud providers. It is designed to perform client-
to-cloud path measurements from users around the world to Mi-
crosoft's first-party and third-party endpoints. The metrics it mea-
sures includes the availability of and the latency towards the above
mentioned endpoints as seen by end-users spread across the globe.
It is embedded in a variety of web-client and rich-client applications
and performs measurements to the endpoints mentioned in the con-
figuration file that it fetches from a pre-specified web location.
It is deployed in O(10) web clients and rich clients and monitors
O(100) end-points. The user-base performing these measurements
is spread across O(10,000) ISPs (mobile and non-mobile) and O(1000)
metro areas. The measurement platform generates O(10TB) of data
consisting of around O(1B) requests, per day. Each request contains
O(10) attributes with a cumulative cardinality of O(1M).
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Algorithm Precision Valid Issues
Baseline 0.66 2
DeCaf 0.72 8

Table 3: DeCaf evaluation

Dataset Pre-processing Training Diagnosing Triaging
Small 5 min 12 min 0.2 min 0.8 min
Large 138 min 102 min 0.3 min 0.6 min

Table 4: Runtime comparison of DeCaf stages

Failure rate is an important KPI being tracked as it is tied to
service availability. It is defined as the number of failed Domino
requests divided by the number of attempted requests in each time
bucket. The scale and diversity of measurements being performed
often resulted in the failure rate behaving in unexpected ways. One
such issue was that certain large-scale client networks were facing
higher failure rate during day times (in local time for the clients)
as compared to night times. To zone in on the pivots which were
resulting in increased failure rates, we applied DeCaf to the Domino
data, as the high request volume coupled with the high cardinality
of dimensions made manual analysis a problem of finding a needle
in the haystack.

Results: In a 10-day pilot with Domino, DeCaf found 16 un-
known issues and 1 known issue which were causing high failure
rates. Out of the 16 unknown issues, 11 were related to specific
tenants and 5 were related to certain Autonomous Systems (ASs).
On further investigation, we found that these faulty tenants and
ASs were facing more than 90% failure rates. In addition to this,
the fact that they performed more measurements during the day as
compared to night times was resulting in a higher aggregate failure
rate during day times, thereby explaining the initial observation.
On following up with the respective service owners, we found that
these high failure rates were caused by enterprise tenants blocking
these endpoints in their firewalls. By filtering out these blocking
tenants and ASs, as reported by DeCaf, we could eliminate the
incidence of higher failure rate and reduce noise in the data.

8 EXPERIMENTAL EVALUATION
For a quantitative evaluation, we compare the performance of DeCaf
on 1 day of Domino service logs with the method proposed by
Chen et al. [9], referred to as the baseline. We used 2 metrics for
evaluation: precision and number of valid issues found. The results
were manually evaluated by the service owners. Because of lack of
ground truth of incidents and corresponding root causes in the test
dataset, we did not evaluate recall. The metrics are defined as:
Precision:

Precision =
|{TP}|

|{TP}| + |{FP}| (9)

Number of valid issues: It is the number of valid issues discovered
which were impacting performance. |{TP}|.

Here, {TP} is the set of correct results (true positives) and {FP} is
the set of incorrect results (false positives).
As shown in Table 3, the number of valid issues discovered by
DeCaf using the Random Forest model was 4x times the baselines.

In terms of precision, as we can see in Table 3, DeCaf has 9.1%
higher precision than the baseline. Overall, we can see that DeCaf
gives significantly better performance in diagnosing performance
issues from service logs.

Runtimeperformance:We evaluated the runtime performance
of the DeCaf system on two datasets from the Orion service. The
Large dataset contained ~50GB of daily logs with ~45 million rows,
51 attributes and cumulative cardinality of 1.3 million. Whereas,
the Small dataset was ~100MB in size, containing ~0.1 million rows.
We did the runtime analysis using the data from the production
deployment running in the Cosmos MapReduce cluster. Table 4
shows the runtime of different stages of DeCaf. As we can see,
data pre-processing and model training are the most expensive task
in terms of runtime. The rest of the steps are near real-time with
~1 min runtime. The diagnosing and triaging stages have similar
runtime for both the datasets, because these stages do not operate
on the raw dataset but the model output and the 14 day historical
results. The triaging stage is comparatively slower than the diag-
nosing stage because of the multiple SQL queries which need to be
run in the cloud in order to compare with historical results.

9 DISCUSSION
In this section, we first discuss the generalizability of DeCaf to
other services and then discuss some of the future work.

9.1 Generalizability
All commercial large scale services have commitments to their
customers for meeting SLOs for their KPIs. They also produce
large amount of logs and telemetry which makes it prohibitively
expensive to root cause and triage any regression in the KPIs. We
designed and built DeCaf after looking at the requirements and
existing DevOps practices of several services within Microsoft. As
our case studies show, DeCaf has significantly reduced the manual
effort for the on-call engineers. We believe, DeCaf solves a common
problem which is applicable to almost any large scale service. It can
be used to not just diagnose known incidents but also find existing
performance issues before they lead to widespread customer impact.
Further, to deploy DeCaf, service owners only need existing domain
knowledge about the service logs and a one time manual effort of
writing the data aggregation queries and hyper-parameter tuning.

9.2 Future Work
Today, even though DeCaf can handle heterogeneous attributes, it
requires the data to be in a structured format. One of the next steps,
will be to automate the transformation of the unstructured logs so
that DeCaf can operate directly on the raw data. We can use unsu-
pervised machine learning techniques to extract key-value pairs for
various attributes from the logs. Further, DeCaf currently requires
service owners to do feature selection based on domain knowledge.
We believe, this step can be automated based on past incident and
root cause knowledge bases. We can leverage NLP techniques to
learn which attributes in the logs are useful. This information can
then be surfaced to the service owners as recommendations if not to
completely eliminate the manual effort. Lastly, another interesting
direction will be to diagnose multiple KPIs simultaneously instead
of diagnosing individual KPI separately.
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10 CONCLUSION
We have described DeCaf, a system for diagnosing and triaging
performance regressions in large-scale cloud services. Terabytes
of logs and the heterogeneous attributes generated by large-scale
cloud services makes it infeasible to do any automated or man-
ual analysis. DeCaf leverages Random Forest models along with
custom scoring functions to mine predicates from the logs which
are correlated with regressions. Furthermore, the results are au-
tomatically triaged, making it easier for the on-call engineers to
prioritize and investigate these issues. DeCaf has been deployed for
two large-scale commercial cloud services in Microsoft. It was able
to diagnose 10 known and 31 unknown performance issues while
significantly reducing manual effort. We have also shared learnings
and insights from integrating DeCaf into the DevOps processes at
Microsoft.
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