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No single technology or feature can deliver perfect security
MacOS Is designed with many layers of security

Continuously improve the technologies and policies at each layer
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Defense in Depth

One layer failing shouldn’t defeat all security

Rely on multiple layers of protection, with different properties
» Delay the advance of an attacker
» Reduce the attack surface

» Create choke points that are easier to defend
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Protect users from
running malicious software
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Gatekeeper
macOS Mojave

What does Gatekeeper check?

* Does it contain known malicious content?
e Has It been tampered with?

e Does it meet the security policy?

e Does the user want to run I1t?

When does Gatekeeper check?

» First launch of quarantined apps launched via LaunchServices
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Quarantine

Marks files that arrive on the system from a variety of external sources
Adds metadata about the source
Apps can opt-in to quarantining files

Default for files written by App Sandboxed apps
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Launch Services

Framework for finding and
launching applications

Responsible for many common ways
to start apps

« Opening in Finder/Dock
 NSWorkspace

« Apps opened via document handlers or URLSs

Apps via Launch Services
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First use, quarantined

Malicious content scan No known malicious content

Sighature check No tampering

Must be signhed with Developer ID certificate.

Local policy check _ .
New Mac developers’ software requires notarization.

First launch prompt User must approve
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First use, quarantined First use, quarantined
Malicious content scan No known malicious content No known malicious content
Sighature check No tampering No tampering
Local policy check All new software requires notarization All new software requires notarization

Users must approve

First launch prompt User must approve software in bundles




Gatekeeper
MmacOS Catalina

First use, quarantined

Malicious content scan No known malicious content
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First use, quarantined Non-quarantined

No known malicious content No known malicious content

Signhature check No tampering

No tampering —

All new software requires

Local policy check notarization

All new software requires
notarization

First launch prompt User must approve

Users must approve
software in bundles




You can always choose to run any
software on your system
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Gatekeeper
The road ahead

Platform security is increasingly reliant on the constant validity of code signatures

If an app has no signhature

e It's Impossible to detect tampering

If a bundle signature Is broken

e It's very hard to differentiate malicious from mundane

In a future version of macOS, unsigned code will not run by default
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We Need Your Help

Sign and notarize all software you distribute
e Even if it doesn’t get quarantined

Don’t modify signed applications or bundles

Loading code can fall

« Ensure your apps handle failures gracefully
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Kelly Yancey, Security Engineering and Architecture
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Recording capabillities
Files and folders

Automation



Recording Protections

Camera

Microphone



Recording Protections

Camera

Microphone




Recording Protections in Catalina

Camera

Microphone



Recording Protections in Catalina

Camera

Microphone
Screen recording

Keyboard input monitoring






Recording Protections in Catalina
Screen recording and keyboard monitoring

Important to prevent apps from recording
« Contact information

* Private correspondence

e Account names or numbers

e Passwords

« ANd more
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Camera
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Screen recording

Keyboard input monitoring



Recording Protections in Catalina
Screen recording

Recording the entire screen

guard let stream = CGDisplayStream(dispatchQueueDisplay: CGMainDisplayID(),
outputWidth: 1920,

outputHeight: 1080,
pixelFormat: Int32(kCVPixelFormatType 32BGRA),

properties: nil,
queue: DispatchQueue.global(),
handler: frameHandler)
else {
// Error occurred or user has not approved the app to record the screen.

return

¥

stream.start ()
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Recording Protections in Catalina
Screen recording

Recording the entire screen

guard let stream = CGI

rmatType 32BGRA),
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obal(),
handler: frameHandler)

else {

// Error occurred or user has not approved the app to record the screen.
return

L

stream.start ()



Recording Protections in Catalina
Approving for screen recording
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Recording Protections in Catalina
Approving for screen recording
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Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forWindow windowId: CGWindowID, to url: URL) throws {
let cgimage = CGWindowListCreateImage(.null, [.optionIncludingWindow], windowId,
[ .nominalResolution])!

