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Abstract— It is not uncommon for autonomous systems (e.g.,
self-driving cars) to require the timely intervention of a human
operator to ensure safe operation. It is important to design
these systems such that the human is brought into the decision-
making loop in a manner that enables them to make a timely
and correct decision. In this paper, we consider one such ap-
plication, which we refer to as the perception hand-off problem,
which brings the driver into the loop when the perception
module of an Autonomous Vehicle (AV) is uncertain about the
environment. We formalize the perception hand-off problem
by designing a Partially Observable Markov Decision Process
(POMDP) model. This model captures the latent cognitive
state (attention) of the driver which can be influenced through
a proposed query-based active information gathering (AIG)
system for Human-Machine Interface (HMI). We design a
web-based human study to identify the model parameters,
and demonstrate the impact of the proposed HMI system.
Results from this study show that the state of attentiveness
does indeed impact the human performance, and our proposed
active information gathering (AIG) actions, i.e., queries to
the human driver, result in 7% faster responses from the
human. Simulations with the identified POMDP model show
that a learnt policy for deploying the AIG actions improves
the percentage of correct responses from the human in the
perception hand-off by around 5.4%, outperforming other
baselines while also using fewer of these actions.

I. INTRODUCTION

The safe operation of autonomous and semi-autonomous
systems sometimes requir intervention from a human oper-
ator. However, the human operator may not always be in a
state to make a correct and timely decision, leading to safety
violations with potentially fatal consequences [1]. In recent
years, issues with the perception module of autonomous
vehicles (AVs) have been a dominant cause for a human
to take over control of the vehicle [2]. In such takeovers
or hand-offs, the human operator needs to be attentive and
have spatial awareness of the road, once the AV asks them to
take control. However, they might not have the knowledge
of the situation as much as the AV does, since they were
not controlling the vehicle until the hand-off was initiated.
We posit that in such scenarios, continued semi-autonomous
operation could be possible by handing off to the human,
only the perception task that the AV cannot confidently
perform. This would allow the vehicle to operate under the
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Fig. 1: An overview of the human-AV interaction in the hand-
off process. The AV, through a human-machine interface (HMI),
can query the human driver when its perception module requires
help in decision making, or to gauge/influence the human’s state of
attentiveness. Further influencing the human state is a NDRT.

same (autonomous) control law and avoid sudden maneuvers
unless necessary. We refer to this human-robot interaction as
the perception hand-off. This hand-off requires a system to
effectively alert the human and bring them into the decision-
making loop in a manner that ensures overall system safety.
In this paper, we present an approach to formally model
the Human-Robot interaction in the perception hand-off
problem and develop an active information gathering scheme
that enables us to leverage a query-based human machine
interface (HMI) to both estimate and influence the human
state to improve response time and correctness.

We focus on applications in L2-L4 autonomous driving,
as defined in the SAE J3016 [3], and develop a framework
for bringing the human in the decision-making loop at a
high attention level to safely execute a perception hand-
off. The AV and the human interact via a HMI, through
which the AV can query the human for two purposes: a)
the AV is unsure of the environment and requires human
input in decision making, or b) a Human-Robot Interaction
(HRI) policy (designed for maximizing safety) wants to
either infer the state of the human’s attentiveness or influence
it in preparation for an upcoming (potential) perception
hand-off. We refer to the latter as an active information
gathering action (AIGA) [4], and show the benefit of these,
especially in situations where the human driver’s state of
attentiveness during autonomous driving is impacted by non-
driving related tasks (NDRTs) or distractor tasks.
Contributions: In this paper, we define the perception hand-
off problem, as a human-robot interaction in autonomous and
semi-autonomous driving. The contributions of this work are:

1) A model-based formalization of the perception hand-
off process for time-critical human operator decision-
making in autonomous/semi-autonomous systems;

2) A query-based active information gathering mecha-
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nism to use the HMI to gauge and influence the atten-
tion of the human operator in a closed-loop manner;

3) A human subject study to gather data in a setting that
simulates such a perception hand-off process. This data
is used to learn the proposed POMDP model, validate
hypotheses on the operator behavior, and the impact
of the query-based AIG mechanism; our approach
achieves, on average, a 7% speed up (≈ 150ms, see
sec. IV-B) in human response times in the presence of
a distraction, or NDRT1.

4) A model-based policy that uses the query-based AIG
mechanism to influence the operator attention in order
improve their performance on these hand-off tasks.

