#WWDC19

Advances iIn macOS Security

Garrett Jacobson, Security Engineering and Architecture
Kelly Yancey, Security Engineering and Architecture

© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Defense In depth
Gatekeeper

User privacy protection

Defense Iin Depth

Defense in Depth

No single technology or feature can deliver perfect security

Defense in Depth

No single technology or feature can deliver perfect security

MacOS Is designed with many layers of security

Defense in Depth

No single technology or feature can deliver perfect security
MacOS Is designed with many layers of security

Continuously improve the technologies and policies at each layer

Defense in Depth

Defense in Depth

One layer failing shouldn’t defeat all security

Defense in Depth

One layer failing shouldn’t defeat all security

Rely on multiple layers of protection, with different properties
» Delay the advance of an attacker
» Reduce the attack surface

» Create choke points that are easier to defend

Defense in Depth

Defense in Depth

Gatekeeper

Defense in Depth

Gatekeeper User Privacy
Protection

~

Gatekeeper

1 | 'S
ABRBEEE\
‘11111
11111

Protect users from
running malicious software

Gatekeeper
macOS Mojave

Gatekeeper
macOS Mojave

What does Gatekeeper check?

Gatekeeper
macOS Mojave

What does Gatekeeper check?

e Does It contain known malicious content?

Gatekeeper
macOS Mojave

What does Gatekeeper check?
e Does 1t contain known malicious content?

* Has It been tampered with?

Gatekeeper
macOS Mojave

What does Gatekeeper check?
e Does It contain known malicious content?
* Has It been tampered with?

e Does It meet the security policy?

Gatekeeper
macOS Mojave

What does Gatekeeper check?

* Does it contain known malicious content?
e Has It been tampered with?

e Does it meet the security policy?

e Does the user want to run I1t?

Gatekeeper
macOS Mojave

What does Gatekeeper check?

* Does it contain known malicious content?
e Has It been tampered with?

e Does it meet the security policy?

e Does the user want to run I1t?

When does Gatekeeper check?

Gatekeeper
macOS Mojave

What does Gatekeeper check?

* Does it contain known malicious content?
e Has It been tampered with?

e Does it meet the security policy?

e Does the user want to run I1t?

When does Gatekeeper check?

» First launch of quarantined apps launched via LaunchServices

Quarantine

Quarantine

Marks files that arrive on the system from a variety of external sources

Quarantine

Marks files that arrive on the system from a variety of external sources

Adds metadata about the source

Quarantine

Marks files that arrive on the system from a variety of external sources
Adds metadata about the source

Apps can opt-in to quarantining files

Quarantine

Marks files that arrive on the system from a variety of external sources
Adds metadata about the source
Apps can opt-in to quarantining files

Default for files written by App Sandboxed apps

. aunch Services

. aunch Services

Framework for finding and
launching applications

. aunch Services

Framework for finding and
launching applications

Responsible for many common ways
to start apps

« Opening in Finder/Dock
 NSWorkspace

« Apps opened via document handlers or URLSs

Launch Services

Framework for finding and
launching applications

Responsible for many common ways
to start apps

« Opening in Finder/Dock
 NSWorkspace

« Apps opened via document handlers or URLSs

Apps via Launch Services

. aunch Services

. aunch Services

Not involved in other methods of loading code
e NSTask

e €XecC [posiX_spawn

* NSBundle / dlopen

Launch Services

Not involved in other methods of loading code
e NSTask

e €XecC [posiX_spawn

* NSBundle / dlopen

Gatekeeper
macOS Mojave

First use, quarantined

Malicious content scan No known malicious content
Sighature check No tampering
Local policy check Must be signed with Developer ID certificate

First launch prompt User must approve

Gatekeeper
macOS Mojave 10.14.5

First use, quarantined

Malicious content scan No known malicious content

Sighature check No tampering

Must be signhed with Developer ID certificate.

Local policy check _ .
New Mac developers’ software requires notarization.

First launch prompt User must approve

Gatekeeper
MmacOS Catalina

First use, quarantined

Malicious content scan No known malicious content
Signhature check No tampering
Local policy check All new software requires notarization

First launch prompt User must approve

Gatekeeper
MmacOS Catalina

First use, quarantined First use, quarantined
Malicious content scan No known malicious content No known malicious content
Sighature check No tampering No tampering
Local policy check All new software requires notarization All new software requires notarization

Users must approve

First launch prompt User must approve software in bundles

Gatekeeper
MmacOS Catalina

First use, quarantined

Malicious content scan No known malicious content

() A
> >
))
\. J \.

