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ABSTRACT

Training deep neural networks can generate non-descriptive error
messages or produce unusual output without any explicit errors at
all. While experts rely on tacit knowledge to apply debugging strate-
gies, non-experts lack the experience required to interpret model
output and correct Deep Learning (DL) programs. In this work, we
identify DL debugging heuristics and strategies used by experts,
and use them to guide the design of Umlaut. Umlaut checks DL
program structure and model behavior against these heuristics;
provides human-readable error messages to users; and annotates
erroneous model output to facilitate error correction. Umlaut links
code, model output, and tutorial-driven error messages in a single
interface. We evaluated Umlaut in a study with 15 participants to
determine its effectiveness in helping developers find and fix errors
in their DL programs. Participants using Umlaut found and fixed
significantly more bugs compared to a baseline condition.
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1 INTRODUCTION

The surge of interest in Machine Learning (ML) has resulted in
groundbreaking advances in many domains, from healthcare [37,
54], to transportation [72], to entertainment [1]. An enabling fac-
tor of these applications are Deep Neural Network (DNN) models,
which can extract and discriminate features from raw data by using
massive amounts of learned parameters [9]. These “Deep Learning”

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’21, May 8–13, 2021, Yokohama, Japan

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8096-6/21/05.
https://doi.org/10.1145/3411764.3445538

(DL) approaches are incredibly powerful, even surpassing human-
level accuracy on some tasks [23]. DNNs also enable many new in-
teractions over “Classical ML”, such as generating high-dimensional
data [20], and supporting transfer learning, where selected parame-
ters from a DNNmay be retrained to generalize to new applications,
creating high performing models without needing millions of data
points or massive computational resources.

Non-expert ML programmers, such as software engineers, do-
main experts, and artists, can use transfer learning to create their
own models by using recent frameworks which make this task
more approachable with high-level APIs [12, 34]. However, when
bugs are introduced, the default failure mode of DL programs is to
produce unexpected output without explicit errors [70]. ML novices
often expect models to behave as APIs, and have limited mental
models to facilitate debugging, sometimes even abandoning ML
approaches altogether when they fail [10, 29]. Further compound-
ing the issue, DNNs are considered “black box” models, and cannot
be debugged with traditional means such as breakpoints. Experts
rely on their experience and tools such as Tensorboard [2] and
tfdbg [11] to begin inspecting model behavior, but often fall back
on trial-and-error approaches guided by intuition [10]. Adding
structure to the DL development process through explanations and
guidance could help users close this debugging loop and bridge
theory with practice [3, 62].

We introduce Umlaut, the Usable Machine LeArning UTility, a
system which uses a multifactor approach to assist non-experts in
identifying, understanding, and fixing bugs in their DL programs1
(Figure 1). Umlaut draws inspiration from tools and metaphors
in software engineering which inspect code to provide warning
messages and suggestions to developers. This includes linting [38],
unit testing, dynamic analysis [56], and explanation-based debug-
ging [45]. Umlaut attaches to the DL program runtime, running
heuristic checks of model structure and behavior that encode the
tacit knowledge of experts. Umlaut then displays results of checks
as error messages that integrate program context, explain best prac-
tices, and suggest code recipes to address the root cause(s). Our
aim is not to define new heuristics or outperform experts, but to
show how existing heuristics used by experts can be automatically
checked and made accessible to a broader set of users.

A key objective of Umlaut is to support users in overcoming
three critical “gulfs” of the DL debugging process: mapping from
symptoms to their root cause(s), choosing a strategy to address
the underlying problem, and mapping from strategy to concrete
code implementation. Umlaut uses an automated checking infras-
tructure to detect errant model behavior and raise error messages
reflecting the surrounding context. Error messages are presented

1Source code for our system is available at https://github.com/BerkeleyHCI/umlaut
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Figure 1: TheUmlautweb interface combines visualizations

of model metrics (1); a timeline showing errors over epochs

(2); and explanations of underlying error conditions with

the program context and suggestions for best practices with

code examples (3). Plots and the timeline are automatically

annotated with with relevant data when errors are clicked.

in a web interface that tightly couples errors with visualizations
of model output, linking root causes to their symptoms. Error mes-
sages include descriptions of their underlying theoretical concepts,
and suggest potential debugging strategies to bridge theoretical
and practical knowledge gaps. To translate these strategies into
actionable changes, Umlaut errors include code recipes which im-
plement suggested fixes, outbound links to curated Stack overflow
and documentation searches, and links to the suspect lines of code
in source.

Our work makes the following contributions:

• A discussion of opportunities for supporting the DL debug-
ging process, in contrast to Classical ML, through novel user
interfaces

• A novel approach of encoding expert heuristics into com-
putational checks of DL program structure and DL model
behavior

• The Umlaut system, a tool which implements several auto-
matic checks to assist in finding, understanding, and fixing
bugs in Keras programs

• An evaluation which shows Umlaut helps non-expert ML
users find and fix significantly more bugs in DL applications.

2 BACKGROUND: CHALLENGES IN DEEP

LEARNING (DL) DEVELOPMENT

The recent success of deep learning in a variety of domains has led to
an increase in users of DL, and a corresponding growth of tools that
have emerged to help developers with DL workflows. This section
summarizes background information and design considerations for
tools that aim to aid the DL development process.
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Figure 2: To debug DL programs, users first recognize symp-

toms from errant model behavior or code structure. Experts

use mental models built from experience to translate from

these symptoms to hypotheses of underlying root causes. Fi-

nally, code changes are implemented to test the underlying

hypotheses, and training is rerun to check them.

2.1 Key Differences of Designing for DL over

Classical ML

Both “classical” and “deep” ML development processes are often
exploratory [62], where the data, model, and scaffold code are iter-
atively refined to reach target benchmarks [29]. However, there are
critical differences between the implementation of classical ML and
DL approaches which significantly alter the developer experience.
While classical ML can be effectively applied to many problems, DL
can handle high-dimensional, unstructured input and output spaces,
such as object detection and audio-cue detection. We characterize
the fundamental differences between classical ML and DL in this
section and introduce a unique set of challenges that DL support
tools should address.

Data Requirements: Both DL and classical ML models require
ground truth labeled data to train. However, DNNs often require
significantly more data: a rule of thumb suggests a minimum of
5,000 samples per class [19], while classical algorithms such as SVM
or Random Forests require far fewer data points. Handling large-
scale datasets drives up costs for data collection and processing,
particularly in domains with noisy or incomplete data [54].

Featurization: Classical ML algorithms require hand-engineered
features to maximize signal from input data. In contrast, DNNs
learn features from patterns in the data directly, eliminating the
developer-driven feature engineering step [3, 19]. While this pro-
vides DNNs tremendous flexibility in handling unstructured input
data, this offers less control and means developers cannot verify
whether the model has received “features” from extraneous patterns
in the data that confound the effectiveness of the model.

Interpretability: A key feature of classical ML algorithms are
that they are often more interpretable than DNNs. While there are
many meanings and subsets of model interpretability, it is widely
accepted that we do not yet fully understand the exact rules and
features that DNNs rely on to produce specific outputs, and how
well DNNs generalize to new problems [48]. This makes pinpointing
the exact source of numerical errors in DNNs very difficult and
gives rise to “silent errors” in the model that can only be spotted by
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experts with experience pattern-matching code smells to possible
errors [78]. Visualization has been a critical tool in interpreting
DNN behavior, but this still remains an open research question [31].
In contrast, some classical approaches intrinsically attribute the
hand-engineered features most relevant to any prediction.

Training: Unlike classical ML algorithms, DNNs require noncon-
vex optimization of a large number of parameters. This requires
proper initialization of neural network weights [24] and an involved
search process for network hyperparameters [6]. DNN training time
can take days or weeks, often even requiring online tuning in order
to converge [69], lengthening the feedback loop. Experts rely on
experience to determine an ‘educated guess’ of the typical range of
hyperparameters which can drastically decrease the search space.
Novices encounter difficulty in this process, especially when it
generates unknown or ambiguous symptoms.

Transfer Learning: DNNs allow developers to reuse the “feature-
picking” parts of the NN, and “fine-tune” the bottom layers to
use those feature for new domains and applications. A common
interaction is fine-tuning a model trained on many images to a new,
smaller, dataset.

2.2 Detecting Errors during DL Training and

Evaluation

To show how Umlaut fits in the DL development process, we iden-
tify four high-level stages of DL development from prior work [3,
61]: (1) Data Processing, (2) Training and Tuning, (3) Evaluation;
and (4) Deployment. We focus on the challenges that DL developers
face in Phases (2) and (3).

Typical DL workflows require developers to iteratively train and
evaluate their models to identify bugs and modeling issues [3, 70].
We characterize this debugging process using the DL debugging cy-

cle shown in Figure 2. During this cycle, developers repeatedly train
models with a specific experimental setup of network architectures,
loss functions, and hyperparameters. The model performance is
then evaluated by qualitatively inspecting the classification results
of various data examples, and quantitatively by calculating accuracy
on a validation set. Using the results generated by the training run,
developers recognize symptoms, form hypotheses to the root causes
of problems, and make decisions to modify the experimental setup
using their theoretical understanding of the models. They will then
re-run the experiment and this cycle continues until developers
obtain a model with satisfactory performance.

Debugging DL models is challenging because even though errors
occur in both the training and evaluation phase, the symptoms
often only materialize in the evaluation phase in the form of poor
model performance [3]. While experts often rely on a continuously
refined set of best practices that pattern-match model outputs to
effective modifications, novices often think of DL models as black
boxes and can have difficulty in recognizing and understanding
symptoms [3, 10, 29].