We demonstrate that the rate of making correct decisions
improves by 5.4% using our approach via a simulation study
(see section VI-B.1), which uses the learned model as a
surrogate for the human.

II. RELATED WORK

Here, we study the problem of safe interaction between a
human operator and an autonomous/semi-autonomous vehi-
cle. In this section, we cover some of the relevant work in
this context from across different research areas.
Model-based human-robot interaction: Shia et al.[6] use
measurements of the pose of the human driver of a semi-
autonomous vehicle to correct the human input to the vehicle.
Models with hidden latent states, usually POMDP-based,
have been used to generate robot policies [7] or predict
human intent [8] in collaborative human-robot tasks. These
works however do not consider the case where the robot can
actively gather information, i.e. take actions to estimate or
influence the latent (human) state. The work in [4] takes a
step in this direction, where an autonomous vehicle takes
actions to actively estimate whether the driver of a nearby
human operated vehicle is attentive or inattentive. However,
the human latent state is assumed to be time invariant. A
monitoring-based approach to alert the driver for a takeover
is presented in [9]. The space of states and actions there is
similar to ours, but unlike our approach, they assume full
state observability. They also assume a priori knowledge of
a transition model, while one of our main contributions is
designing an experiment to gather data to learn such a model.
Dual-task driving studies: In situations where the safe op-
eration of an AV requires the assistance of a human operator,
the human’s behavior is not guaranteed to be timely, or even
correct. This can mostly be attributed to human operators of
vehicles performing non-driving related tasks [1]. Dual-task
experiments [10], [11], [5], [12] have been designed to study
driver behavior in the presence of non-driving, or distractor
tasks. The findings in these state that the presence of a
distractor task impairs the driver’s performance on driving-
related tasks and increases their response times. Our web-
based human study shows a similar trend (section IV).
Cognitive models of humans in autonomous driving: The
human cognitive process when an AV requests the driver to

1This is inline with [5], where visual stimuli to a human driving in the
presence of a NDRT results in improvements of a similar order.

take over control has been studied in [13], [14], [15]. Unlike
these works that aim to model the underlying cognitive
processes step-by-step, we aim to develop a computational
latent state model that can be influenced by an external
process, i.e. the Human-Machine Interface (HMI).

III. FORMALIZING THE AUTONOMY-TO-HUMAN
PERCEPTION HAND-OFF

We develop a model-based framework to represent and
influence the human behavior during the perception hand-
off (see Figure 1). First, we address the need for developing
a latent variable model of the hand-off HRI that is suited
for closed loop control and can be interpreted for online
monitoring of the human operator’s attentiveness. We also
propose the use of query-based active information gathering
actions that enable us to do so.

A. Modeling the human response

Problem 1 (Modeling): Develop a model for the human
operator’s response (timing and correctness) to perception-
hand-off queries from the autonomous system, that can
account for the (latent) human attentiveness levels, transitions
between them, and the impact of queries on them.

We propose a Partially Observable Markov Decision Pro-
cess with a specific structure to represent this HRI (section
V). Our model allows for the latent state of the human
to change over time, and be influenced by the AIGAs,
distinguishing our approach from other works like [4].

B. The human-AV interface: Querying driver for hand-off

Next, we also discuss the interface between the human
operator and the AV. In the version of the perception hand-
off problem considered here, the AV occasionally requires
human intervention in decision making, e.g. identifying an
object on the road. In our framework, this is posed to the
human as queries, which must be answered within a given
deadline. The queries are displayed to the human via a
HMI2, which also registers the response from the human,
as shown in figure 1. This response would be used by the
AV to decide which behavioral action (e.g. lane change or
emergency braking) to execute, that however is beyond the
scope of the current work.

A query displayed via the HMI could be of two types:
1) From the perception module, or environment query:

These are asked when the AV’s perception module is
unsure how to interpret the environment and requires
the human to make a decision. We refer to these as
environment queries as they are triggered by factors
external to the AV.

2) Active information gathering action (AIGA), or atten-
tion query: Here, the AV does not actually require
human intervention, but still queries the driver to either
influence or better estimate a latent state.

Assumption 1 (Precedence of Environment queries): An
attention query can be only be displayed via the HMI if

2The formal design of such an interface is beyond the scope of this paper,
however we consider a graphical interface (see Section IV) that allows us
to study and collect data for the perception hand-off HRI.
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Fig. 2: The human subject experiment design for studying the
hand-off process. Note: UI Text emphasized for clarity. A trial run
can be seen at https://youtu.be/LZRemqFBILA.

there is no environment query currently on it. An attention
query can also be preempted by an environment query.

