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Abstract—LinkedIn is the largest professional network with
more than 350 million members. As the member base increases,
searching for experts becomes more and more challenging. In
this paper, we propose an approach to address the problem
of personalized expertise search on LinkedIn, particularly for
exploratory search queries containing skills. In the offline
phase, we introduce a collaborative filtering approach based on
matrix factorization. Our approach estimates expertise scores
for both the skills that members list on their profiles as well
as the skills they are likely to have but do not explicitly list.
In the online phase (at query time) we use expertise scores on
these skills as a feature in combination with other features to
rank the results. To learn the personalized ranking function,
we propose a heuristic to extract training data from search
logs while handling position and sample selection biases. We
tested our models on two products - LinkedIn homepage and
LinkedIn recruiter. A/B tests showed significant improvements
in click through rates - 31% for CTR@1 for recruiter (18 % for
homepage) as well as downstream messages sent from search
- 37% for recruiter (20% for homepage). As of writing this
paper, these models serve nearly all live traffic for skills search
on LinkedIn homepage as well as LinkedIn recruiter.

Keywords-personalized search; expertise scores; learning to
rank

I. INTRODUCTION

The LinkedIn platform serves the professional networking
needs of 350MM+ members worldwide. Members visit the
site for various reasons including recruiting candidates, find-
ing jobs, connecting with other people, reading professional
content, etc. About 62% of the company revenue is from
Talent Solutionsﬂ which is a product helping recruiters and
corporations around the world find the right talent. Thus, the
problem of finding candidates with expertise in some certain
areas is extremely important to LinkedIn.

LinkedIn allows members to add skills to their profile.
Typical example of skills for a software engineer would be -
“Algorithms”, “Data Mining”, “Python”, etc. On LinkedIn,
there are about 40 thousand standardized skills. Members
can also endorse skills of other members in their network.
Thus, skills are an integral part of members’ profiles to help
them showcase their professional expertise (see Figure[T). In
this paper, we focus on the problem of personalized expert
ranking for queries containing one or several skills.

The area of expert finding was initiated in the field of
knowledge management [1]]. It became a very active research
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Figure 1. Example of Skill Section with Endorsements

area since the appearance of the Enterprise Track in Text
Retrieval Conference (TREC). Over the last decade, many
research papers have been published in this area. However,
the task of expertise search on LinkedIn has unique chal-
lenges.

1) Scale: With a member base more than 350 million
and about 40 thousand skills, it is by far bigger than
the benchmark data sets in the literature. For instance,
TREC data set contains about 1100 candidates and 50
topics.

2) Sparsity: Members may not list all the skills they
have. The system should estimate expertise scores for
the skills that members have but do not explicitly
list on their profiles. For example, if a member had
listed “hadoop” and “java” explicitly, one could infer
expertise scores for “mapreduce” as well.

3) Personalization: Expertise search on LinkedIn has
a strong recruiting intent. Searchers not only care
about candidates’ expertise but also many personalized
aspects. These personalized aspects may include the
social connection distance from the candidate, geo-
graphic location, etc.



This paper describes our approach to addressing above
mentioned challenges. We propose a way to estimate exper-
tise scores offline at scale. Our techniques, which involve
collaborative filtering and matrix factorization infer expertise
scores for skills that members have, including the ones that
they do not even explicitly list in their profiles. When a
searcher enters a query containing one or several skills, our
ranking system uses candidates’ expertise scores on these
skills as a feature in combination with other features. Our
feature set contains personalized (location, social connection
distance) as well as non-personalized (text matching) fea-
tures. The ranking function is learned by leveraging learning-
to-rank techniques. We detail practical issues faced when
deploying learn-to-rank models in personalized ranking at
LinkedIn scale. In particular, we detail our attempts to
address position and sample selection biases while extracting
training data for learning personalized ranking functions
from search logs.

The techniques detailed in this work are used to rank a
significant percentage of queries within LinkedIn. A/B tests
were done on the LinkedIn homepage as well as LinkedIn
recruiter search, a paid product. On the homepage search,
our proposed approach improves CTR@1 by /8%, CTR@10
by 11% and number of emails sent from search page by 20%.
On the premium recruiter search, our proposed approach
improves CTR@1, CTR@10 and number of messages sent
from search page by 31%, 18% and 37%, respectively. Note
that while our examples are shown for skills related to soft-
ware engineering/data mining, our approach is generic for
any skills listed or inferred from our members profile. Our
results are validated across different domains including (but
not limited to) sales, marketing, engineering management
etc. Currently, these models serve nearly all live traffic for
skills search on LinkedIn homepage as well as LinkedIn
recruiter.

The rest of the paper is organized as follows. Section
2 reviews background on expert finding and learning to
rank techniques for search ranking. Section 3 presents how
we estimate skill expertise scores. Section 4 details how
we learn a search ranking function by using the expertise
scores in combination with other personalized and non-
personalized features. We discuss experimental results in
Section 5. Finally, concluding remarks can be found in
Section 6.

II. BACKGROUND
A. Expertise scores

Expertise scores yield an ordered list of members for
every skill. In other words, it maps the tuple (member,
skill) into a score. The closest match to published literature
is in the area of expert finding in the field of knowledge
management [1]. This became a very active research area
since the appearance of TREC 2005 and 2006 [2f], [3]. In
the track, the task of finding experts is defined as follows:

given a collection of crawled documents including email,
homepages, etc., a list of candidates and a list of topics,
the task is to rank the candidates given each topic. Almost
all of the systems submitted to TREC Enterprise Tracks in
2005 and 2006 and subsequent research ([4)], [S, [6], [7])
view this task as a text retrieval problem. They fall into
one of the two approaches: candidate-based approach which
ranks candidates by textual similarity between the topics and
candidates’ profiles and document-based approach which
first retrieves documents relevant to the topics, then dis-
cover candidates mentioned in the documents and estimate
their associated scores. Besides these approaches, there is
also research on combining multiple evidence associating
candidates to topics [8] [9] [10]. Focusing on expert
finding on social graphs, Zhang et al. [L1], Rode et al. [12]]
propose a two-step process: (i) using language models or
heuristic approaches to compute an initial expertise score
for each candidate, and (ii) using graph-based algorithms
to propagate scores computed in the first step and re-rank
experts.

Compared to the previous research, our work on skill
expertise scores is different in the following aspects. First,
our system leverages the unique data source of LinkedIn
including member profiles containing different sections,
such as work experience, education, skills, projects, social
endorsements and the high-level signals derived from the
profile, such as seniority and popularity. The second unique
aspect is scale. Our system estimates expertise of more than
350 million members on about 40 thousand skills, which is
by far bigger than the benchmark datasets provided by TREC
and others. For instance, TREC dataset contains about 1100
candidates and 50 topics. Finally, previous research typically
ranks experts for one topic at a time and does not take
into account topic co-occurrence patterns. Our collaborative
filtering technique is able to infer expertise scores for the
skills that members do not even list in their profiles based
the skills they do and relationships amongst skills.

B. Learning to Rank

The second phase in our work that combines skill exper-
tise scores with other signals into a final search ranking is
related to the area of learning to rank for search. Learning
to rank has been a key problem for information retrieval
systems and Web search engines in particular since these
systems typically use many features for ranking and that
makes it very challenging to manually tune the ranking
functions. There has been a lot of research published in the
area of learning to rank, typically falling into one of the three
following categories. Pointwise approaches view ranking
as traditional binary classification or regression problems.
Pairwise approaches take input as a set of pairs of documents
in the form of one document is more relevant than the
other with respect to a specific query. These approaches
then learn a ranking functions minimizing the number of



incorrectly ordered pairs. The state-of-the-art for learning to
rank is composed of listwise approaches. These approaches
typically view the entire ranked list of documents as a
learning instance while optimizing some objective function
defined over all of the documents, such as mean average
precision (MAP) or normalized discounted accumulative
gain (NDCG) [13]. We refer the readers who are interested
in more details of learning to rank to [[14] [15] [16] [17] for
more comprehensive reviews.

A key element of learning to rank is collecting ground
truth data. Traditionally, ground truth data is labeled by
either professional editors or crowd sourcing [14]. Given
a pair of query and document, human judges give either
a binary judgment (relevant or not-relevant) or graded cate-
gories, such as perfect, excellent, good, fair or bad. However,
the issues with this approach are (i) It is expensive and not
scalable and (ii) It is very hard for the judges to judge the
relevance on behalf of some other user, making it challeng-
ing to apply the approach for personalized ranking. For these
reasons, some previous research proposes to extract labeled
data using click logs [18] [19] [20] [21]. Nonetheless,
collecting training data from click logs presents its own
challenges. We will have to find a way of handling position
bias and sample selection bias. User eyes tend to scan from
top results to bottom and some of the bottom results may not
even be viewed. Thus, marking unclicked results that appear
low in the original ranking may result in unfair penalization.
Moreover, user clicks generally occur on the top ranked
results and it quickly tapers down. So, the documents in
the training data are a very biased sample of all results.
Radlinski and Joachims [22] propose an approach called
FairPair to collect labeled data from click logs and avoid
the position bias. Nevertheless, the labeled data is mainly
for pairwise learning to rank algorithms, not particularly
suitable with the listwise ones. Second, it still suffers the
sample selection bias.