2.3 Mapping Symptoms to Root Causes

One critical step in the DL debugging cycle (Figure 2) is to map
modeling issues from symptoms to their root causes. This step re-
quires developers to analyze model outputs and training curves,
classify specific issues from these statistics, and convert them into

actionable items. Current error mitigation practices are often ad
hoc, such that developers usually only have tools that document
performance metrics and general theory resources, but are required
to manually draw connections between them. For example, a devel-
oper might need to consult best practices collected from literature,
expert blogs, and academic lectures [7, 39, 40, 66] to derive a set of
actionable items that resolve their issues. Developing this skill re-
quires extensive time and exposure to errors at different stages and
levels of abstraction: the program, theory, data, etc. These skills are
essential for successfully training a model with high performance,
yet helping novices gain the tacit knowledge needed to successfully
diagnose and debug model issues remains an open challenge [5].

3 RELATEDWORK

We map prior work in three axes that correspond to Section 2
based on their contributions, and discover design opportunities for
Umlaut in complementary areas.

3.1 Interfaces for Supporting Classical

Machine Learning Workflows

HCI research has produced novel interfaces which allow users to
interactively train and tune ML models as early as 2003 [14, 15, 42,
50]. Gestalt is a toolkit which adds structure to the ML development
process with an IDE [61]. Makers can use ESP to interactively
train and deploy gesture recognition models on hardware [52].
Other works help compare DL model performance, but only once
the models are trained [55]. While these tools support the feature
engineering workflow required for classical ML, Umlaut focuses
on training and tuning DNNs. DNNs instead learn features from
input data and enable powerful new applications.

3.2 Tools for comparing and improving DL

Model Performance

Research and engineering teams have produced novel interfaces
to compare model performance [55, 71, 76] and subsequently de-
bug modeling issues. Because of the intrinsic relationship between
training data and a model, these tools can highlight relevant train-
ing data contributing to outliers [30, 60, 74] and refine the model
itself [4]. Taking steps towards debugging these issues, Tensor-
Fuzz adapts coverage-based fuzzing to identify model inputs which
generate numerical errors [57].

In addition, Umlaut is inspired by a field of academic research
in Explainable Artificial Intelligence (XAI) which help practitioners
interpret the output and behavior of their ML models. DNNs often
have too many parameters to easily understand, and explaining
their output is an active area of research [17]. Methods like Saliency
Maps can highlight the specific parts of an input image used to
make a prediction [41, 58], while Concept Activation Vectors (CAV)
can explain the higher-level concepts used [43].

Evaluating the performance of ML models is a critical step, but
all of the aforementioned prior work depends on having an already-
trained model. Umlaut assists users in the training step required
before evaluation. We believeUmlaut is an early step in both debug-
ging and providing explanations of neural network output during
the training process.
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3.3 Prescribing Best Practices and Code

Changes in Context

As mentioned in Section 2, current tools mostly help inform code
changes in DL development workflows by tracking and instrument-
ing experiments for large-scale deployments [35, 47, 63]. While
these tools are critical for developers to track the progress of their
experiments, they typically do not directly report any potential
errors. ML practitioners can also add instrumentation and visualiza-
tions to their DL models using toolkits such as TensorWatch [65]
and Lucid [58], but the choice of visualization and its interpretation
requires expertise.

Several studies conduct empirical analyses of bugs found in ML
programs using data from Stack Overflow and GitHub [33, 36, 77,
78]. These works create a high-level classification of common bugs,
but don’t link between symptoms, root causes, and actionable items
in context. On the other hand, some tools in research [7, 64] and
deployment (such as EarlyStoppingHooks [12]) use algorithmic
checks for training. However, while these actions are taken in
context during training, they do not produce error messages, link
to root causes, or tie back to other information (e.g. learning curves).

Inspired by work in supporting traditional software develop-
ment [8, 16, 18, 22], Umlaut also suggests code examples from offi-
cial documentation and best practices pulled from StackOverflow,
which helps users to directly address errors and dive deeper into
the code. Umlaut builds upon established paradigms in software
engineering such as linting [38], unit testing, dynamic analysis [56],
and explanation-based debugging [26, 45]. Umlaut works in con-

text to help users interpret the behavior and inspect the points of
failure of their ML applications [28], as similar paradigms have
not been extensively explored for DL development. We draw ad-
ditional inspiration from software visualization [68] and tutorial
systems for complex user interfaces [21]. Umlaut also adapts an
automated-checking infrastructure that enables running tests over
model runtime behavior to flag problems for non-expert users. This
approach has been used in other HCI research to assist debugging
electrical circuits and embedded systems [13, 51].

4 DEBUGGING ML PROGRAMSWITH

UMLAUT

To use Umlaut, users attach a Umlaut client to their program,
which injects static and dynamic heuristic checks on the program,
parameters, model structure, and model behavior. Violated heuris-
tics raise error flags which are propagated to a web-based interface
that uses interlinked visualizations, tutorial explanations, and code
snippets to help users find and fix errors in their model.Umlaut also
emits flagged error messages to the command line, inline with Keras
training output, to reduce context switching. Heuristics, errors, and
their implementation are described further in Section 6.

To illustrate how Umlaut works in practice, consider Jordan, a
park ranger who wants to receive a notification when rare birds
appear in a bird feeder camera. Jordan has domain expertise in or-
nithology and birding, and has taken an online data science course,
but they are not an ML expert. Jordan was able to prepare a labeled
dataset of birds at the feeder using previous recordings, and they
found a template project from the data science course to use a pre-
trained Resnet image classification model [25] for transfer learning.

Jordan’s next step is to fine-tune the pretrained model on their new
dataset. After fixing the input image shapes from a bug produced
by Keras, Jordan is able to get the training loop to run. The loss is
now decreasing, and accuracy rising, but only to 60%–not enough
for their application. Jordan manages to contact their former data
science instructor, who volunteers a quick look at the program, but
can’t seem to find anything wrong. Jordan hears that Umlaut can
help detect and fix bugs in DL programs, and gives it a try.

4.1 Importing Umlaut and Creating a Session

To use Umlaut, Jordan adds three simple lines of code to import

and attach it to their program: they import the Umlaut package,

pass the model and other inputs to the Umlaut object, and add the

Umlaut callback to the training loop.

A key design principle of Umlaut is to ensure it integrates
smoothly into existing DL frameworks and development tools. We
choose to integrate Umlaut into the Keras API of Tensorflow 2,
because of its high-level API and its broad community support. At
runtime, the Umlaut client adds a callback and injects shims into
the Keras training routine. While the model is training, the client
runs several heuristic checks, sending metrics and raised errors to a
Umlaut server through a named session. Colliding session names
are appended with an auto-incremented integer.

4.2 User specification of Umlaut checks

Before running Umlaut with their training loop, Jordan tells Um-

laut that their model expects images as input and a sparse vector out-

put indicating the predicted class by passing the inputtype=’image’
and outputtype=’classification’ arguments to theirUmlaut call.

These flags tell Umlaut to run additional checks (e.g., ensuring the in-

put dimensions are consistent with image formats and that a softmax

layer is used on the output).

Users can supply arguments to Umlaut which specify the ex-
pected input and output formats of the model, reflecting the high-
level problem statement. Umlaut supports image or sparse text
inputs, and classification or regression outputs. Depending on the
user’s guidance, Umlaut selects different checks to run based on
the input, and alters the content of output error messages (e.g., en-
suring an RGB color image has 3 dimensions and is normalized, or
that a classification loss function such as cross entropy is not used
for a regression output). This specification is optional, but leads
to more detail in error messages and a wider selection of checks.
This is a novel interaction for DL debugging, and can be used to
ensure the model architecture and data preparation match with the
intended problem type.

4.3 Actionable Error messages

When Jordan runs Umlaut with a training session, they see some

errors appear in the web interface. They first turn to an error marked

as Critical (“Missing Activation Functions”).

A significant, novel component of the Umlaut system is that
it generates error messages to explain silent error conditions. Um-
laut lists suspectedDL program issues, highlights their root cause(s)
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Figure 3:Umlaut errors include several elements to help de-

velopers close the DL debugging loop. Errors include short

and long descriptions (1) with suggested solutions (2), of-

ten incorporating programcontext (3). Solutions can include

code snippets or hints (4), and outbound documentation and

Stack Overflow links (5). To help users pinpoint the root

cause(s) in code, some errors include links to open the source

file in VSCode at the specific location of the suspected root

cause (6).

with integrated program context, offers potential solutions from col-
lected best practices, and directly links error messages to visualiza-
tions of model output. Error messages produced by Umlaut contain
the following elements:

4.3.1 Title and Severity Qualifier. Error messages produced by Um-
laut have titles which reflect their respective root causes. Titles are
given severity qualifiers (Warning, Error, and Critical) depending
on the expected impact on model performance. Warnings have
minimal impact on accuracy, but may lead to issues in the future
(e.g., an issue with validation data). Critical errors can prevent the
model from learning from data at all (e.g., a hyperparameter causing
loss to reach NaN). Severity qualifiers are added manually to error
message titles, but future iterations of Umlaut could automatically
assign them based on predicted impact.

4.3.2 Instructional Description with Program Context. Studies of
the experiences of non-expert ML developers show that building an
understanding of ML theory and bridging that theory with practice
are significant hurdles [10, 29]. In Umlaut error messages, descrip-
tions explain the surrounding ML theory, describe the heuristic
check used to raise the error, and suggest actionable bug resolution
steps in order to bridge knowledge gaps for non-expert users. Error
messages can also include program context to shed light on the
particular conditions which raised an error during program execu-
tion. The context is dependent on the particular error, and includes
runtime data, such as values of variables which exceeded the limits
of a heuristic, prototypes of API calls with invalid arguments, or
names of model layers with invalid hyperparameters assigned.

Jordan remembers learning about different activation functions

for DNNs in their class, helped by the quick refresher from Umlaut’s

error description. Jordan looks at the program context in the error and

sees that Umlaut printed the names of layers in the model with linear

activation functions—the bottom layers which were swapped in for

transfer learning on the bird dataset. It was a simple mistake: Jordan

simply forgot to add an activation argument, and Keras assigns linear

activations when the argument is omitted.