First use, quarantined Non-quarantined

No known malicious content No known malicious content

Signhature check No tampering

No tampering —

All new software requires

Local policy check notarization

All new software requires
notarization

First launch prompt User must approve

Users must approve
software in bundles

You can always choose to run any
software on your system

Gatekeeper
The road ahead

Gatekeeper
The road ahead

Platform security is increasingly reliant on the constant validity of code signatures

Gatekeeper
The road ahead

Platform security is increasingly reliant on the constant validity of code signatures

If an app has no signhature

Gatekeeper
The road ahead

Platform security is increasingly reliant on the constant validity of code signatures

If an app has no signhature

e It's Impossible to detect tampering

Gatekeeper
The road ahead

Platform security is increasingly reliant on the constant validity of code signatures

If an app has no signhature

e It's Impossible to detect tampering

If a bundle signature Is broken

Gatekeeper
The road ahead

Platform security is increasingly reliant on the constant validity of code signatures

If an app has no signhature

e It's Impossible to detect tampering

If a bundle signature Is broken

e It's very hard to differentiate malicious from mundane

Gatekeeper
The road ahead

Platform security is increasingly reliant on the constant validity of code signatures

If an app has no signhature

e It's Impossible to detect tampering

If a bundle signature Is broken

e It's very hard to differentiate malicious from mundane

In a future version of macOS, unsigned code will not run by default

We Need Your Help

We Need Your Help

Sign and notarize all software you distribute
e Even if it doesn’t get quarantined

We Need Your Help

Sign and notarize all software you distribute
e Even if it doesn’t get quarantined

Don’t modify signed applications or bundles

We Need Your Help

Sign and notarize all software you distribute
e Even if it doesn’t get quarantined

Don’t modify signed applications or bundles

Loading code can fall

« Ensure your apps handle failures gracefully

User Privacy Protections

Kelly Yancey, Security Engineering and Architecture

User Privacy Protections

Recording capabillities

Filles and folders

Automation

User Privacy Protections

Recording capabillities

Filles and folders

Automation

User Privacy Protections

Recording capabillities

Filles and folders

Automation

User Privacy Protections

Recording capabillities
Files and folders

Automation

Recording Protections

Camera

Microphone

Recording Protections

Camera

Microphone

Recording Protections in Catalina

Camera

Microphone

Recording Protections in Catalina

Camera

Microphone
Screen recording

Keyboard input monitoring

Recording Protections in Catalina
Screen recording and keyboard monitoring

Important to prevent apps from recording
« Contact information

* Private correspondence

e Account names or numbers

e Passwords

« ANd more

Recording Protections in Catalina

Camera

Microphone
Screen recording

Keyboard input monitoring

Recording Protections in Catalina
Screen recording

Recording the entire screen

guard let stream = CGDisplayStream(dispatchQueueDisplay: CGMainDisplayID(),
outputWidth: 1920,

outputHeight: 1080,
pixelFormat: Int32(kCVPixelFormatType 32BGRA),

properties: nil,
queue: DispatchQueue.global(),
handler: frameHandler)
else {
// Error occurred or user has not approved the app to record the screen.

return

¥

stream.start ()

Recording Protections in Catalina
Screen recording

Recording the entire screen

guard let stream = CGDisplayStream(dispatchQueueDisplay: CGMainDisplayID(),
outputWidth: 1920,

outputHeight: 1080,
pixelFormat: Int32(kCVPixelFormatType 32BGRA),

properties: nil,
queue: DispatchQueue.global(),
handler: frameHandler)
else {
// Error occurred or user has not approved the app to record the screen.

return

¥

stream.start ()

Recording Protections in Catalina
Screen recording

Recording the entire screen

guard let stream = CGDisplayStream(dispatchQueueDisplay: CGMainDisplayID(),
outputWidth: 1920,

outputHeight: 1080,
pixelFormat: Int32(kCVPixelFormatType 32BGRA),

properties: nil,
queue: DispatchQueue.global(),

handler: frameHandler)

else {
// Error occurred or user has not approved the app to record the screen.

return

¥

stream.start ()