III. SKILL EXPERTISE SCORES

The skill expertise algorithm infers skill expertise scores,
which can be thought of as the probability that a member
is an expert given a skill query containing one of more
standardized skills, or p(expert|q, member). We discuss
what we mean by expert in section [[II-A]

Our approach enables us to score
members for multi-skill queries, q =
(“java”, “data mining”, “information retrieval”), as well
as single-skill queries, ¢ = (“java”). This enables us to
rank members given the context of a skill-only query for
all members M, where |M| = m, given any arbitrary
skill combination from the standardized skill set S, where
|S| = s. We distinguish multi-skill queries from single-skill
queries in our notation by bold facing the query vector.

To compute these skill expertise scores for arbitrary
queries, we use a 2-step process illustrated in figure [2]

which is composed of: (1) a supervised learning step to
compute p(expert|q, member) which outputs an initial,
sparse, expertise matrix F;, of dimensions m X s, and (2) a
matrix factorization step that factorizes E; into latent factor
matrices, M and Sy of dimensions m X k and s X k
respectively, which when multiplied, allow us to compute
a final, denser, expertise matrix Ey. Here, k represents the
size of the latent reduced-dimensionality space onto which
both, members and skills, are projected, and where k < m
and k < s.

Matrix FE; is the interface between the 2 steps in the
pipeline. Having this interface explicitly formalized allows
for development on both pipeline stages and algorithms to
be independent. We now explore the most salient pipeline
components in more detail.

A. Preliminary Expertise Learner and Scorer

Expertise is the umbrella term we use to collectively
refer to various attributes of members that capture relevant
characteristics of those expected to rank high for a given
skill query. These attributes are measured using various
signals available on the site, many of which rely on complex
algorithms for standardization and inference:

« Seniority: we have many ways of measuring seniority,
for example, as years of experience from a common
reference point (graduation), or as years of experience
typically required to reach someones current job title.

o Popularity: which may include measures of number
of page views received, or number of endorsements
received, as well as more elaborate derived signals such
as what can be obtained from running PageRank [23]
on the page view graph or the endorsement graph.

o Influence: members have the ability to publish long-
form content on the site, and this content is consumed
by other members who may choose to further share
it with their connections. Members whose content
generates a lot of engagement tend to be considered
influential.

o Authority: members typically belong to organizations
that are hierarchical in nature, and this hierarchy is
often reflect on job titles by means of qualifiers, such
as associate, senior, principal, manager, director, or
C-level managers (e.g. CEO, CFO, CTO).

o Desirability: members are often contacted about job
opportunities that may be of interest to them, and some
members may be contacted more often than others.
This variability in demand from hiring managers or
recruiters depicts a measure of demand for a particular
set of skills, educational background, or experience.

« Relevance: we also take into account the relevance
of a given standardized skill to a member’s profile.
This signal is derived from the same algorithm that
generates recommendations for members to add skills
to their profile (see [24]). Note that we differentiate
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Figure 2. Skill expertise work flow. E,, of which E} is a subset, represents a 3-rd order tensor of dimensions m X s X f which denotes an f-dimensional
feature vector for every member-skill pair. The Preliminary Expertise Scorer converts the f-dimensional feature vector into an expertise score, yielding a
sparse skill expertise score matrix F; of dimensions m X s. The Matrix Factorization component factorizes E; into dense factor matrices M} and Sk,
which when multiplied together yield matrix Ey, a denser and final expertise matrix.

between how relevant a given skill is to a profile, vs. the
expertise of the profile’s owner at the given skill. For
example, the skill java is likely relevant to the profile
of a recent college graduate out of a Computer Science
program, just as it is relevant to the profile of James
Gosling, the father of the Java programming language,
but both have different levels of expertise in Java.

These attributes become features associated with any
given (member, skill) pair, where these pairs are generated
from those skills that members list explicitly on their profiles
which are above a certain relevance threshold. The feature
vectors associated with each (member, skill) pair are con-
solidated in a 3-rd order tensor of dimensions m x s X f,
which is depicted as E, in Figure[2] where F is the set of all
possible features associated with a (member, skill) pair and
|F| = f. A subset of E, is used as training data, denoted
FE,; and is discussed in the next section.