let 1mageRep = NSBitmapImageRep(cgImage: cgimage)

let pngData imageRep.representation(using: .png, properties: [:])

try pngData!.write(to: url)
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Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forwinc

let cgimage = CGW: , windowlId,
let 1mageRep = NSE
let pngData = 1mac

try pngData!.write

© App's own windows €) Other apps’ windows

& Desktop or Menu Bar windows
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Recording Protections in Catalina
Screen recording

No approval necessary to query metadata about windows

let windows = CGWindowListCopyWindowInfo([.optionOnScreenOnly], kCGNullWindowID) as? [[String:
AnyObject]]

kCGW1ndowBounds 0 kCGW1indowName
kCGW1ndowNumber ° kCGW1ndowSharingState
kCGW1ndowOwnerName

kCGW1indowOwnerPID



// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

I

return desktopWindows.map {
$0[ kCGWindowNumber as Stringl as! CGWindowID
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Recording Protections
Keyboard input monitoring

No approval necessary to monitor events for own app

NSEvent.addLocalMonitorForEvents(matching: .any, handler: { event 1n
// Do something with the event

return event
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Keyboard input monitoring

No approval necessary to monitor events for own app

NSEvent.addLocalMonitorForEvents(matching: .any, handler: { event 1n
// Do something with the event

return event

r)



// Keyboard Event Recording Protections

func callback(proxy: CGEventTapProxy, type: CGEventType, event: CGEvent,
userInfo: UnsafeMutableRawPointer?) —> Unmanaged<CGEvent>? {
// Do something with the event.

return Unmanaged.passUnretained(event)

let eventMask = (1 << CGEventType.keyDown.rawValue) | (1 << CGEventType.keyUp.rawValue)

let eventTap = CGEvent.tapCreate(tap: .cghidEventTap,
place: .tailAppendEventTap,

options: .listenOnly,
eventsOfInterest: CGEventMask(eventMask),
callback: callback,

userInfo: nil)
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callback(proxy: CGEventTapProxy, type: CGEventType, event: CGEvent,

userInfo: UnsafeMutableRawPointer?) —> Unmanaged<CGEvent>? {

// Do something with the event.

Unmanaged.

eventMask = (1 <<

eventTap = CGEven

\

Keystroke Receiving

“"Watch Grass Grow"” would like to receive
keystrokes from any application.

Grant access to this application in Security & Privacy
preferences, located in System Preferences.

eventsOfInterest: CGEventMask(eventMask),

callback:

userInfo:

callback,
)

syUp.rawValue)



Recording Protections
Approving for keyboard input monitoring
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Recording Protections
Checking keyboard input monitoring approval

let accessType = IOHIDCheckAccess(kIOHIDRequestTypelListenEvent)
switch accessType {
case KIOHIDAccessTypeGranted:
// User has approved the app to listen to all keystrokes

case kIOHIDAccessTypeDenied:
// Denied; approval dialog has been displayed.

case kKIOHIDAccessTypeUnknown:
// Denied; approval dialog has not yet been displayed.

default:

// Unknown status: assume denied.
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Recording Protections
Requesting keyboard input monitoring approval

1T IOHIDRequestAccess(kIOHIDRequestTypelListenEvent) {
// The user has approved the app to listen to all keystrokes.

} else {
// App may not listen to all keystrokes.
// Approval dialog displayed 1f 1t has not previously been displayed.



Recording Protections
Requesting keyboard input monitoring approval

1f IOHIDRequestAccess(kIOHIDRequestTypelListenEvent) {
// The user has approved the app to listen to all keystrokes.

} else {
// App may not listen to all keystrokes.
// Approval dialog displayed 1f 1t has not previously been displayed.
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User Data Protections
Accessing sidecar files

<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeRole</key>
<string>None</string>
<key>CFBundleTypeExtensions</key>
<array>
<string>srt</string>
</array>
<key>CFBundleTypeName</key>
<string>Subtitle File</string>
<key>NSIsRelatedItemType</key>
<true/>
</dict>

</array>
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class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data
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