4.3.3 Bridging to Best Practices with Code Examples. While theory
is critical for building mental models to aid in DL debugging, the-
ory alone is not enough to guide users in decision making when
debugging. Furthermore, understanding the proper API usage of
DL frameworks themselves can remain challenging to novices [29].
Umlautmakes error messages actionable by including descriptions
of potential solutions based on best practices and by instantiating
them with concrete code examples.

Beyond code snippets, error messages in Umlaut can provide
outbound links to curated Stack Overflow searches (e.g., [keras]
is:closed from_logits to search for closed issues with a “Keras”
tag for a search query) and links to Tensorflow documentation for
relevant APIs. Altogether, program context, grounded in explana-
tions of why it has raised errors, helps develop user mental models
of DL debugging; while code snippets embodying best practices
help users close the debugging loop by making the appropriate
fixes to their application.

Jordan remembers learning about many kinds of activations in

their class—sigmoid, tanh, relu, . . .—but can’t remember when to use

which one. Reading further in the Umlaut error message, a code hint

suggests adding activation=’relu’ when working with image data.

Jordan copies this hint to paste into their program.

4.3.4 Referencing the Suspected Root Cause in Code. To further
assist users in closing the debugging loop in larger models or more
complex programs, the Umlaut client ingests the source of the
program being debugged and inspects stack frames in the Python
runtime to guess the closest line of code to the source of a given
error. The Umlautweb interface renders these links as URLs which
open the Visual Studio Code editor to the specified line and charac-
ter in the file where the bug occurred.

Jordan notices the error message has an “Open in VSCode link”.

They click the button and are taken directly to first layer missing an

activation function. They paste the code hint from Umlaut there and

into the other layers missing nonlinear activations. Relieved it wasn’t

something more serious, Jordan restarts the training process.

4.4 Bidirectional Link Between Errors and

Interactive Visualizations

Inspired by development tools such as Tensorboard [2] andWeights
and Biases2, Umlaut uses simple visualizations to show how model
training progresses over time. Line plots show loss and validation
accuracy values at the end of every training epoch (a complete
iteration over the training dataset), with multiple traces for training
and validation. As a rule of thumb, decreasing loss and increasing
accuracy plots that slow over time are a positive indicator. When

2https://www.wandb.com/
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errors are present in a DL program, anomalies may appear in these
plots, which are often subtle and require expertise to decipher [39].

Jordan keeps an eye on the Umlaut plots as new training met-

rics stream in. They notice the validation loss plot starts decreasing,

then plateaus and starts increasing. A new warning message pops

up: “Possible Overfitting”. Clicking the error highlights the epochs in

the loss plot where the validation curve started increasing while the

training curve decreased, confirming Jordan’s suspicion that this was

an undesired result. Following the recommendations of the overfitting

warning, Jordan adds Dropout to the model and reruns training.

4.4.1 Error Timeline. Umlaut also displays a timeline visualiza-
tion, which encodes the type and frequency of errors encountered
in the DL program over time. For every training epoch, unique
errors are stacked on a vertical axis, distinguished by a 4-element
categorical color scale. This visualization allows the user to inspect
the behavior of the model and training process over time, e.g., spot-
ting errors flagged before the beginning of the training process
(plotted below the horizontal axis) or errors which only appear
later during training (such as overfitting or spiking loss from an
outlier in data). Users can click on the timeline or on error messages
to highlight specific regions in the line plots. Plot annotations show
which epoch(s) the errors occurred, and where the behavior of the
curves caused a heuristic to raise an error. Inspecting the timeline
may also help determine when a raised error was a false positive,
e.g., when an error appears sporadically, or rarely.

After the last training run, Jordan keeps an eye on the loss and

validation plots. They seem to look fine this time, but the Overfitting

warning pops up again. They’re skeptical, since they just implemented

a fix earlier, so they click the error to highlight parts of the error

timeline, and the loss and accuracy plots. Jordan sees there were

two epochs when the validation loss went up a small amount, but

the overall trend looks fine. They make the judgment call that the

error was likely a false alarm, and save the model checkpoint, at an

accuracy of 84%.

With the model trained, Jordan writes a quick program that uses

it to classify live images from the camera feed and notify them by

email when a rare bird appears. The system not only helps Jordan

enjoy the wildlife, but logging the rare birds’ feeding activity from

the classifier output also helps in their conservation efforts.

5 UMLAUT HEURISTICS

In order to codify best practices from experts into Umlaut’s au-
tomated checking infrastructure, we identify and implement 10
preliminary heuristics based on commonalities in various sources
including lecture notes [39, 66, 67], industry courses and articles [32,
49], textbooks [19], expert practitioner blogs [40], default values
in APIs [2, 12], and early-stage research cataloguing tensorflow
program tests [7]. We prioritized heuristics which covered bugs
and conceptual misunderstandings shown to be common themes
in Stack Overflow questions, open source DL projects, and expert
interviews from existing literature [33, 77, 78].

Our heuristics map to common issues in data preparation, model
architecture, and parameter tuning. We implement a check for each
which is static (using a snapshot of the program prior to training)
or dynamic (analyzing the program during model training runtime).
Each heuristic check has an associated severity qualifier (Critical,

Error, Warning) and error message written by the authors. These
error messages include context and suggestions summarized from
the heuristic’s sources, and are described in Appendix A. Our list
is not exhaustive, and we discuss how Umlaut may be extended
with additional heuristics checks in Section 6.

Although the heuristics we select are widely-accepted and often
apply to common use cases, they may not always apply to a user’s
specific context (resulting in a false positive or negative). In partic-
ular, some heuristics used in the ML community suggest concrete
values, e.g., for learning rate or image dimensions. Umlaut adopts
commonly used values, e.g., input normalization between -1 and
1. There values might change with new developments in under-
lying algorithms or community conventions. Future versions of
Umlaut could have such values exposed as configuration parame-
ters that users can update over time.

5.1 Data Preparation

5.1.1 Input Data Exceeds Typical Limits (dynamic). Normalizing
input data to a common scale can help models converge more
quickly, weigh features more evenly, and prevent numerical er-
rors [49, 66]. Normalization is often regarded as an important “de-
fault” setting [70]. Umlaut checks if the input data exceeds the
typical normalization interval of [−1, 1].

5.1.2 NaN Encountered in Loss or Input (dynamic). The loss value
of a training batch can overflow and become NaN during training
as a result of non-normalized inputs or an unusually high learning
rate [39, 49]. Umlaut checks whether NaN values appear in the loss
output, and, if so, whether they appear in the input. Umlaut sep-
arately checks if the current learning rate is unreasonably high
(Section 5.3.1) which could also be causing NaN loss values.

5.1.3 Image input data may have incorrect shape (dynamic). DL
frameworks expect image inputs to convolutional layers to follow
a particular format (typically “NHWC” or “NCHW”)3. If these di-
mensions are not ordered as expected, the program may still run
without an error, but the network will have incorrect calculations
of convolutions in those layers (i.e. convolving over the wrong
channels). This can reduce accuracy and speed due to a resulting
incorrect number of parameters. Umlaut checks the input sizes
of these dimensions (assuming input image height matches width,
common for many vision tasks) against the configured ordering.
Umlaut raises an additional error message if the configured chan-
nel ordering is not optimal for the hardware the program is running
on (CPU or GPU).

5.1.4 Unexpected Validation Accuracy (dynamic). When a model’s
prediction accuracy on a validation set is unusually high or when
it exceeds the value of its training set accuracy, this may indicate
leakage between the training and validation data splits [49]. Um-
laut checks if the validation accuracy exceeds the training accuracy
or exceeds 95% after the third epoch (to reduce noise).

3https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
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5.2 Model Architecture

5.2.1 Missing Activation Functions (static). When multiple linear,
or “Dense” layers are stacked together without a non-linear activa-
tion in-between, they mathematically collapse into a single linear
layer rendering additional parameters useless. Therefore, a non-
linear activation function must be used between them to produce
nonlinear decision boundaries [19, 66]. Umlaut inspects the model
architecture and raises an error if two linear layers are stacked
together without a nonlinear activation in between.

5.2.2 Missing Softmax Layer before Cross Entropy Loss (static).

Some loss functions expect normalized inputs from a softmax layer
(i.e., classification outputs that model a probability distribution,
such that each class’s probability is between 0-1 and sums to 1) [70].
The Keras defaults for cross-entropy loss expect softmax inputs,
so omitting a softmax layer (or omitting the from_logits=True
argument to the loss function) can result in a model that learns in-
efficiently due to improper gradients. Umlaut checks that softmax
is being calculated before the cross-entropy loss calculation.

5.2.3 Final Layer has Multiple Activations (static). A complemen-
tary problem to a missing softmax layer prior to the loss calculation
is the addition of an extra activation function. Umlaut checks
for stacked activation functions, which is redundant or may even
impact model performance negatively.

5.3 Parameter Tuning

5.3.1 Learning Rate out of common range (dynamic). Setting the
learning rate too high or too low can cause drastic changes to model
behavior and cause several symptoms in output. A learning rate
which is too high can cause NaN outputs or a non-decreasing loss
value during training, while a low learning rate can cause loss to
converge to non-optimal values early [39, 70]. Best practices for
initializing learning rates vary: Keras initializes the Adam optimizer
with a learning rate of 0.001, while some experts suggest 0.0003 [40].
Because selecting a learning rate is highly problem-specific, Um-
laut checks that the optimizer’s learning rate falls between 0.01 and
10−7 (near the limit of precision for 32-bit floating point numbers)
and raises an error if it falls outside this range.