Recording Protections in Catalina
Screen recording

Recording the entire screen

guard let stream = CGI

rmatType 32BGRA),

e ete—————————————————————— .

i !

obal(),
handler: frameHandler)

else {

// Error occurred or user has not approved the app to record the screen.
return

L

stream.start ()

Recording Protections in Catalina
Approving for screen recording

e AT AN
r —?.m!
AR

W AN N
. eE e e
J '.-' N B \ f p -." c' .,4.‘- ’/‘-‘ 7 u." ‘:
| : I r. E A‘ ™ -'. - e%
e vl ERs Ll St s e ST A R e O

\
=

Files and Folders
Files and Folders

L el

¢ .
.ﬂt ‘ .
- A < L)

Recording Protections in Catalina
Approving for screen recording

ot YN T A
r wm.
AR

-’
~
B

v piorh SN
.H" 2 8 - " a - . AR M S L L R

] == 2 B \ f -.' . .' .,4.‘- ’/‘-‘ 7 u. "\‘:

1 A v A £ it - r \ %

e Sl L4 S Sy S e R e SO

-

Files and Folders
Files and Folders

Ly

» Automation

Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forWindow windowId: CGWindowID, to url: URL) throws {
let cgimage = CGWindowListCreateImage(.null, [.optionIncludingWindow], windowId,
[.nominalResolution])!

let 1mageRep = NSBitmapImageRep(cgImage: cgimage)

let pngData imageRep.representation(using: .png, properties: [:])

try pngData!.write(to: url)

Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forWindow windowId: CGWindowID, to url: URL) throws {
let cgimage = CGWindowListCreateImage(.null, [.optionIncludingWindow], windowId,
[.nominalResolution])!

let 1mageRep = NSBitmapImageRep(cgImage: cgimage)

let pngData imageRep.representation(using: .png, properties: [:])

try pngData!.write(to: url)

Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forWindow windowId: CGWindowID, to url: URL) throws {
let cgimage = CGWindowListCreateImage(.null, [.optionIncludingWindow], windowId,
[.nominalResolution])!

let 1mageRep = NSBitmapImageRep(cgImage: cgimage)

let pngData imageRep.representation(using: .png, properties: [:])

try pngData!.write(to: url)

Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forWindow windowId: CGWindowID, to url: URL) throws {
let cgimage = CGWindowListCreateImage(.null, [.optionIncludingWindow], windowId,
[.nominalResolution])!

let 1mageRep = NSBitmapImageRep(cgImage: cgimage)

let pngData imageRep.representation(using: .png, properties: [:])

try pngData!.write(to: url)

Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forWindow windowId: CGWindowID, to url: URL) throws {
let cgimage = CGWindowListCreateImage(.null, [.optionIncludingWindow], windowId,
[.nominalResolution])!

let 1mageRep = NSBitmapImageRep(cgImage: cgimage)

let pngData imageRep.representation(using: .png, properties: [:])

try pngData!.write(to: url)

© App's own windows €) Other apps’ windows

& Desktop or Menu Bar windows

Recording Protections in Catalina
Screen recording

Recording a window's contents

func saveImage(forwinc

let cgimage = CGW: , windowlId,
let 1mageRep = NSE
let pngData = 1mac

try pngData!.write

© App's own windows €) Other apps’ windows

& Desktop or Menu Bar windows

Recording Protections in Catalina
Screen recording

No approval necessary to query metadata about windows

let windows = CGWindowListCopyWindowInfo([.optionOnScreenOnly], kCGNullWindowID) as? [[String:
AnyObject]]

Recording Protections in Catalina
Screen recording

No approval necessary to query metadata about windows

let windows = CGWindowListCopyWindowInfo([.optionOnScreenOnly], kCGNullWindowID) as? [[String:
AnyObject]]

Recording Protections in Catalina
Screen recording

No approval necessary to guery metadata about windows

let windows = CGWindowListCopyWindowInfo([.optionOnScreenOnly], kCGNullWindowID) as? [[String:
AnyObject]]