1) Training Data: Our Preliminary Expertise Learner is
based on a classifier that learns to distinguish between our
positive and negative examples, or more specifically, expert
(member, skill) pairs vs. non-expert (member, skill) pairs.

The positive examples are sourced from various lists of
experts available online: conference speakers (e.g. Strata),
open-source committers (e.g. Apache Software Foundation
committers), influential author lists (e.g. LinkedIn influ-
encers), as well as cohorts of members about whom we have
an expectation of their expertise (e.g. very senior members,
in-demand members, etc). Once we have identified these
expert members, and are able to link them with a profile, we
extract their explicitly listed skills and use various heuristics
to filter their list of explicit skills into a smaller list that may
be considered to be their most relevant skills. An example
of such heuristic might be to filter out skills with a profile
relevance score less than some threshold ¢. This is done to
filter out potential outlier skills added in jest.

The negative examples are similarly generated based on

various strategies. Examples of non-expert (member, skill)
pairs may include regular members paired with random
skills, or skills that are only mildly relevant to them, as
well as members with profiles tagged as spam or fake (with
a certain probability), and skills associated with them.

Finally, the positive and negative examples of (member,
skill) pairs are validated using crowd sourcing. The final
set is then divided into three subsets: training, testing, and
validation sets. Training and testing is discussed in the next
section, and validation is discussed in section [[II-D]

2) Learning: We employ a logistic regression model for
learning to distinguish between the expert and non-expert
(member, skill) pairs using the training data described in
the previous section, the primary reason for using a simple
linear model being explainability.

The test set is used to evaluate the accuracy of the logistic
regression model, as well as to calibrate meta-parameters,
such as regularization parameters and cohort mix-proportion
in the training set.

3) Scoring: At this point in the pipeline, we use the lo-
gistic regression model to estimate p(e|q) for those standard
skills which members have listed explicitly on their profiles,
with the further consideration that those skills need to be
highly relevant to the profile in question (so, Karaoke singing
for a Director of Search Quality would likely not make the
cut).

This gives us a very sparse matrix, denoted as F; in
figure 2] where most of the values in the m X s matrix
are considered to be unknown. In fact, since at the time of
this writing, we limit users to listing up to 50 explicit skills
on their profiles, and given that we have about ~ 40,000
standardized skills, even if all ~ 350MM members list the
maximum number of skills (assuming they are all standard
skills), we have a matrix with 99.9% unknown values.



B. Matrix Factorization

In the second stage of the pipeline, we aim to discover
some of those unknown values in E; by leveraging collabo-
rative filtering techniques that enable us to uncover insights
such as users who are good at Statistics also tend to be good
at Data Mining.

1) Normalization: In order to decouple the factorization
algorithm from the particulars of the supervised learning
step, prior to factorization, we apply a rank-based inverse
normal transformation (see [25]) to those scores in FE;
which are known (as well as shift and scale the standard
normal scores to be non-negative with an arbitrary mean
and standard deviation).

2) Factorization: When factorizing the normalized E;
matrix, we sought to find the factors that optimized a
loss function similar to equation 3 in [26], with a slight
modification:

;niél Z Cm,s(sms - xflys)z =+ A(Z meHz + Z ||y9||2)
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m,s m
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Where the goal is to find a vector z,, € IR¥ for each
member m, and a vector y, € IR¥ for each skill s that will
factor member-skill affinities. In other words, skill expertise
scores are assumed to be the inner products: s,,; = x%ys.
We refer to these vectors as the member-factors and skill-
factors, respectively. This formulation is different from [26]
in that we use the actual normalized expertise score in
Sms, rather than simply using an indicator variable denoting
whether or not the member has the skill.

Note that in this formulation, similar to [26]], we account
for all (member, skill) pairs, (m,s), rather than only those
which are known. We treat the unknown scores as zeros with
low confidence, and the not unknown scores as being high-
confidence values. The confidence function is similar to the
one used in [26]:

) if ms > 0
Cm,s = {a e . (2)
otherwise

The exact values for A (the regularization parameter), k
(the size of the latent reduced-dimensionality space), and «
(the high-confidence value for known expertise scores) were
determined by cross-validation on the reconstructed matrix.

