Der kleinste Magnetspeicher der Welt

Ein Datenbit lässt sich in einem Antiferromagneten aus zwölf Eisenatomen unterbringen – das könnte die Speicherdichte 100fach erhöhen

January 12, 2012

Der IT-Industrie könnten sich nun neue Möglichkeiten eröffnen. Wissenschaftler der IBM Forschungsabteilung im kalifornischen San Jose und einer Forschungsgruppe des Max-Planck Instituts für Festkörperforschung am Center for Free-Electron Laser Science in Hamburg haben die Grundlage für einen neuartigen magnetischen Datenspeicher gelegt. Während herkömmliche magnetische Speicher den Ferromagnetismus nutzen, hat das Forscherteam nun erstmals einen antiferromagnetischen Datenspeicher entwickelt. Der Antiferromagnetismus erschien bislang als ungeeignet, um Computern ein Gedächtnis zu geben. Mit seiner Hilfe haben die Wissenschaftler ein Datenbit nun aber in gerade einmal zwölf Atomen untergebracht und Information 100 Mal dichter gepackt, als dies in heute üblichen Festplatten möglich ist. Damit sind sie auch zu der Grenze vorgestoßen, ab der Quanteneffekte berücksichtigt werden müssen.

Die Nanostrukturen erfüllen alle Anforderungen an Datenspeicher

„Möglich war das nur, weil wir die Atome mit der Spitze eines Rastertunnelmikroskops sehr präzise auf der Oberfläche positionieren können“, erklärt Sebastian Loth. Die Forscher haben die Nanostrukturen also Atom für Atom aufgebaut. Diese weltweit nur von wenigen Laboren beherrschte Präzision ermöglichte es den Wissenschaftlern, zahlreiche atomare Anordnungen zu untersuchen. Dabei stellten sie fest, dass sich zwei benachbarte Reihen von jeweils sechs Atomen am besten als Speicherpunkt für ein Bit eignen.

Mit der Spitze eines Rastertunnelmikroskops ordnen die Forscher die Eisenatome gezielt zu einem Bit an. Die Wechselwirkungen eines Eisenatoms mit der Spitze und der Kupfernitridoberfläche sind in diesem Model durch Feldlinien angedeutet.

„Unsere Nanostrukturen erfüllen alle Bedingungen an ein Speichermaterial“, sagt Andreas Heinrich, der Leiter des IBM-Labors. Sie können zwei Zustände für Null und Eins einnehmen, sie lassen sich dicht packen, auslesen und schalten. „Ehe antiferromagnetische Datenpunkte tatsächlich zum Einsatz kommen, wird aber sicher noch einige Zeit vergehen“, so Andreas Heinrich. Derzeit bleibt die magnetische Orientierung der Eisenketten nur bei Temperaturen von minus 268 Grad Celsius stabil, darüber ändert sie sich ständig. Je stärker die Atome miteinander magnetisch verbunden werden, desto weniger kann Wärme die Anordnung stören – die magnetischen Momente stabilisieren sich gegenseitig, und je mehr es sind, desto besser. „Wir gehen davon aus, dass weniger als 200 Atome bei Raumtemperatur einen stabilen antiferromagnetischen Zustand bilden können“, sagt Andreas Heinrich. Momentan benötigen Festplatten den Platz von ungefähr einer Million Atomen, um dies zu erreichen.

Um die magnetischen Momente in einer antiferromagnetischen Eiseninsel gezielt umzuklappen und so einen Datenpunkt etwa von der Null auf die Eins zu schalten, bedienen sich die Forscher ebenfalls der Spitze eines Rastertunnelmikroskops. Diese setzen sie auf ein Atom am Ende einer Zweierreihe und schicken einen Stromstoß hindurch. Dann dreht sich das magnetische Moment dieses Atoms um und zieht in weniger als 20 Nanosekunden alle anderen Atome nach sich.

Was geschieht jenseits der Grenze, an der Quanteneffekte auftreten?

Stromstöße mit geringer Spannung lassen die magnetische Orientierung unverändert, ermöglichen es den Wissenschaftlern aber, den Zustand der Atominsel zu bestimmen. Die Spitze ist nämlich so präpariert, dass sie selbst ein magnetisches Moment trägt. Wie viel Strom zwischen der Spitze und dem Eisenatom eines Speicherpunktes fließt hängt davon ab, ob ihre magnetischen Momente gleich oder entgegengesetzt orientiert sind.

Nanostrukturen aus weniger als zwölf Atomen erwiesen sich auch bei tiefer Temperatur als zu unstabil für die Datenspeicherung. Denn durch das sogenannte Quantentunneln springen sie unwillkürlich von einem in den anderen Zustand.

„Für klassische Datenspeicher stellen Quanteneffekte eine fundamentale Barriere dar, aber es könnte möglich sein, sie in Zukunft nutzbar zu machen“, sagt Sebastian Loth, der seit kurzem die Max-Planck-Forschungsgruppe Dynamik nanoelektrischer Systeme am Hamburger CFEL und dem Stuttgarter Max-Planck-Institut für Festkörperforschung leitet. In Hamburg konstruiert er ein neuartiges Rastertunnelmikroskop für ultra-schnelle Messungen an einzelnen Atomen. Mit diesem Mikroskop wird er sich auch der Frage widmen, was jenseits der Grenze geschieht, an der Quanteneffekte auftreten. „Wir können die Quanteneffekte durch Form und Größe der Eisenreihen jetzt gezielt beeinflussen. Das erlaubt es uns zu untersuchen, wie die Quantenmechanik einsetzt“, erklärt Loth. „Was unterscheidet einen Quantenmagneten von einem klassischen Magneten? Und wie verhält sich ein Magnet genau an der Grenze zwischen beiden Welten? Das sind spannende Fragen, die jetzt beantwortbar werden.“

PH

Go to Editor View