5.3.2 Possible Overfitting (dynamic). Overfitting occurs when a
model fits training data too closely, reducing its ability to general-
ize to new data. This is a core challenge to DL development since
features created by a DNN may capture subtle elements dispropor-
tionately common in training data [48]. To check for overfitting,
Umlaut determines if the generalization error of its model has
started to increase while the training error continues to drop, a
widely-accepted indicator of overfitting [19, 39, 49, 66]. Our imple-
mentation of this check is reproduced in pseudocode below:

function DetectOverfitting(epoch, model, logs)
d_loss = logs.loss - model.history.prev_loss
d_val_loss = logs.val_loss - model.history.prev_val_loss
if d_val_loss > 0 and d_loss <= 0 then

raise OverfittingError(epoch, context=(d_loss, d_val_loss))
end if

end function
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Figure 4: Umlaut uses the Keras callback system to col-

lect metrics about the training process during runtime. Um-

laut also injects variables into the underlying Tensorflow

model graph to capture input and output values, and collects

a reference to the model object.

5.3.3 High Dropout Rate (static). In order to prevent overfitting and
aid in generalization, dropout can be used, which probabilistically
prevents a percentage of neurons from receiving gradient updates.
Umlaut checks the model configuration before training and raises
a warning if the dropout probability exceeds 50%, which could
lead to redundancy in the model and a reduction in accuracy due
to lower-than-desired number of parameters. This error is often
be caused by the users’ confusion between the ‘drop’ and ‘keep’
probability, which are opposites. Our implementation of this check
is reproduced in pseudocode below:

function DetectHighDropout(model)
flagLayers = list()
for layer in model do

if layer is Dropout and layer.dropoutRate >= 0.5 then
flagLayers.append(layer.index, layer.name, layer.dropoutRate)

end if

end for

if flagLayers then raiseHighDropoutError(context=flagLayers)
end if

end function

6 IMPLEMENTATION

Umlaut is comprised of 2 major components. The first is a client
program which interfaces with a Keras training session, injects
checks into the runtime, then uses those checks to raise errors.
Metrics and errors are streamed from the Umlaut client to the
second component, the Umlaut server. The server logs errors and
metrics in a database, and renders data and error messages with a
web application.

6.1 Umlaut Client Shims and Structure

The Umlaut client is packaged as a Python library which can
be imported and configured for use with a Keras program in 3
lines. Users import the library, configure and initialize the imported
UmlautCallback object which returns a tf.Keras.callbacks.Callback
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Figure 5: The Umlaut client uses data collected from shims

to run static checks of the model before training, and dy-

namic checks during training. Heuristic checks and errors

(reflecting root causes) are distinct concepts in Umlaut’s ar-

chitecture, allowing similar, yet subtly different symptoms

to raise different root causes from within the same check.

instance, and pass that callback instance as an argument to the
model.fit training function.

In order to access and diagnose a broad range of error symptoms,
Umlaut requires several data sources from the DL program runtime.
Because these sources must be transparently instrumented, we refer
to the instrumentation as “Model Shims”.Umlaut uses various APIs
and shims to ingest the following runtime information (Figure 4).

KerasCallbacks Provide EpochNumber andTraining logs:
The Keras framework implements a callback mechanism which pro-
vides hooks at various steps during the model training process. The
Umlaut client is primarily implemented as a Keras callback which
runs static program checks before training starts and dynamic
checks after the completion of every training epoch. Pre-training
checks are not provided data from Keras, and rely on access to the
model object and source module (described below). Callbacks fired
during training are passed epoch numbers for indexing, and a logs
object which contains the loss and accuracy values from the current
epoch on the training and validation data.

Users Provide the tf.keras.Model Object:When initializing
the UmlautCallback, Users must pass themodel being trained as an
argument. Themodel object exposesmany critical elements for diag-
nosing errors. The logs object provided by Keras callbacks only pro-
vides a snapshot of themodel’s loss and accuracymetrics. Having ac-
cess to themodel instance exposes a tf.Keras.callbacks.History
object which stores loss and accuracy values from every epoch in
the current training run. The history object allows Umlaut to check
the behavior of the model over time, enabling more complex heuris-
tics (e.g., detecting overfitting). The model object also exposes its
underlying structure, e.g., the individual layers and optimizer.

Model callOverrided to Access Input and Output: In order
to access copies of data passed into and predictions from the model
during training, we override its call function. To do this, we add
two tf.Variable objects to the model execution graph (before and
after). The variables store copies of the model’s latest input and
output data, and can be evaluated in the Tensorflow session used
in the Keras backend.

Module Source CodeCaptured by Searching Stack Frames:

Some error messages rely on the location and contents of the pro-
gram source code. Umlaut uses the Python traceback library to
guess which source module contains the training loop, and then
stores the contents of the file for searching.

6.2 Umlaut Client Logic: Running Checks and

Raising Errors

During the training process, Umlaut aggregates inputs from model
shims and dispatches them to test runners. Test runners run static

checks before training starts, and dynamic checks during program
execution, after every training epoch. Checks during either of these
stages can raise errors, which include client program context, and
are stored on the Umlaut server. A key design choice in the im-
plementation of Umlaut was to decouple checks and errors. This
allows more flexibility and brevity in cases where one heuristic
could detect similar symptoms that map to different errors.

Static checks inspect the structure of the model and its parame-
ters without any context from runtime. Dynamic checks use con-
text from program runtime in concert with model structure and
parameters. Dynamic checks can capture snapshots of the program
execution environment (e.g., to find input data with NaN values), or
can track the behavior of the model over time (e.g., capturing over-
fitting when training loss decreases and validation loss increases).
The performance impact of static checks is minimal, and model
size impacts performance on the order of ms. For dynamic checks,
Umlaut mostly operates on aggregate metrics already collected
by Keras, and the added operations from shims have no noticeable
effect on performance. We confirmed this by running Umlaut on
more complex models (see Section 7).

When a check raises an error, it initializes that error with the
program context necessary to render the error in Umlaut’s web
application (e.g., including the names of layers with missing acti-
vation functions or the value of a high learning rate). At the end
of every epoch, the client sends metrics (loss and accuracy for test
and validation sets) and errors to the server. For errors, only a
unique error key and the related context is sent to the server, and
the server renders the error’s static description and contents. Since
these requests use aggregate data, they impact performance on the
order of tens to hundreds of ms (including network latency) per
epoch.

Umlaut’s design allows new checks and errors to be added in
a standardized way. To do this, a developer must add a new error
message by subclassing a base error template in the Umlaut server,
and a check function that raises the new error to a check runner in
the Umlaut client.

6.3 Umlaut Server

The Umlaut web interface is implemented using Plotly Dash with
the Flask web framework, and MongoDB for the database. The web
application exposes a REST API to accept updates from the Um-
laut client which stores errors and metrics associated with their
session in the database. When a user navigates to the Umlaut ses-
sion view, the page polls the database and rerenders the page when
new data is present. Interactive graphing features in the web ap-
plication are implemented using Plotly Dash’s Pattern Matching
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Callbacks feature. This functionality allows click events on an error,
the timeline, or a plot to update the other corresponding elements.

7 USER EVALUATION

We evaluate the usability of Umlaut’s interface as well as its ability
to help developers find and fix bugs in ML programs in a within-
subjects user study with 15 participants. We introduce bugs into
two image classification programs, and measure the number of
bugs participants find and fix, with and without Umlaut.

7.1 Participants

We recruited 15 participants (12 male, 3 female; ages 18-30, 𝜇 = 23.8,
𝜎 = 3.1) from university mailing lists to participate in our study.
Through a recruiting survey, we accepted participants who were at
least familiar with ML concepts and development, but who did not
identify as an expert or professional (i.e., excluding ML reserachers
who primarily develop ML models). Of our participants, 12 had
integrated existing machine learning models into projects, and
9 had retrained the last layers of an existing machine learning
model to adapt it to a use case. 4 participants had developed new
machine learning models, and 2 had contributed to open source
machine learning projects. Questions determining expertise were
adapted from Cai et al. [10]. 14 participants were graduate students,
and 1 undergraduate. 11 had academic backgrounds in computer
science, 3 in electrical or computer engineering, and 1 in mechanical
engineering. Participants were compensated $20 USD. Evaluations
lasted under 60 minutes.

7.2 Setup

Due to the COVID-19 pandemic, the study was conducted remotely
using Zoom video-conferencing software on the experimenter’s
laptop, a 2016 MacBook Pro. Participants used the Visual Studio
Code IDE with the Pylance Python language server [59] and VS
IntelliCode [53], which together provide relevance-ranked auto-
completion and syntax checking. Python files for the debugging
tasks were loaded and executed by the IDE on a Google Cloud
Platform instance with an Nvidia Tesla T4 GPU to reduce model
training time. For the CIFAR-10 task, training the provided model
for 10 epochs took under 1 minute.

7.3 Study Design and Tasks

Wemodeled the design of our user evaluation after that of Gestalt [61].
Our study was a within-subjects design, comparing Umlaut to a
baseline condition across two debugging tasks. To account for in-
teraction effects from the ordering of these conditions, tasks were
counterbalanced by condition (baseline vs Umlaut) and by order
(Program A vs Program B). We measured the number of bugs found
(i.e., the explicit root cause verbally indicated by the participant)
and fixed in each task. Bugs which only had a partial fix (e.g., adding
missing nonlinearities in convolutional but not linear layers) were
not counted as fixed.

For the debugging tasks, we created a simple Keras program
which loads the CIFAR-10 dataset [46], constructs a 7-layer convo-
lutional neural network, configures cross entropy loss and Adam
optimization [44], trains the model for 10 epochs, and evaluates
model accuracy on the CIFAR-10 test set. We designed this program

to be as simple as possible—under 35 lines of code (under 40 when
adding Umlaut)—for two key reasons. First, simplicity strengthens
the baseline condition by being easier for the participant to fully
understand. Second, the model is able to train quickly (under one
minute on a GPU) before the test accuracy plateaus around 77%,
making more iteration feasible in the study timeframe compared to
a larger (but potentially more accurate) model.