The reason for this loss function is we know that most
members typically only specialize in a very small subset of
the entire 40,000-dimensional skill vector space, so most
of their scores should in fact be zero. This formulation
is similar to weighted least squares regression (see [27]),
where less weight is given to less precise measurements and
more weight is given to more precise measurements when
estimating the unknown parameters of the model.

C. Final Expertise Scorer

Having the latent representation of members and skills, we
are free to reconstruct the entire expertise matrix. However,
we only do so for (member, skill) pairs with high relevance
scores between the member’s profile and the skill as de-
scribed in Section

To compute the ranking for a single-skill query, we only
need the expertise scores for that skill for members of
interest, which is computed by using the inner product of the
latent factor vectors S,,s = xﬁys. To compute the ranking
for a multi-skill query, q = (s1, S2, s3), we can do the same
once we have the latent factor representation of the multi-
skill query. We define the latent factor representation of the
multi-skill query to be a linear combination of the latent
factors of each of the skills in the query, yq = Ys, +¥s, +Yss-
This enables us to compute the expertise score for the multi-
skill query for a given member m, or s,,q = x%yq.

Rather than projecting the query to the latent factor space
at query-time, we can take advantage of the distributive
property of vector multiplication over addition so that at
query-time, we need only sum the scores for those members
satisfying the retrieval requirements of a given query:

Smq = JZZ;L *Yq €))
Smq = I;Z;L ' (ysl + Ys, + y€3) (4)
Sma = Ty Y1 + Ty Ys + Ty Ysa (5)

To ensure fast retrieval and scoring, the skill expertise
scores (e.g. 1 - ys,, 2L - ys,, 2L - ys,) are precomputed
offline and encoded as payloads in a Lucene [28]] inverted
index, so that they are readily associated with each of a given
member’s skills. In this setting, a member ID is a document
ID in the inverted index, and the member’s skills are terms
in that document, and associated with each (doc ID, term
ID) pair is a payload-encoded expertise score.

D. Validation on Expertise Scores

For our validation step, we follow the same methodology
discussed in [29], using a hold-out validation dataset from
our training dataset discussed in section [[[II-AT], see figure
Bl and table [M. This methodology allows us to use the
AUC@K for each of the cohorts to compare different
versions of the skill expertise model pipeline.

Each member cohort (e.g. influencer, strata, etc) repre-
sents a set of members about whom we have an expectation
of how they should rank for a given skill query. For example,
given a seed member who is a Strata speaker and given the
list of skills in which the seed member is considered an
expert at (determined as described in section [[II-AT]), we use
his/her top-skill(s) as a skill query for which we generate
a ranking of members. After we rank all members with
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Figure 3. The plot shows the probability that a member of the specified
cohort (e.g. Strata speaker) is ranked at a position 7 <= K, as K varies
from 1 to 250. We summarize the performance of the algorithm for a given
cohort by using the area under the curve (AUC) for a given K, as shown
in table [T].

Cohort AUC@250
Influencer 0.76
Very senior 0.59
In-demand 0.53
Strata 0.50
Apache 0.19
Random 0.02
Table T

AUC @ K=250, SEE FIGURE [J3].

regards to the query, we sample 10,000 relevant members,
which, together with the seed member, becomes a ranked
list of 10,001 for a specific skill query. This methodology is
repeated many times over for each of our member cohorts,
for multi-skill and single-skill queries, to generate the plot
in figure [3]l. The plot shows the probability that the seed
member is ranked at a given K, as K varies from 1 to 250.
We summarize the performance of the algorithm for a given
cohort by using the area under the curve (AUC) for a given
K, as in table [I].

An advantage of this strategy is that it is completely
independent of whatever algorithm was used to compute the
skill expertise scores.

IV. LEARNING EXPERTISE RANKING FUNCTION

In this section, we present how we leverage learning-to-
rank algorithms to learn a ranking function for expertise
search. The ranking function combines skill expertise scores
described in the previous section as well as other features.

Section 4.1 gives a description on the features in the ranking
function. Section 4.2 details the learning algorithm as well
as the proposed approach to extract training data from search
logs and how to alleviate position and sample selection
biases in the log data.

A. Features

In this section, we give an overview of the features used
in the ranking function for personalized expertise search.
Due to business sensitivity, we cannot give details of how
the features are computed. Instead, we give a high-level
description. Most of the features are generally divided into
the following categories.