Recording Protections in Catalina
Screen recording

No approval necessary to guery metadata about windows

let windows = CGWindowListCopyWindowInfo([.optionOnScreenOnly], kCGNullWindowID) as? [[String:
AnyObject]]

kCGW1indowBounds
kCGW1indowNumber

kCGW1indowOwnerName

kCGW1indowOwnerPID

Recording Protections in Catalina
Screen recording

No approval necessary to query metadata about windows

let windows = CGWindowListCopyWindowInfo([.optionOnScreenOnly], kCGNullWindowID) as? [[String:
AnyObject]]

kCGW1indowBounds
kCGW1indowNumber

kCGW1indowOwnerName

kCGW1indowOwnerPID

Recording Protections in Catalina
Screen recording

No approval necessary to query metadata about windows

let windows = CGWindowListCopyWindowInfo([.optionOnScreenOnly], kCGNullWindowID) as? [[String:
AnyObject]]

kCGW1ndowBounds 0 kCGW1indowName
kCGW1ndowNumber ° kCGW1ndowSharingState
kCGW1ndowOwnerName

kCGW1indowOwnerPID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

I

return desktopWindows.map {
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

I

return desktopWindows.map {
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

I

return desktopWindows.map {
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

I

return desktopWindows.map {
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

I

return desktopWindows.map {
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

I

return desktopWindows.map {
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

¥

return desktopWindows.map <
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

¥

return desktopWindows.map <
$0[kCGWindowNumber as Stringl as! CGWindowID

// Screen Recording Protections - Get Desktop Background Windows

func getDesktopWindowIds() -> [CGWindowID] {

let windows = CGWindowListCopyWindowInfo([.opt1onOnScreenOnly], kCGNullWindowID)! as!
[[String: AnyObject]]

let desktopWindowlLevel = CGWindowlLevelForKey(.desktopWindow) — 1

windows.filter {

let desktopWindows
let windowLevel = $0[kCGWindowlLayer as Stringl] as! CGWindowLevel
return windowLevel == desktopWindowLevel

¥

return desktopWindows.map <
$0[kCGWindowNumber as Stringl as! CGWindowID

Recording Protections in Catalina

Camera

Microphone
Screen recording

Keyboard input monitoring

Recording Protections in Catalina

Camera

Microphone
Screen recording

Keyboard input monitoring

Recording Protections
Keyboard input monitoring

No approval necessary to monitor events for own app

NSEvent.addLocalMonitorForEvents(matching: .any, handler: { event 1n
// Do something with the event

return event

r)

Recording Protections
Keyboard input monitoring

No approval necessary to monitor events for own app

NSEvent.addLocalMonitorForEvents(matching: .any, handler: { event 1n
// Do something with the event

return event

r)

// Keyboard Event Recording Protections

func callback(proxy: CGEventTapProxy, type: CGEventType, event: CGEvent,
userInfo: UnsafeMutableRawPointer?) —> Unmanaged<CGEvent>? {
// Do something with the event.

return Unmanaged.passUnretained(event)

let eventMask = (1 << CGEventType.keyDown.rawValue) | (1 << CGEventType.keyUp.rawValue)

let eventTap = CGEvent.tapCreate(tap: .cghidEventTap,
place: .tailAppendEventTap,

options: .listenOnly,
eventsOfInterest: CGEventMask(eventMask),
callback: callback,

userInfo: nil)

// Keyboard Event Recording Protections

func callback(proxy: CGEventTapProxy, type: CGEventType, event: CGEvent,
userInfo: UnsafeMutableRawPointer?) —> Unmanaged<CGEvent>? {
// Do something with the event.

return Unmanaged.passUnretained(event)

let eventMask = (1 << CGEventType.keyDown.rawValue) | (1 << CGEventType.keyUp.rawValue)

let eventTap = CGEvent.tapCreate(tap: .cghidEventTap,
place: .tailAppendEventTap,

options: .listenOnly,
eventsOfInterest: CGEventMask(eventMask),
callback: callback,

userInfo: nil)

// Keyboard Event Recording Protections

func callback(proxy: CGEventTapProxy, type: CGEventType, event: CGEvent,
userInfo: UnsafeMutableRawPointer?) —> Unmanaged<CGEvent>? {
// Do something with the event.

return Unmanaged.passUnretained(event)

let eventMask = (1 << CGEventType.keyDown.rawValue) | (1 << CGEventType.keyUp.rawValue)

let eventTap = CGEvent.tapCreate(tap: .cghidEventTap,
place: .tailAppendEventTap,

options: .listenOnly,
eventsOfInterest: CGEventMask(eventMask),
callback: callback,

userInfo: nil)

callback(proxy: CGEventTapProxy, type: CGEventType, event: CGEvent,

userInfo: UnsafeMutableRawPointer?) —> Unmanaged<CGEvent>? {

// Do something with the event.