We created two modifications of this program, Program A and
Program B, and inoculated both with three unique bugs. These pro-
grams both execute without any explicit Python errors or warnings,
but the bugs impact the accuracy of the model at different levels of
severity: low (approx. 0-5% reduction in accuracy),medium (approx.
6-20% reduction in accuracy), and high (accuracy will not increase
beyond random chance). The bugs in both programs were also cho-
sen to span common stages of the ML development process: Model

Architecture, Parameter Tuning, and Data Preparation. Finally, the
bugs may generalize well to different learning tasks, e.g., image
classification, sentiment classification, pose estimation,. . . ).

The bugs introduced into Program A were:
• A1: No softmax function was added after the final Dense
layer, causing the optimizer to receive unnormalized logits
and not improve loss (High severity, model architecture)

• A2: Dropout rate set to 0.8, resulting in only 20% of model
capacity being used (Medium severity, parameter tuning)

• A3: Input images were not normalized, with values ranging
from 0-255 (Low severity, data preparation)

The bugs introduced into Program B were:
• B1: Learning rate was set to -1e3 instead of 1e-3, resulting
model being unable to learn from data (High severity, pa-
rameter tuning)

• B2: No ReLU activation functions were added to the model,
resulting in stacked convolution or dense layers collapsing
into a single layer (Medium severity, model architecture)

• B3: Validation data overlapped with the training set, picking
the first 100 training images (Low severity, data preparation)

As a test, we connected Umlaut with VGG16 and ResNet101
from the Keras.applicationsAPI and ran it in the same scenarios
as our user evaluation (adding bugs A1, A3, B1, B3). A2 and B2 were
not considered as they would require source code changes to Keras.
We verified the same errors as our small test model were raised.

7.4 Procedure

After completing an entry survey, participantswere shown aminimum-
example Keras program which fit a linear model (2 Dense layers)
on a different, simpler dataset (Fashion-MNIST [75]) in the Visual
Studio IDE. Participants were shown the dataset Readme, the struc-
ture of the program was explained (imports, data loading, model
architecture, training configuration, training, and evaluation), and
the program was executed in the editor. For participants starting
in the Umlaut condition, the application had lines of code added
for invoking Umlaut. The Umlaut web interface was loaded on a
web browser on the researcher’s laptop, and the example program
was run with an Umlaut session attached. The Umlaut command
line and web interfaces were explained, and participants were told
error messages were based on heuristics, so there may be false
positives. For participants starting in the baseline condition, the
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example program with Umlaut code added was demonstrated be-
tween completing the baseline and Umlaut tasks.

Before starting the first debugging task, participants were shown
the Readme for the dataset used by their debugging task programs,
CIFAR-10 [46]. Participants were told they would be shown a pro-
gram with multiple bugs, and their task would be to find, explain,
and fix all the bugs they found in that program. Participants were
told they should not need to make major architectural changes to
the models (e.g., by adding or removing layers, or changing the
sizes of Conv2D or Dense layers), but were able to if desired. Partic-
ipants were told they could use any online resources needed, e.g.,
documentation, Stack Overflow, or web search; and the researcher
could troubleshoot the apparatus or explain the Umlaut interface,
but not assist with debugging. Finally, participants were told a bug
free version of this program could have a target test accuracy of
77%, but were reminded their goal was not to maximize accuracy,
and that a high accuracy does not guarantee a bug-free model. The
training period took approximately 15 minutes (plus 5 for Umlaut).

Participants were then shown program A or B, in the baseline or
Umlaut condition. The only differences between conditions were
that Umlaut code was added to the program and opened in a web
browser. Participants were not allowed to use Umlaut software in
the baseline condition. After completing the first task, the other pro-
gram was shown, in the other condition. Participants were limited
to 15 minutes of debugging time per program.

8 RESULTS AND DISCUSSION

8.1 Umlaut Helped Participants Find and Fix

Significantly More Bugs

Across both programs, participants using Umlaut found more bugs
(𝜇 = 2.8, 𝜎 = 0.4) compared to the baseline condition (𝜇 = 1.8, 𝜎 =

1.1). This difference is statistically significant (Wilcoxon Signed-
Rank test, 𝑍 = 2.67, 𝑝 = 0.004). Furthermore, participants using
Umlaut were able to implement fixes for more bugs (𝜇 = 2.5, 𝜎 =

0.5) compared to the baseline condition (𝜇 = 1.5, 𝜎 = 0.9). Again,
this difference is statistically significant (Wilcoxon Signed-Rank
test, 𝑍 = 2.65, 𝑝 = 0.004).4

Furthermore, survey responses collected from participants con-
firm and strengthen these findings. On 5-point Likert scale ques-
tions (1= strongly disagree, 5=strongly agree), participants indi-
cated that Umlaut helped them find (𝜇 = 4.3, 𝜎 = 0.70) and fix
(𝜇 = 4.0, 𝜎 = 1.1) bugs they would have not noticed without it. Par-
ticipants also indicated a high likelihood of integrating Umlaut as a
regular part of [their] ML development processes (𝜇 = 4.3, 𝜎 = 0.60).
The distribution of ratings for these questions is shown in Figure 6.

8.2 Open-Ended Feedback

We asked participants to share open-ended comments on the advan-
tages and disadvantages of Umlaut, what they liked and disliked
about its interface, and what additional features would make it truly
useful. We conducted an open coding phase over the qualitative
responses, and further grouped codes into related topics [73].

4Wemeasure significance using a non-parametric test to account for the possibility that
our participants’ actual skill levels may not be normally distributed due to recruiting
graduate students in engineering departments.

Figure 6: Distribution of participants’ ratings on likert-

scale questions (Top row: 1=Strongly Disagree to 5=Strongly

Agree; Bottom Row: 1=Very Unlikely to 5=Very Likely)

8.2.1 Model Checks Illuminate Silent Errors and Save Time. Many
participants commented on the general difficulty of debugging ML
code, and remarked that Umlaut was a significant step in making
the process quicker and easier. P7 relatedML debugging to trial-and-
error, and suggested Umlaut added missing structure: “[Umlaut]
Makes the whole guess-and-check debugging flow a lot faster and

smoother. Instead of having to comb over the code and form my own

hypotheses about what could be wrong, Umlaut will provide you with

a list of possible issues.”

Others validated the prevalence of silent errors in ML debugging,
and how Umlaut shed light on these difficult-to-find errors, saving
time: “[The primary advantage of using Umlaut was] automatic

checking for common "errors" like missing activations or strange

learning rates that don’t cause runtime errors but prevent successful

training” (P2); “[Umlaut helped] me quickly find bugs in mymachine

learning model that are difficult to detect through code inspection. I

have always found debugging machine learning models to be a time-

consuming and error-prone process” (P9); “[Umlaut can] Identify

basic bugs (e.g. out-of-distribution that aren’t trivially caught through

type/shape checks)” (P8).
One participant noted Umlaut’s time savings could reach be-

yond debugging itself, as validating bug fixes can also be time
consuming: “[Umlaut’s primary advantage was] Finding ‘bugs’ that

otherwise would not have produced an actual error (bad parameters,

values outside recommended ranges, overfitting). These bugs are by

far more time consuming to debug because they usually require me to

train a model for at least some time (5 epochs?) to verify that they’ve

been fixed” (P5).

8.2.2 Best Practices and Code Examples Help Close the Debugging

Loop. Participants appreciated the explanations of underlying error
conditions and suggestions based on best practices: “The potential
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diagnosis along with reasoning was quite helpful” (P3); “Error mes-

sages were descriptive and gave me specific actions to do. Also good

values for parameters e.g. dropout rate is much better than saying

the value is too high” (P13); “Moreover, it does not only suggest to me

what’s potentially wrong, but also how to fix it. Very useful” (P12).
Code snippets were helpful in translating theory into practice

and navigating complex APIs: “Web interface had very helpful blurbs-

e.g. for overfitting it immediately suggests to adjust filter count or add

dropout, and it gives the one line fix for the sparse cross entropy loss

issue” (P5); “Because my goal was to make fixes to the code, it was

helpful to have concrete code snippets that I could copy into the code

and modify lightly. It can be tricky to find up-to-date code snippets

for machine learning libraries on the web as the libraries can change

quite frequently, and often there are many different API members that

can accomplish the same goals. Umlaut saved me a lot of time” (P9).
Some participants wished Umlaut provided code samples more

frequently: “I’d prefer to see more code suggestions (e.g. suggestions

of what class to use for the logits case in the second example)” (P15).
Integrating direct comparisons between snippets and the under-
lying program could help bridge gulfs in debugging: “Suggested
code changes in context of actual source code (similar to GitHub PR

suggested changes feature), would make debugging even easier” (P13);
and counterexamples could potentially help users search for faulty
code “There were a few instances where I felt like Umlaut could skip

some of the prose (even though it’s only a few sentences long) and

lead in with a code snippet showing an anti-pattern, and another code

snippet that fixes it” (P9).
Some error messages in Umlaut include explanations of API

components, but not explicit snippets which can be copied and
pasted into the source program, e.g., in cases where an unknown
root cause could be addressed by one of many candidate solutions.
This is discussed further below.

8.2.3 Effectively Communicating the Heuristic Nature of Umlaut.

Effectively communicating the uncertainty of ML models and intel-
ligent systems is an open research question. Umlaut uses heuristic
checks which have the potential to miss errors or raise false posi-
tives. Some participants took this into consideration while using
Umlaut: “I would use Umlaut with the understanding that it might

not be perfect, so in my particular case, I don’t think I would be misled

into thinking I had debugged all of the issues in my model if Um-

laut didn’t report any issues” (P9). However, P5 cautioned against
potential over-reliance on Umlaut: “[The primary disadvantage

is] “Autograder-driven development” effect [. . . ] I feel like relying on

Umlaut to point out errors means I’m less likely to scrutinize parts

of the program that Umlaut did not pick up on. [...] The second time

around, without Umlaut providing feedback I felt more compelled

to look at the entire program top to bottom.” Suggestions provided
by Umlaut use qualifying language and offer multiple solutions
in cases where there is not a single guaranteed fix (e.g., overfit-
ting). Identifying effective ways to communicate the underlying
uncertainty of Umlaut is an important direction of future work.