Expertise scores As described in Section 3, we estimate
an expertise score for every (member, skill) tuple. When a
searcher enter a query like “java python senior developer”,
we first use a tagger to extract standardized skills mentioned
in the query (‘“java” and “python” in this example). on
distributed computing platforms like Hadoop, allows pro-
cessing very large datasets with complex methods e.g. matrix
factorization to produce sophisticated signals like expertise
scores. Detailed description of the tagger is beyond the scope
of this paper. Interested reader may refer to [30] for more
information. For every search result, we compute sum of his
or her expertise scores on the skills.

Textual features The most traditional type of features
in information retrieval are textual features (e.g. term fre-
quency). These features are computed on different sections
of user profiles, such as position titles, position descriptions,
specialty, etc.

Geographic features (personalized features) Expertise
search on LinkedIn is highly personalized. For instance a
simple query like “software developer” from a recruiter will
produce very different results when the searcher is in New
York City as opposed to Sydney. Location plays an important
role in personalizing the results. We created multiple features
capturing this.

Social features (personalized features) Another impor-
tant aspect of personalization is to capture how the results
socially relate to the searcher. We leverage a variety of the
signals on LinkedIn, such as common friends, companies,
groups and schools to generate the features in this category.

B. Training Data

Generally, the objective of learning to rank is to find
a ranking function that computes a score representing the
relevance between a document and query. In case of per-
sonalized ranking in social networks, the ranking function
computes relevance score for every triple of (query, doc-
ument, searcher). As discussed in Section 2, a traditional
way of generating labeled data by editors or crowd sourcing
is not particularly suitable for personalized relevance at a
large scale. Thus, we chose to collect training data using
search logs. Process of collecting training data from search
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Figure 4. Typically, a searcher’s eyes scan from top results to bottom
ones. For example, if the searcher skips results at positions 1 and 2 and
clicks on result 3, then we assume that the clicked result is relevant and the
skipped results are not. We cannot be certain about the relevance judgement
for results 4-5, since the searcher may not have looked at them.

logs, however, presents its own set of challenges. We will
have to handle two kinds of biases: position bias and sample
selection bias.

Position bias happens when the likelihood of user actions
e.g. clicks on search results is not only influenced by
the relevance of the results but also their positions in the
ranking [31]. A standard way to avoid the position bias is to
randomize top-N results, show them to a small percentage of
traffic then collect feedback. However, this approach would
change the rankings completely after each reload thereby
leading to bad search experience. In this work, we use a
pseudo-randomization technique: we first apply a raking
function to rank all of the results, then re-rank the top-N
by a deterministic hash function on member Id, which is
independent to result relevance. Thus, the results are stable
and the top-N rankings are still orthogonal to all of the
features. Given the rankings, typically searcher eyes scan
from top results to bottom ones. For example, if the searcher
skips results at positions 1 and 2 and interacts with result
3 (see Figure E[), then we assume that result 3 is relevant
and the skipped results are not. Also note that results 4
and 5 are also shown to the searcher, but we cannot be
certain if he or she looked at them and thinks they are not
relevant or stops scanning at result 3. So, we simply ignore
all of the results ranked bellow the last interacted one in the
result page. We use graded relevance for different searcher
actions. For instance, if the searcher sends a message to,
clicks or ignores a result, this result has a relevance label of
two (perfect), one (good) or zero (bad), respectively.

The results on which we have user feedback are usually

the top ones in the rankings. Thus, the documents in the
training data is a biased sample of the overall document
space. This can have adverse consequences in training. For
instance, let us consider spam feature which indicates if a
result is spam or not. Since this is a very important feature
and the original ranking function gives a high weight for it,
all of the top results are likely to be non-spam. So, when
the ranking function is re-trained from the user feedback,
the learner (mistakenly) learns that this feature has little
discriminative power since all of the training instances have
the same value. As a result, it gives a zero weight for this
crucial feature. To address this issue, presumably the original
ranking is not too bad in the sense that the tail results (very
low ranked ones) are generally worse than the top ones, we
randomly sample easy negatives at the tails of the rankings.
These results are still in the set of retrieved documents for
the query but very unlikely to get clicked if they were
presented. Thus, we consider these easy negatives as bad
results and include them into the training set. Introducing
easy negatives into the training data reduces the skewness of
feature value distributions, particularly for dominant features
such as spam. Therefore, it has an effect of diversifying
training pools and reducing sample selection bias.

We count every query issue as a unique search. For
instance, if the query “machine learning” was issued five
times, they are considered as five distinct searches. The
reason for this is that even though the skill being searched
for is identical across the five searches, they might have had
different search contexts when considering other dimensions
such as searcher or location etc. Moreover, this keeps the
query distribution in the training data the same as in our
live search traffic.