Unmanaged.

eventMask = (1 <<

eventTap = CGEven

\

Keystroke Receiving

“"Watch Grass Grow"” would like to receive
keystrokes from any application.

Grant access to this application in Security & Privacy
preferences, located in System Preferences.

eventsOfInterest: CGEventMask(eventMask),

callback:

userInfo:

callback,
)

syUp.rawValue)

Recording Protections
Approving for keyboard input monitoring

DRI TR
U - - ~,

"~ y % e W= e AT

a1 1 A 1 1 » . -

-]l A ~r :

1T | v a5 i (RN A :

P S WLaEs L d St ey T e

Z SN2 ‘?'~’lf‘._~.° "‘:4

VLV

Files and Folders

- Y -"\ ,‘-u‘-/v..: \;\’J'I‘.
reen Re
< ‘.‘.(..-s. -y (°. ',

“}.\Ib'v

Recording Protections
Approving for keyboard input monitoring

-

~ e ~
: ol e
\ { 'y » o
% '
> AR AN
T R S 3

»
4 ‘
N ER e PSS

Full

h
-y

T
- 10
4 vy

VLV

Files and Folders

¥ o PN,

- "\ A I _-\-';.,‘. .
reen Rec
< ‘.‘.(.f-s o T (° .“}.\Ib'v', -

Recording Protections
Checking keyboard input monitoring approval

let accessType = IOHIDCheckAccess(kIOHIDRequestTypelListenEvent)
switch accessType {
case KIOHIDAccessTypeGranted:
// User has approved the app to listen to all keystrokes

case kIOHIDAccessTypeDenied:
// Denied; approval dialog has been displayed.

case kKIOHIDAccessTypeUnknown:
// Denied; approval dialog has not yet been displayed.

default:

// Unknown status: assume denied.

Recording Protections
Checking keyboard input monitoring approval

let accessType = IOHIDCheckAccess(kIOHIDRequestTypelListenEvent)
switch accessType {
case KIOHIDAccessTypeGranted:
// User has approved the app to listen to all keystrokes

case kIOHIDAccessTypeDenied:
// Denied; approval dialog has been displayed.

case kKIOHIDAccessTypeUnknown:
// Denied; approval dialog has not yet been displayed.

default:

// Unknown status: assume denied.

Recording Protections
Requesting keyboard input monitoring approval

1T IOHIDRequestAccess(kIOHIDRequestTypelListenEvent) {
// The user has approved the app to listen to all keystrokes.

} else {
// App may not listen to all keystrokes.
// Approval dialog displayed 1f 1t has not previously been displayed.

Recording Protections
Requesting keyboard input monitoring approval

1f IOHIDRequestAccess(kIOHIDRequestTypelListenEvent) {
// The user has approved the app to listen to all keystrokes.

} else {
// App may not listen to all keystrokes.
// Approval dialog displayed 1f 1t has not previously been displayed.

User Privacy Protections

Recording capabillities
Files and folders

Automation

User Privacy Protections

Recording capabillities
Files and folders

Automation

User Privacy Protections

Recording capabillities
Filles and folders

Automation

User Privacy Protections

Recording capabillities

Filles and folders

e Data that requires user consent to access

Automation

User Privacy Protections

Recording capabillities

Filles and folders

« Data that requires user consent to access

 Private data managed by the system

Automation

User Privacy Protections

Recording capabillities

Filles and folders

« Data that requires user consent to access

 Private data managed by the system

Automation

User Privacy Protections

Recording capabillities

Filles and folders

« Data that requires user consent to access

 Private data managed by the system

Automation

User Data Protections
Data that requires user consent to access

User Data Protections
Data that requires user consent to access

Contacts
Calendars
Reminders

Photos

User Data Protections
Data that requires user consent to access

Contacts
Calendars
Reminders

Photos

User Data Protections
Data that requires user consent to access

Contacts
Calendars
Reminders

Photos

User Data Protections
Data that requires user consent to access

Contacts
Calendars
Reminders

Photos

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Data that requires user consent to access

