
Tutorials

Choose your approach: You can present the content linearly, or you can incorporate other text,
documentation, tutorials, videos, and projects to fit your needs. One option is to have learners
complete the tutorial independently, then choose items from the “Continue practicing” section to
complete together, allowing learners to work collaboratively and ask questions.

Develop in Swift Tutorials are a great first step toward a career in app
development using Xcode, Swift, and SwiftUI. They’re designed for
aspiring coders in high school, higher education, and beyond.

Educator Guide

A tutorial
• Coding a project, ranging from an app

prototype to a fully functioning app
• Building on prior knowledge, getting

progressively more challenging

A wrap-up
• Review of concepts
• Ideas for extending an app
• Suggestions for how to apply skills

in a different context, often by
creating a new project

In each chapter, learners will complete:

Chapter Description Topics and skills Estimated time*

Explore
Xcode

Get to know Xcode and SwiftUI by
creating a prototype of a messaging
app. Learn about syntax for Swift and
how to use the source editor and
preview.

• Background
• Color
• Creating a new

project
• Dot notation

• Modifiers
• Padding
• String
• Swift syntax
• Text

• Views
• Xcode error

messages
• Xcode Library

1 hr

Views,
structures,
and
properties

Learn how to build a custom view to
create a multiday weather forecast. In
your view, you’ll use properties to
customize the display for each day.

• Arguments and
parameters

• Bool
• Computed

properties
• Custom subviews
• Font

• Foreground style
• Image
• Initializers
• Int
• HStack and VStack
• Returning a value

• SF Symbols
• Stored properties
• String interpolation
• Structures
• Subviews
• Type annotation

1.5 hrs

Layout and
style

Build two onboarding screens for an iOS
app to learn useful tools for putting
views where you want them onscreen
and inspecting their size. Define new
colors in the asset catalog and use
them to create gradient backgrounds.

• Accent color
• Arrays
• Borders
• Brightness
• Color assets
• Customizing a

preview

• Font
• Frames
• Gradient
• Image
• Pinning a preview
• Shape
• Spacer

• TabView
• Transparency
• Type inference
• ZStack

1.5 hrs

Buttons
and state

Explore adding buttons to your apps.
Learn about Swift closures and their
relationship to buttons. Use state
properties to update the user interface
automatically.

• Animation
• Aspect ratio
• Assignment

operator
• Button
• Button styles
• Closures
• Color

• Disabling controls
• Dynamic sizing
• Equality operator
• ForEach
• Hierarchical SF

Symbols
• Randomization

• Range operator
• Resizable images
• @State
• Trailing closure

syntax
• View tint

1.5 hrs

Lists and text
fields

Create a dynamic interface that stores a
set of items in an array and displays
them using lists. Use text fields and
bindings to let people enter text.

• Arrays
• Adding and

removing from
arrays

• Bindings
• Buttons with

custom labels

• Disabling
autocorrection

• Clip shapes
• ForEach
• List
• Not (!) operator

• Symbol rendering
modes

• Ternary conditional
operator

• TextField
• Toggle

1.5 hrs

SwiftUI foundations
Get familiar with the tools and technologies you’ll use to create apps.

*Estimated times are for the tutorial only.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-develop-in-swift-tutorials
https://developer.apple.com/tutorials/develop-in-swift/customize-views-with-properties
https://developer.apple.com/tutorials/develop-in-swift/design-an-interface
https://developer.apple.com/tutorials/develop-in-swift/update-the-ui-with-state
https://developer.apple.com/tutorials/develop-in-swift/create-dynamic-content

Chapter Description Topics and skills Estimated time*

Custom
types and
Swift Testing

Define your first data model by
making your own custom types,
and prove they work correctly
with unit tests. Then use your
custom types to keep track of
scores in a game.

• Creating a type to contain
your app’s logic

• Creating enum types
• Creating struct types
• Creating unit tests
• Fixing test failures

• Grid and GridRow
• Identifiable and UUID
• .opacity and .disabled

• Running tests
• Swift file creation

1 hr

Models and
persistence

Build a list of your friends’
birthdays, using SwiftData to
save and retrieve that data
across launches.

• Calendar
• Classes
• Data models
• Date
• Date formatting

• DatePicker
• @Environment
• Frameworks
• @Model macro
• NavigationStack

• @Query macro
• Safe area
• SwiftData context

1.5 hrs

Navigation,
editing, and
relationships

Create an app to track friends
and their favorite movies using
SwiftData to manage the model
objects. Use a query to display
the items in a list, and make a
detail view to edit them. Then
learn how to create and display
relationships between friends
and movies, and explore how to
create advanced queries.

• @Bindable
• ContentUnavailableView
• Creating sample data
• Custom view initializers
• Environment dismiss

value
• Form
• Group
• Modal interfaces
• Multiple previews

• ModelConfiguration
ModelContainer

• Model relationships
• Navigation hierarchies
• NavigationLink
• NavigationSplitView
• Or (| |) operator
• Picker
• Predicate
• Property wrappers

• Refactoring
• Schema
• Search
• Section
• Sheets
• Sorting arrays
• Toolbars
• View tags

3.5 hrs

Observation
and
shareable
data models

Power an alphabet game using
Observation. Share a complex
data model with many
independent views.

• Dictionary
• Documentation comments
• @Observable
• onChange

• Sharing your types
through the environment

• Task.sleep
• Xcode’s Quick

Help and jump bar
• zip

2 hrs

Data modeling
Model real-world concepts and relationships by creating your own custom types. Learn how to
store data with SwiftData and how to test that your apps work properly with Swift Testing.

*Estimated times are for the tutorial only.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-data-modeling
https://developer.apple.com/tutorials/develop-in-swift/save-data
https://developer.apple.com/tutorials/develop-in-swift/work-with-relationships
https://developer.apple.com/tutorials/develop-in-swift/complete-a-game-with-logic

Chapter Description Topics and skills Estimated time*

Windows in
visionOS

Create your first
visionOS app with a
window using
SwiftUI.

• Circle
• ColorPicker
• Double
• Grid

• GridRow
• Padding for 3D views
• Remainder (%) operator
• Slider

• visionOS simulator
• Window resizability
• Windows

1 hr

Ornaments
and multiple
windows

Create multiple
windows in visionOS
using SwiftUI. Use
ornaments to provide
access to frequently
used controls
without crowding or
obscuring window
contents.

• @Environment isEnabled
• @Environment
openWindow

• .glassBackgroundEffect
• @Previewable previews

• TextField word
wrapping

• visionOS .ornament

• WindowGroup, .windowStyle,
and .windowResizability

1 hr

Volumes in
visionOS

View 3D content
from any angle in the
Shared Space using
Reality Composer
Pro and SwiftUI.

• Arrays
• DragGesture
• Environment openWindow

value
• Model3D

• NavigationSplitView
• Reality Composer Pro
• Rotation in three

dimensions

• Toolbars
• Volumes
• WindowGroup

1.5 hrs

Spatial computing
Design app experiences for spatial computing.

*Estimated times are for the tutorial only.

https://developer.apple.com/tutorials/develop-in-swift/welcome-to-spatial-computing
https://developer.apple.com/tutorials/develop-in-swift/present-common-controls-in-an-ornament
https://developer.apple.com/tutorials/develop-in-swift/create-3d-models-in-the-shared-space

	In each chapter, learners will complete:

