Phytochemical profile of differently processed tea: A review

J Food Sci. 2022 May;87(5):1925-1942. doi: 10.1111/1750-3841.16137. Epub 2022 Apr 2.

Abstract

Fresh tea leaves (Camellia sinensis (L.) O. Kuntze) are processed by various techniques to produce different types of tea. The most common way to classify tea types is based on the similarities in processing methods resulting in the five commonly recognized tea types: white, green, oolong, black, and pu-erh teas. The differences in the degree and nature of fermentation of tea leaves lead to different chemical changes depending on the processing method. Understanding the phytochemical profile of differently processed tea is important, as tea types classified by processing methods are currently not well defined because the chemical parameters for these tea types are still not established. Therefore, any significant characteristics found for a tea type due to processing may be helpful in defining tea types. However, the evidence on the impact of tea processing on phytochemical profile and contents in differently processed tea is currently unclear. Therefore, this review aims to examine (1) the processing techniques of white, green, oolong, black, and pu-erh tea, (2) the impact of tea processing on tea phytochemicals, and (3) the key characteristics associated with the phytochemical profiles of differently processed tea. PRACTICAL APPLICATION: Tea (Camellia sinensis (L.) O. Kuntz) is the most widely consumed beverage in the world. Tea consumption has been demonstrated through in-vitro experiments and in animal and human intervention studies to exhibit potential in preventing various oxidative stress-related chronic diseases, such as cardiovascular diseases, Alzheimer.s disease, diabetes and certain cancers. Based on the processing methods, tea is commonly categorized into white, green, oolong, black and pu-er tea. However, there are large overlap in processing methods between some teas and, more importantly, the chemical compositions of differently processed teas are highly variable. This review aims to examine (1) how white, green, oolong, black and Pu-erh tea are processed, (2) what are the effects of tea processing on tea phytochemicals and (3) to identify whether there are key characteristics associated to the phytochemical profiles of differently processed teas. The review will contribute to tea research in collating in one article the state of knowledge on the chemical changes and composition of the differently processed teas, and point to future direction in this area of research.

Keywords: antioxidant; food analysis; student.

Publication types

  • Review

MeSH terms

  • Animals
  • Antioxidants / analysis
  • Camellia sinensis* / chemistry
  • Catechin* / analysis
  • Phytochemicals
  • Tea / chemistry

Substances

  • Antioxidants
  • Phytochemicals
  • Tea
  • Catechin