C. Model Training

Given a training dataset D, we apply coordinate ascent
algorithm, a popular optimization algorithm to search for
a solution (feature weights) w* that optimizes normalized
discounted accumulative gain (NDCG) defined on the graded
relevance labels as described above over D.

Without loss of generality, we assume all features are
positively correlated with label (if a feature is negatively cor-
related with label, simply negate it). With this assumption,
all of the feature weights are guaranteed to be positive, thus
every solution w € R+N, where N is the number of features,
can be mapped to an equivalent one (in terms of ranking)
A € PN (see Equation [El]), where PV is a multinomial
manifold as described in Equation [[7]]. The benefit of doing
this is that all of the rank-equivalent solutions in RV s
reduced to a single solution in the new space. Thus, the
parameter space and as a result the number of local optima
are significantly reduced.

A= et 6
S (6)
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The coordinate ascent algorithm optimizes the multi-
variate non-smooth objective function above by iteratively
solving multiple one-dimensional optimization problems.
At a time, it searches for optimal weight for a feature
while keeping the others fixed and repeats the process.
Randomization technique is used during the search process
to avoid getting stuck in a local optimum. This algorithm
has also shown to be efficient for learning search ranking
functions in some other domains [32].

After training different models (ranking functions) result-
ing from variety of parameter settings, we need to evaluate
these models offline before deploying them in production.
We use a held-out set from the training data as a test set.
The models are used to re-rank the test data and evaluated
by NDCG@K where K equals to /0 for LinkedIn homepage
search and 25 for recruiter search (these two products will
be described in the next section). Those are the numbers of
results shown in the first result page of the two products.
We also compare coordinate ascent algorithm with other
popular LTR algorithms in the literature on the test data. It
turns out that coordinate ascent algorithm achieves the best
balance between performance and efficiency (scoring time)
for our case. Since the paper does not focus on comparing
different LTR algorithms (instead it emphasizes on practical
challenges faced while deploying LTR in personalized rank-
ing at an industrial scale), we do not show offline evaluation
here to save space. Given offline performance, we take a few
top models for online A/B tests in production.

V. ONLINE SEARCH EXPERIMENTAL RESULTS

In this section, we verify effectiveness of the ranking
functions by using A/B tests on live search traffic. We run
the A/B tests on both of LinkedIn homepage search as well
as LinkedIn recruiter search. The homepage search (See
Figure [5)) offers every member the ability to discover people
in their networks, subject to visibility rules. The recruiter
search (See Figure[6)) is an enterprise product where licensed
recruiters use to search for candidates in the entire LinkedIn
member base. Compared to recruiter search, the user base of
homepage search is bigger and much more diverse. Recruiter
search users are significantly more active.

Baseline: We compare the machine-learnt functions de-
scribed previously with the legacy ranking functions. The
legacy functions for both homepage search and recruiter
search use all of the features described in Section 4.1 except
expertise scores. Even though the weights of the features
were manually tuned, the functions have been running on
live traffic for a relatively long time and have been iteratively
refined. The weights were tuned over several years and
several A/B tests.
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We run A/B test on both products for a reasonably long
period of time (six weeks) to remove any novelty effect.
When a searcher enters a query, we first use a tagger to tag
query keywords with labels like personal name (first and last
name), skill, location, job title, etc. For detailed description
of the tagger, we refer interested readers to [30]. Since
we are interested in exploratory expertise search, we focus
on queries containing at least one skill and not containing
personal names. For searches satisfying this condition, the
traffic is randomly split into treatment and control buckets.
Searches in the treatment buckets are ranked by the machine-
learnt functions. Control buckets use legacy ranking func-
tions (our baseline). During six weeks, each bucket on either
product contains several hundreds of thousand skill searches.

Based on members’ interactions with search results, we
compute two sets of metrics. The first one is so called first-
order metrics including click-through-rate at the first results
(CTR@1), CTR at top ten results (CTR@10) and mean
reciprocal rank (MRR). On both products, our final goal
is not simply to have searchers click on results and view
their profiles, but reach out to those results and eventually
hire them. To partially capture this, we use a downstream
metric measuring the number messages sent per search. We
compare the treatment and control buckets on the metrics.



Improvement of Treatment over Control
CTR@1 +18%
CTR@10 +11%
MRR +14%
Table II

FIRST ORDER METRICS ON LINKEDIN HOMEPAGE SEARCH.