Contacts Desktop
Calendars Documents
Reminders Downloads
Photos ICloud Drive

Third-party cloud storage
Removable volumes

Network volumes

User Data Protections
Minimizing consent prompts by inferring user intent

User Data Protections
Minimizing consent prompts by inferring user intent

Double-clicking on files In Finder
Dragging and dropping

Selecting files via a NSOpenPanel or NSSavePanel

User Data Protections
Minimizing consent prompts by inferring user intent

Double-clicking on files In Finder
Dragging and dropping

Selecting files via a NSOpenPanel or NSSavePanel

User Data Protections
Minimizing consent prompts by inferring user intent

Double-clicking on files In Finder
Dragging and dropping

Selecting files via a NSOpenPanel or NSSavePanel

User Data Protections
Minimizing consent prompts by inferring user intent

User Consent User Intent

User Data Protections
Minimizing consent prompts by inferring user intent

User Consent User Intent

Reactive Proactive

User Data Protections
Minimizing consent prompts by inferring user intent

User Consent User Intent

Reactive Proactive

User Data Protections

Minimizing consent prompts by inferring user intent
User Consent User Intent
Reactive Proactive

Prompt interrupts workflow Inferred transparently from workflow

User Data Protections

Minimizing consent prompts by inferring user intent
User Consent User Intent
Reactive Proactive

Prompt interrupts workflow Inferred transparently from workflow

User Data Protections

Minimizing consent prompts by inferring user intent

User Consent User Intent

Reactive Proactive

Prompt interrupts workflow Inferred transparently from workflow

Applies to whole class of data Applies to just the selected files

User Data Protections

Minimizing consent prompts by inferring user intent

User Consent User Intent

Reactive Proactive

Prompt interrupts workflow Inferred transparently from workflow

Applies to whole class of data Applies to just the selected files

User Data Protections

Minimizing consent prompts by inferring user intent

User Consent User Intent

Reactive Proactive

Prompt interrupts workflow Inferred transparently from workflow

Applies to whole class of data Applies to just the selected files

User Data Protections

Minimizing consent prompts by inferring user intent

User Consent User Intent

Reactive Proactive

Prompt interrupts workflow Inferred transparently from workflow

Applies to whole class of data Applies to just the selected files

User Data Protections

Minimizing consent prompts by inferring user intent

User Consent User Intent

Reactive Proactive

Prompt interrupts workflow Inferred transparently from workflow

Applies to whole class of data Applies to just the selected files

User Data Protections
Accessing sidecar files

<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeRole</key>
<string>None</string>
<key>CFBundleTypeExtensions</key>
<array>
<string>srt</string>
</array>
<key>CFBundleTypeName</key>
<string>Subtitle File</string>
<key>NSIsRelatedItemType</key>
<true/>
</dict>

</array>

User Data Protections
Accessing sidecar files

<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeRole</key>
<string>None</string>
<key>CFBundleTypeExtensions</key>
<array>
<string>srt</string>
</array>
<key>CFBundleTypeName</key>
<string>Subtitle File</string>
<key>NSIsRelatedItemType</key>
<true/>
</dict>

</array>

User Data Protections
Accessing sidecar files

<key>CFBundleDocumentTypes</key>
<array>
<dict>
<key>CFBundleTypeRole</key>
<string>None</string>
<key>CFBundleTypeExtensions</key>
<array>
<string>srt</string>
</array>
<key>CFBundleTypeName</key>
<string>Subtitle File</string>
<key>NSIsRelatedItemType</key>
<true/>
</dict>

</array>

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
¥
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
¥
func readData() -> Data? A
var data: Data?
var error: NSError?
let coordinator = NSFileCoordinator.init(filePresenter: self)
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(contentsOf: url)
I

return data

class SubtitleSidecar: NSObject, NSFilePresenter {
lazy var presentedItemOperationQueue = OperationQueue.maln
var primaryPresentedItemURL: URL?
var presentedItemURL: URL?
init(withMovieURL movieURL: URL) {
primaryPresentedItemURL = movieURL
presentedItemURL = movieURL.deletingPathExtension().appendingPathExtension("srt")
I
func readData() -> Data? A
var data: Data?
var error: NSError?

NSFileCoordinator.init(filePresenter: self)

let coordinator
coordinator.coordinate(readingltemAt: presentedItemURL!, options: [], error: &error) {
url in
data = try! Data.init(conten<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>