8.2.4 Umlaut as a Pedagogical Tool. 10 participants who indicated
involvement with teaching or ML education also responded to a
5-point Likert scale question indicating a high likelihood of inte-
grating Umlaut as a regular part of ML teaching (𝜇 = 4.5, 𝜎 = 0.67).
Open-ended comments also suggested the potential for Umlaut as

an instructional aid: “I think this would be a fantastic tool especially
for new students of deep learning” (P6); “It can point out areas where

there are potential problems that someone especially someone new to

ML might not notice” (P4); “It definitely helped out in the debugging

process, especially as someone returning to machine learning after a

long time” (P15).

8.2.5 UI Tweaks. Several participants (P1, P2, P3, P4, P7) suggested
changing the sessions dropdown menu to automatically refresh
(currently, the entire webpage must be refreshed). P15 suggested
more deeply linking visualizations with errors: “It would also be

nice to see an icon saying what warning/critical errors are associated

with each epoch when I hover over it, instead of just the accuracies.”

Some users appreciated the detailed descriptions and suggestions
from error messages: “The error messages were designed and struc-

tured well. (having both short and long versions of the error message,

and identifying the particular layer/epoch)” (P14). However, others
thought the detail cluttered the Umlaut user interface, and should
be hidden unless expanded by the user: “the textbox displaying the
error messages cannot be resized, so it is difficult to see all the errors

at once” (P6); “the longer blurbs tend to clog the screen so you have to

scroll to see all of the errors & recommended solutions, if there’s a way

to expand/collapse and just show a one-line blurb” (P5). These visual
design issues could be addressed in a future iteration of Umlaut.

9 LIMITATIONS AND FUTUREWORK

Because of the stochastic nature of the DL training process itself,
Umlaut has important limitations. As a prototype, it also has limi-
tations from engineering constraints.

Model Checks are Based on Heuristics: Model checks are
implemented as heuristics, so they may be raised as false positives
ormissed. For example, “Check ValidationAccuracy” can be raised if
random noise in data causes a spike in validation accuracy to exceed
training accuracy during one epoch. While Umlaut errors include
qualifying language and the error timeline can help determine if
errors form a pattern, these mitigation strategies are not perfect and
require some training to interpret. False positives could potentially
be mitigated further with customizable filtering.

Umlautmay alsomiss errors (false negatives) for several reasons.
Model checks were developed to apply to general cases, but these
cases may not generalize to some specific conditions, e.g., omit-
ting a nonlinear activation may sometimes increase performance,
and the range of reasonable learning rates is highly dependent on
the model structure and data. Future iterations of Umlaut could
use deeper inspection of the data and model to adjust heuristic
boundary conditions.

Mappings from Heuristics to Root Causes May Not Al-

ways Hold: In software debugging, there are often multiple pos-
sible root causes that lead to a common error symptom (e.g., null
pointers). DL debugging is no exception, and Umlaut checks may
miss the correct solution or possible suggest an incorrect one. Error
messages include text to remind users of their inherent uncertainty,
but this mitigation strategy is not perfect.

Generalization to New Model Architectures: New types of
model architectures produced by research may require new debug-
ging strategies, including different heuristics and parameter ranges.
While significant work has been done to understand the taxononmy
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of DL errors [33], DL programming paradigms are still evolving, and
the landscape of errors may change over time.Umlaut supports cus-
tom layers implementing the standard Keras.layers.get_config
API. Umlaut also works with different types of input and output
(e.g., NLP, tabular data, regression, etc.) and could be extended to
work with novel data types.

Crowd-based Error Message Creation: In the future, error
message content and heuristic check thresholds could include crowd-
sourced best practices and tips from the broader DL community and
others who have faced similar issues such as in HelpMeOut [22].

Outbound Links are Hardcoded: Error messages with out-
bound links to Stack Overflow and documentation currently only
support hardcoded links, with the intent for documentation to pro-
vide more context on suggested code recipes, and Stack Overflow
searches to search for a wider net of related issues. Hardcoded links
will not capture all cases, and future versions of Umlaut could inte-
grate program context into the links (e.g., searching Stack Overflow
for normalization with the value 255 extracted from the program),
but translating from a symptom to a well-formed search query is
an open research problem.

UmlautCodeAwareness is IncompatiblewithPythonNote-

books: Umlaut uses stack frame inspection to find a source mod-
ule with a training loop. This routine currently fails on Python
Notebooks, a common tool for developing DL programs [27]. This
limitation could be overcome with additional engineering effort, or
by implementing Umlaut as a Python Notebook extension.

VersionControl andComparing Sessions:Umlaut currently
has no ability to compare training sessions side by side. This would
allow faster verification that underlying program bugs have been
solved, and better enable users to track their experiments over time.

10 CONCLUSION

Umlaut addresses critical gaps in the DL development process
by discovering bugs in programs automatically, and using theory-
grounded explanations to translate from their symptoms to their
root causes. Umlaut assists in selecting a debugging strategy build-
ing from best practices, and guides the implementation of best
practices with concrete code recipes. Umlaut unifies these princi-
ples into a single interface which blends together contextual error
messages, visualizations, and code. An evaluation of Umlaut with
15 participants demonstrated its ability to help non-expert ML users
find and fixmore bugs in a DL program compared to when not using
Umlaut in an identical development environment. We believe Um-
laut is a stepping stone in the direction of designing user-centric
ML development tools which enable users to learn from the process
of DL development while making the overall process more efficient
for users of all skill levels.

ACKNOWLEDGMENTS

We thank James Smith and Michael Laielli for their insight, experi-
ence, and many conversations which helped make Umlaut possible.
Thanks to Michael Terry for the support and suggestions. Finally,
thank you to our reviewers and to our participants. This work was
supported in part by NSF grant IIS-1955394.

REFERENCES

[1] [n.d.]. NVIDIA DLSS 2.0: A Big Leap In AI Rendering. https://www.nvidia.com/
en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and et
al. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings

of the 12th USENIX Conference on Operating Systems Design and Implementation

(Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 265–283.
[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,

Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In Proceedings

of the 41st International Conference on Software Engineering: Software Engineering

in Practice (Montreal, Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, 291–300.
https://doi.org/10.1109/ICSE-SEIP.2019.00042

[4] Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis
Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15).
Association for Computing Machinery, New York, NY, USA, 337–346. https:
//doi.org/10.1145/2702123.2702509

[5] Kanav Anand, Ziqi Wang, Marco Loog, and Jan van Gemert. 2020. Black Magic
in Deep Learning: How Human Skill Impacts Network Training. The British

Machine Vision Conference (2020).
[6] J. Bergstra, R. Bardenet, Yoshua Bengio, and B. Kégl. 2011. Algorithms for Hyper-

Parameter Optimization. In NIPS.
[7] Houssem Ben Braiek and Foutse Khomh. 2019. TFCheck : A Tensor-

Flow Library for Detecting Training Issues in Neural Network Programs.
arXiv:1909.02562 [cs.LG]

[8] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-Centric Programming: Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing Ma-
chinery, New York, NY, USA, 513–522. https://doi.org/10.1145/1753326.1753402

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[10] C. J. Cai and P. J. Guo. 2019. Software Developers Learning Machine Learning:
Motivations, Hurdles, and Desires. In 2019 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). 25–34. https://doi.org/10.1109/VLHCC.
2019.8818751

[11] Shanqing Cai. 2017. Debug TensorFlow Models with tfdbg. https://developers.
googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html

[12] François Chollet. 2015. keras. https://github.com/fchollet/keras.
[13] Daniel Drew, Julie L. Newcomb, William McGrath, Filip Maksimovic, David

Mellis, and Björn Hartmann. 2016. The Toastboard: Ubiquitous Instrumentation
and Automated Checking of Breadboarded Circuits. In Proceedings of the 29th

Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 677–686.
https://doi.org/10.1145/2984511.2984566

[14] Jerry Alan Fails and Dan R. Olsen. 2003. Interactive Machine Learning. In
Proceedings of the 8th International Conference on Intelligent User Interfaces (Miami,
Florida, USA) (IUI ’03). Association for Computing Machinery, New York, NY,
USA, 39–45. https://doi.org/10.1145/604045.604056

[15] Rebecca Fiebrink and Perry R Cook. 2010. The Wekinator: a system for real-time,
interactive machine learning in music. In Proceedings of The Eleventh International
Society for Music Information Retrieval Conference (ISMIR 2010)(Utrecht).

[16] Adam Fourney and Meredith Ringel Morris. 2013. Enhancing Technical QA Fo-
rums with CiteHistory. In Proceedings of ICWSM 2013 (proceedings of icwsm 2013
ed.). AAAI. https://www.microsoft.com/en-us/research/publication/enhancing-
technical-qa-forums-with-citehistory/ You can download the CiteHistory plugin
at http://research.microsoft.com/en-us/um/redmond/projects/citehistory/.