Improvement of Treatment over Control
CTR@1 +31%
CTR@10 +18%
MRR +22%
Table 111

FIRST ORDER METRICS ON LINKEDIN RECRUITER SEARCH.

Table [lI| shows first-order metrics on the homepage search
of the baseline and the machine-learnt model having the
best offline performance. Compared to the baseline, the new
ranking function improves /8%, 11% and 14% in terms of
CTR@1, CTR@10 and MRR, respectively. Similarly, Table
shows that on LinkedIn recruiter search, the machine-
learnt ranking function is 31%, 18% and 22% better than
the baseline in terms of CTR@1, CTR@10 and MRR.

Regarding to the downstream impacts of the ranking
functions, we measure the average number of messages per
search that searchers send to results. On LinkedIn, sending a
message is typically a way to start a recruiting process. Thus,
this metric is particularly important. As shown in Table
on homepage search, the new ranking function improves
the metric by 20% over the legacy system and on recruiter
search, the new ranking function improves 37%. All of the
improvements on both first-order and downstream metrics
are statistically significant. The significant improvements
across all metrics confirm the benefit of the expertise scores
and the learning approach. We further conduct additional
A/B tests to verify the impact of each. The first A/B test
compares the legacy system and a machine-learnt model
with the same set of features (i.e. without expertise feature).
The second test compares machine-learnt models with and
without the expertise feature. The experimental results show
both of the improvements are statistically significant.

Between homepage search and recruiter search, interest-
ingly, the improvements achieved on recruiter search are
higher than the ones on homepage search on every metric.
This is probably because the users on recruiter search
are more active thus they take advantage of the quality
improvement more.

Improvement of Treatment over Control
+20%
+37%

Homepage Search
Recruiter Search

Table IV
THE NUMBER OF DOWNSTREAM MESSAGES PER SEARCH.

VI. CONCLUSIONS

In this paper, we introduce the problem of personalized
expertise search and point out technical challenges faced
when building such a system at scale. We propose a scalable
way to derive expertise scores over a large corpus. Our tech-
niques take into account skill co-occurrence patterns to esti-
mate on both explicit and inferred skills. We leverage state
of the art LTR algorithms to learn final ranking functions
combining expertise scores with other non-personalized and
personalized features. To extract training data, we introduce
a deterministic top-N randomization strategy coupled with
easy negatives alleviating the biases in search logs.

We conducted A/B tests on both LinkedIn homepage
search and recruiter search (a premium product) for a reason-
ably long period of time. The experimental results show sub-
stantial improvements over the legacy system. Specifically,
on homepage search, the proposed approach increases 18 %
on CTR@1, 11% on CTR@10, 14% on MRR and 20% on
downstream messages sent from search. On recruiter search,
the approach achieves even bigger improvements of 31%
on CTR@1, 18% on CTR@10, 22% on MRR and 37%
on downstream messages. The machine-learnt models are
serving nearly all live traffic for skills search on LinkedIn.

We summarize some of our key findings below:

« For finding experts in large professional networks like
LinkedIn, it is crucial to go beyond text matching. Our
approach to inferring skill expertise scores yields a
significant lift. In terms of normalized feature weights,
the expertise scores is amongst the top four most
important features in the final ranking function (due to
SEO-related issues, we cannot release the actual feature
values or their order of importance).

o Collaborative filtering, which has been widely used
for recommendation, turns out to also work well for
inferring skill expertise scores in professional networks.

« Personalization plays a crucial role in expertise search.
For instance, the best geo feature (in terms of nor-
malized feature weights) is also amongst the top four
features.

o Re-ranking offline performance on the training data
extracted by the deterministic top-N randomization
strategy coupled with easy negatives is directionally
inline with online performance. Between two ranking
functions, the one with higher offline re-ranking perfor-
mance also achieves better results on online A/B test
where they are used to rank the whole sets of results.
Thus, this strategy is very useful for personalized
training data collection and for offline testing to make
decision on which models to deploy.

« In terms of system architecture, the two-phase approach
(offline and online) is a reasonable choice for pro-
duction ranking systems. The offline phase runs on
distributed computing platforms like Hadoop. It allows
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processing very large datasets with complex methods
e.g. matrix factorization to produce sophisticated sig-
nals like expertise scores. It periodically generates new
versions of the signals offline. The online phase then
simply consumes the latest versions of the signals in
combination with other signals available in the index
to generate final rankings in real time.
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