[17] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and
Lalana Kagal. 2018. Explaining Explanations: An Overview of Interpretability of
Machine Learning. arXiv:1806.00069 [cs.AI]

[18] M. Goldman and R. C. Miller. 2008. Codetrail: Connecting source code and
web resources. In 2008 IEEE Symposium on Visual Languages and Human-Centric

Computing. 65–72. https://doi.org/10.1109/VLHCC.2008.4639060
[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.
[20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in neural information processing systems. 2672–2680.

https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://arxiv.org/abs/1909.02562
https://doi.org/10.1145/1753326.1753402
https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1109/VLHCC.2019.8818751
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://github.com/fchollet/keras
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/604045.604056
https://www.microsoft.com/en-us/research/publication/enhancing-technical-qa-forums-with-citehistory/
https://www.microsoft.com/en-us/research/publication/enhancing-technical-qa-forums-with-citehistory/
https://arxiv.org/abs/1806.00069
https://doi.org/10.1109/VLHCC.2008.4639060
http://www.deeplearningbook.org


UMLAUT: Debugging Deep Learning Programs using Program Structure and Model Behavior CHI ’21, May 8–13, 2021, Yokohama, Japan

[21] Tovi Grossman, George Fitzmaurice, and Ramtin Attar. 2009. A survey of software
learnability: metrics, methodologies and guidelines. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 649–658.
[22] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.

What Would Other Programmers Do: Suggesting Solutions to Error Messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New
York, NY, USA, 1019–1028. https://doi.org/10.1145/1753326.1753478

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
arXiv:1502.01852 [cs.CV]

[24] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In 2015 IEEE International

Conference on Computer Vision (ICCV). 1026–1034.
[25] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image

Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 770–778.
[26] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann. 2015. Tutorons: Generating

context-relevant, on-demand explanations and demonstrations of online code.
In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). 3–12. https://doi.org/10.1109/VLHCC.2015.7356972
[27] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.

2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300500

[28] Andrew Head, Jason Jiang, James Smith, Marti A. Hearst, and Björn Hartmann.
2020. Composing Flexibly-Organized Step-by-Step Tutorials from Linked Source
Code, Snippets, and Outputs. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for
Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3313831.3376798

[29] C. Hill, R. Bellamy, T. Erickson, and M. Burnett. 2016. Trials and tribulations
of developers of intelligent systems: A field study. In 2016 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC). 162–170. https:
//doi.org/10.1109/VLHCC.2016.7739680

[30] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M.
Drucker. 2019. Gamut: A Design Probe to Understand How Data Scientists
Understand Machine Learning Models. In Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 579, 13 pages.
https://doi.org/10.1145/3290605.3300809

[31] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. 2019. Visual Analytics in Deep
Learning: An Interrogative Survey for the Next Frontiers. IEEE Transactions on

Visualization and Computer Graphics 25, 8 (2019), 2674–2693. https://doi.org/10.
1109/TVCG.2018.2843369

[32] Jeremy Howard and Sylvain Gugger. 2020. Fastai: A Layered API for Deep
Learning. Information 11, 2 (Feb 2020), 108. https://doi.org/10.3390/info11020108

[33] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep Learning
Systems. arXiv:1910.11015 [cs.SE]

[34] Apple Inc. 2019. Apple Create ML. https://developer.apple.com/machine-
learning/create-ml/

[35] Databricks Inc. 2019. MLFlow. https://mlflow.org/
[36] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A

Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of

the 2019 27th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510–520. https://doi.org/10.1145/3338906.3338955

[37] Andrew Janowczyk and Anant Madabhushi. 2016. Deep learning for digital
pathology image analysis: A comprehensive tutorial with selected use cases.
Journal of pathology informatics 7 (2016).

[38] S. C. Johnson. 1978. Lint, a C ProgramChecker. In Technical Report. Bell Telephone
Laboratories, 78–1273.

[39] Andrej Kaparthy. 2016. Training Neural Networks, Part 1. Convolutional Neural
Networks for Visual Recognition. Lecture Slides (20 January 2016). http://cs231n.
stanford.edu/2016/syllabus.html

[40] Andrej Kaparthy. 2019. A Recipe for Training Neural Networks. https://karpathy.
github.io/2019/04/25/recipe/

[41] Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viégas, and Michael Terry. 2019.
XRAI: Better Attributions Through Regions. arXiv:1906.02825 [cs.CV]

[42] Jun Kato, Sean McDirmid, and Xiang Cao. 2012. DejaVu: integrated support for
developing interactive camera-based programs. In Proceedings of the 25th annual

ACM symposium on User interface software and technology. 189–196.
[43] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fer-

nanda Viegas, and Rory Sayres. 2017. Interpretability Beyond Feature
Attribution: Quantitative Testing with Concept Activation Vectors (TCAV).

arXiv:1711.11279 [stat.ML]
[44] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR (Poster). http://arxiv.org/abs/1412.6980
[45] Amy J. Ko and Brad A. Myers. 2009. Finding Causes of Program Output with

the Java Whyline. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing
Machinery, New York, NY, USA, 1569–1578. https://doi.org/10.1145/1518701.
1518942

[46] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[47] Lezhi Li and Yang Wang. 2019. Manifold: A Model-Agnostic Visual Debugging
Tool for Machine Learning at Uber. https://eng.uber.com/manifold/

[48] Zachary Chase Lipton. 2016. The Myth of Model Interpretability. CoRR abs /
1606.03490 (2016). arXiv:1606.03490 http://arxiv.org/abs/1606.03490

[49] Google LLC. 2020. Machine Learning Crash Course with TensorFlow APIs. Re-
trieved February 2, 2020 from https://developers.google.com/machine-learning/
crash-course

[50] Dan Maynes-Aminzade, Terry Winograd, and Takeo Igarashi. 2007. Eyepatch:
prototyping camera-based interaction through examples. In Proceedings of the

20th annual ACM symposium on User interface software and technology. 33–42.
[51] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell

Karchemsky, David Mellis, and Björn Hartmann. 2017. Bifröst: Visualizing and
Checking Behavior of Embedded Systems across Hardware and Software. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and

Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 299–310. https://doi.org/10.1145/3126594.3126658

[52] David A. Mellis, Ben Zhang, Audrey Leung, and Björn Hartmann. 2017. Machine
Learning for Makers: Interactive Sensor Data Classification Based on Augmented
Code Examples. In Proceedings of the 2017 Conference on Designing Interactive

Systems (Edinburgh, United Kingdom) (DIS ’17). Association for Computing
Machinery, New York, NY, USA, 1213–1225. https://doi.org/10.1145/3064663.
3064735

[53] Microsoft. 2020. Automate code completions tailored to your codebase with Intelli-

Code Team completions. Retrieved September 7, 2020 from https://github.com/
microsoft/vs-intellicode

[54] RiccardoMiotto, FeiWang, ShuangWang, Xiaoqian Jiang, and Joel T Dudley. 2017.
Deep learning for healthcare: review, opportunities and challenges. Briefings in
Bioinformatics 19, 6 (05 2017), 1236–1246. https://doi.org/10.1093/bib/bbx044
arXiv:https://academic.oup.com/bib/article-pdf/19/6/1236/27119191/bbx044.pdf

[55] Sugeerth Murugesan, Sana Malik, Fan Du, Eunyee Koh, and Tuan Lai. 2019.
DeepCompare: Visual and Interactive Comparison of Deep Learning Model
Performance. IEEE Computer Graphics and Applications PP (05 2019), 1–1. https:
//doi.org/10.1109/MCG.2019.2919033

[56] Glenford J. Myers, Corey Sandler, and Tom Badgett. 2011. The Art of Software
Testing (3rd ed.). Wiley Publishing.

[57] Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In
Proceedings of the 36th International Conference on Machine Learning (Proceed-

ings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan
Salakhutdinov (Eds.). PMLR, Long Beach, California, USA, 4901–4911. http:
//proceedings.mlr.press/v97/odena19a.html

[58] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. 2017. Fea-
ture Visualization. Distill (2017). https://doi.org/10.23915/distill.00007
https://distill.pub/2017/feature-visualization.

[59] Savannah Ostrowski. 2020. Announcing Pylance: Fast, feature-rich language

support for Python in Visual Studio Code. Retrieved September 7, 2020
from https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-
rich-language-support-for-python-in-visual-studio-code/

[60] Google PAIR. 2017. FACETS. https://pair-code.github.io/facets/
[61] Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, Amy J. Ko,

and James Landay. 2010. Gestalt: Integrated Support for Implementation and
Analysis in Machine Learning. In Proceedings of the 23nd Annual ACM Symposium

on User Interface Software and Technology (New York, New York, USA) (UIST
’10). Association for Computing Machinery, New York, NY, USA, 37–46. https:
//doi.org/10.1145/1866029.1866038

[62] Kayur Patel, James Fogarty, James A. Landay, and Beverly Harrison. 2008. In-
vestigating Statistical Machine Learning as a Tool for Software Development. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(Florence, Italy) (CHI ’08). Association for Computing Machinery, New York, NY,
USA, 667–676. https://doi.org/10.1145/1357054.1357160

[63] Daniel Crankshaw Neeraja Yadwadkar Joseph Gonzalez Rolando Garcia,
Vikram Sreekanti. 2019. flor. https://github.com/ucbrise/flor

[64] Eldon Schoop, Forrest Huang, and Björn Hartmann. 2020. SCRAM: Simple Checks
for Realtime Analysis of Model Training for Non-Expert ML Programmers. In
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing

Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery,
New York, NY, USA, 1–10. https://doi.org/10.1145/3334480.3382879

https://doi.org/10.1145/1753326.1753478
https://arxiv.org/abs/1502.01852
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1109/VLHCC.2016.7739680
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.3390/info11020108
https://arxiv.org/abs/1910.11015
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://mlflow.org/
https://doi.org/10.1145/3338906.3338955
http://cs231n.stanford.edu/2016/syllabus.html
http://cs231n.stanford.edu/2016/syllabus.html
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/
https://arxiv.org/abs/1906.02825
https://arxiv.org/abs/1711.11279
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
https://eng.uber.com/manifold/
https://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1606.03490
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3064663.3064735
https://doi.org/10.1145/3064663.3064735
https://github.com/microsoft/vs-intellicode
https://github.com/microsoft/vs-intellicode
https://doi.org/10.1093/bib/bbx044
https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/19/6/1236/27119191/bbx044.pdf
https://doi.org/10.1109/MCG.2019.2919033
https://doi.org/10.1109/MCG.2019.2919033
http://proceedings.mlr.press/v97/odena19a.html
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.23915/distill.00007
https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/
https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/
https://pair-code.github.io/facets/
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/1357054.1357160
https://github.com/ucbrise/flor
https://doi.org/10.1145/3334480.3382879


CHI ’21, May 8–13, 2021, Yokohama, Japan Eldon Schoop, Forrest Huang, and Björn Hartmann

[65] Shital Shah, Roland Fernandez, and Steven M. Drucker. 2019. A system for real-
time interactive analysis of deep learning training. In Proceedings of the ACM

SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2019,

Valencia, Spain, June 18-21, 2019. 16:1–16:6. https://doi.org/10.1145/3319499.
3328231

[66] Jonathan R. Shewchuk. 2020. Concise Machine Learning. https://people.eecs.
berkeley.edu/~jrs/papers/machlearn.pdf

[67] William Wang Alex Yang Jennifer Listgarten Anant Sahai Soroush Nasiriany,
Garrett Thomas. 2019. A Comprehensive Guide to Machine Learning.

[68] John T Stasko, Marc H Brown, and Blaine A Price. 1997. Software Visualization.
MIT press.

[69] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and
Policy Considerations for Deep Learning in NLP. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Florence, Italy, 3645–3650. https://doi.org/10.18653/
v1/P19-1355

[70] Josh Tobin. 2019. Troubleshooting Deep Neural Networks: A Field Guide to Fix-

ing Your Model. Retrieved September 17, 2020 from http://josh-tobin.com/
troubleshooting-deep-neural-networks.html

[71] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,
Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. M<span
class="smallcaps SmallerCapital">odel</span>DB: A System for Machine Learn-
ing Model Management. In Proceedings of the Workshop on Human-In-the-Loop

Data Analytics (San Francisco, California) (HILDA ’16). Association for Comput-
ing Machinery, New York, NY, USA, Article 14, 3 pages. https://doi.org/10.1145/
2939502.2939516

[72] Matthew Veres and Medhat Moussa. 2019. Deep learning for intelligent trans-
portation systems: A survey of emerging trends. IEEE Transactions on Intelligent

transportation systems (2019).
[73] Robert Stuart Weiss. 1995. Learning from strangers: the art and method of qualita-

tive interview studies. Free Press.
[74] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viégas, and J. Wilson.

2020. The What-If Tool: Interactive Probing of Machine Learning Models. IEEE
Transactions on Visualization and Computer Graphics 26, 1 (2020), 56–65. https:
//doi.org/10.1109/TVCG.2019.2934619

[75] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST:

a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:cs.LG/1708.07747 [cs.LG]

[76] Geoffrey X. Yu, Tovi Grossman, and Gennady Pekhimenko. 2020. Skyline: Inter-
active In-Editor Computational Performance Profiling for Deep Neural Network
Training. In Proceedings of the 33rd Annual ACM Symposium on User Interface

Software and Technology (Virtual Event, USA) (UIST ’20). Association for Comput-
ing Machinery, New York, NY, USA, 126–139. https://doi.org/10.1145/3379337.
3415890

[77] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim. 2019. An Empirical Study of
Common Challenges in Developing Deep Learning Applications. In 2019 IEEE

30th International Symposium on Software Reliability Engineering (ISSRE). 104–
115.

[78] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An Empirical Study on TensorFlow Program Bugs. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). Association for Computing Machinery, New York, NY,
USA, 129–140. https://doi.org/10.1145/3213846.3213866

A ERROR MESSAGE CONTENT

This section describes author-created error messages which may
be raised by heuristic checks in the Umlaut client. At a minimum,
these messages include a severity qualifier (Warning/Error/Critical),
title, short description with related theory and background, and
proposed solutions with examples instantiating best practices. Mes-
sages may additionally have a field which provides program context
with explanations, an outbound link to a curated Stack Overflow
search query, an outbound link to documentation, and a link to
open the VSCode editor to the suspected problem line of code.

A.1 Data Preparation

A.1.1 Warning: Input Data Exceeds Typical Limits. Your input data
does not look normalized. You should normalize the input data so
its values fall between the typical ranges of -1 to 1 before passing
them into the model. For image data, (pixels ranging from 0-255), a

typical way to normalize the pixel values to the range of -1 to 1 is:
training_images = (training_images / 128.0) - 1

Program context: Epoch <epoch>: <minimum/maximum> input

value is <x_min>, <less/greater> than the typical value of <-1/1>.

Stack overflow query: [keras] closed:yes normalization
Documentation link: https://www.tensorflow.org/tutorials/keras/

classification#preprocess_the_data
This error includes a link to the source module where the model

training loop is defined.

A.1.2 Critical: NaN (Not a number) in input. Some values in your
model input are NaN (could indicate infinity). Please double check
your input and make sure no NaN exists in it.

Stack overflow query: [keras] nan input

A.1.3 Error: Image input data may have incorrect shape. Your input
images may have their dimensions in the wrong order. Your input is
4-dimensional with 2 equal dimensions, which is typically an image
type. Most keras layers by default expect image data to be formatted
as “NHWC” (Batch_size, Height, Width, Channel) unless otherwise
specified. If running on CPU, setting the Keras image backend to
“channels_first” and using “NCHW” (Batch_size, Channel, Height,
Width) may sometimes improve performance. For example, you
can tranpose your input data from “NCHW” to “NHWC”, using
tf.transpose(X_train_images, [0, 2, 3, 1]).

Program context: Epoch <epoch>: Input shape is not
<N,C,H,W/N,H,W,C>. Instead got <x_train.shape>

A.1.4 Warning: Check validation accuracy. The validation accu-
racy is either higher than typical results (near 100%) or higher than
training accuracy (which can suggest problems with data label-
ing or splitting). However, during early epochs, this could be a
false positive. A high validation accuracy (around 100%) can indi-
cate a problem with data labels, overlap between the training and
validation data, or differences in preparing data for training and
evaluation. Check to see if there is overlap between the training
and validation sets, and inspect the validation set predictions by
hand to ensure they make sense.

Program context: Epoch <epoch>: validation accuracy is
very high (<val_acc if val_acc > 95%>)

Epoch <epoch>: validation accuracy <val_acc> is higher
than train accuracy (<train_acc>)

Stack overflow query: [keras] validation accuracy high

A.2 Model Architecture

A.2.1 Critical: Missing activation functions. The model has lay-
ers without nonlinear activation functions. This may limit the
model’s ability to learn since stacked Dense layers without activa-
tions will mathematically collapse to a single Dense layer. Make
sure the activation argument is passed into your Dense and
Convolutional (e.g., Conv2D) layers. A common practice is to use
activation=‘relu’.

Program context: (for each problem layer) Layer <index> (layer.name)
has a missing or linear activation

Documentation link: https://www.tensorflow.org/api_docs/python/
tf/keras/activations

This error includes a link to the source module where the model
was defined.
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A.2.2 Critical: Missing Softmax layer before loss. The loss function
of your model expects a probability distribution as input (i.e., the
likelihood for all the classes sums to 1), but your model is producing
un-normalized outputs, called “logits”. Logits can be normalized to
a probability distribution with a softmax layer.

Many Keras loss function classes can automatically compute
softmax for you by passing in a from_logits flag:

tf.keras.losses.<your loss function class here>(from_logits=True)
where specifying from_logits=True will tell keras to apply

softmax to your model output before calculating the loss function.
Alternatively, you can manually add a softmax layer to the end of
your model using tf.keras.layers.Softmax().

Stack overflow query: [keras] is:closed from_logits
Documentation link: https://www.tensorflow.org/api_docs/python/

tf/keras/losses
This error includes a link to the source module where the model

was defined.

A.2.3 Warning: Last model layer has redundant activation. The last
layer of the model has an extra (redundant) nonlinear activation
function before Softmax (which is non-linear by itself). This can pre-
vent the model from learning effectively. Remove the activation
argument from the last layer of your model.

Program context: Last layer in model <last_layer.name>
has activation “<layer_config.activation>”

This error includes a link to the source module where the model
was defined.

A.3 Parameter Tuning

A.3.1 Warning: Learning Rate is <high/low>.
5 The learning rate

you set is <higher/lower> than the typical range. This could lead to
the model’s inability to learn. This can also lead to NaN loss values.
You can set your learning rate when you create your optimizer
object. Typical learning rates for the Adam optimizer are between
0.00001 and 0.01. For example:

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001))
Program context: Epoch <epoch>: Learning Rate is <lr>
Documentation link: https://www.tensorflow.org/api_docs/python/

tf/keras/optimizers/Adam

A.3.2 Warning: Possible overfitting. The validation loss is increas-
ing while training loss is stuck or decreasing. This could indicate
overfitting. However, if validation loss is still trending downwards
afterwards, this error could be a false positive. Try adding dropout
or reducing the number of parameters in your model. Dropout ran-
domly omits weight updates during training (with some probability)
which potentially increases robustness. You can reduce the number
of parameters of your model by decreasing the units or filters
parameters of Dense or Conv2D layers.

Program context: Epoch <epoch>: training loss changed by
<d_loss> while validation loss changed by <d_val_loss>

Documentation link: https://www.tensorflow.org/api_docs/python/
tf/keras/regularizers/Regularizer

5The title of this error dynamically changes if the detected learning rate is above or
below a common range.

A.3.3 Warning: High dropout rate. The dropout parameter of the
indicated layer(s) is above 0.5, meaning less than half of the gradi-
ent updates will propagate through. This can prevent your model
from learning. Lower the dropout rate. Typical values fall within
[0.1, 0.5].

Program context (for each problem layer): Layer <index> (layer.name)
has dropout rate of <layer.dropout_rate>

This error includes a link to the source module where the model
was defined.
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