This assumption is formalized in section V. Note that, an
environment query is due to factors external to the AV (which
cannot be directly controlled). This can be interpreted as a
second player’s actions (environment) in a two player game,
where the first player (the AV’s HRI policy) takes actions in
the form of attention queries.

Next, we consider the problem of developing a policy
for scheduling attention queries to increase the human’s
attentiveness towards driving related tasks.

Problem 2 (Policy for the hand-off HRI): Develop a pol-
icy for deploying the AIGAs (attention queries) to improve
the human response for subsequent environment queries, i.e.
the rate of correct responses and reduce response time.

The architecture for this hand-off HRI is shown in Figure
1. To study human behavior to this setup, and to gather
data to learn the proposed model, we developed a proof-
of-concept user study that simulates this hand-off process.

IV. DUAL-TASK WEB EXPERIMENT

We developed a web-based game that simulates the per-
ception hand-off described above and used it to study the
impact of human attention levels and the HMI on the timing
and accuracy of decision making in hand-off situations. We
designed a dual-task human subject experiment where the
human can interact with an AV. Dual-task refers to the
the human subject performing both a driving related task
and a distractor or non-driving related task (NDRT). The
experiment, after obtaining IRB approval, was conducted on
the Amazon mechanical turk platform, and we collected data
from N = 39 users.

Figure 2 shows the UI that the subject of the experiment
interacts with. The main components of this are:

1) Driving related (primary) task: Figure 2 shows the
setup for the driving task. The user has a top-down
view of an AV (Figure 2f) driving on a straight one-
way road with objects on it. Only one object is present
on the road at a time; a new one is spawned every 10s.
For some of these objects, the AV requires user input
(via keyboard), within a deadline of 4s, to label them
correctly (using legend in 2b) within a deadline.

2) Distractor task: For the NDRT (Figure 2c), the user
has to solve basic arithmetic questions. They have upto
5 seconds to answer each question, and the task display
is toggled on/off every 150s.

3) Human-Machine Interface: This displays: a) The
queries to the human to identify an object on the
road, and b) The information regarding which key
corresponds to the different classes among which the
human must label the object.

Note that in order to simulate an AV and to deal with
the constraints of designing and deploying the experiment,
the subject cannot directly control the car in the driving
related task. For objects that the AV can identify on its
own, it performs an appropriate behavior to either avoid or
collect the objects (which appear every 10s). In cases where
it requires the user to identify an object, the car takes an
action only after receiving user input. The full experiment
takes 10 minutes.

While each of attention queries and environment queries
by themselves are identical, the primary difference between
the two types is the order in which they are deployed. Note,
the AV encounters only one object at a time.

A. Attention query order: Interleaving of attention and en-
vironment queries

Every three objects in the driving task can be considered
to form a set. In our study, every third object in a set, has an
environment query asked on it. An attention query is asked
on either the first or the second object of this set. A set can
have one of three orders:
• Order-1 : Attention query is asked on the object,

immediately before the one with environment query.
(also, the 2nd object in the set)

• Order-2 : Attention query is asked on the object, that
is two before the one with environment query.
(also, the 1st object in the set)

• Orderϕ : No attention query is asked on the set
The order in these sets is varied across the span of the

experiment. At the end of every set, the order for the next
set is determined with an equal probability (0.33). We varied
two conditions across the span of the experiment - Presence
/ Absence of the Distractor task - 2 levels, and the order in
which queries are deployed - 3 levels. These conditions were
varied in a within-subjects manners, meaning every subject
experienced all the 2x3 combinations of the conditions.

B. Brief summary of results from the human subject study

Through data collected from this study3, we note two main
effects on human performance:
1. Effect of distractor: In the presence of a distractor task,
there was a statistically significant increase (average of
364ms) in human response time for the primary (driving)
task and a statistically significant decrease (by 7%) in the
fraction of driving-related queries answered correctly. A

3Due to space constraints, we omit details about the statistical tests
performed here. Details of the statistical results (and tests) from the human
study can be found in the extended online report on this work [16].
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Fig. 3: Average Response Times (RT ) and Fraction of
queries correctly answered (f ) for the different conditions

post-hoc paired-sample T-test confirmed this with p < 0.05
and Cohen’s D= 0.72 (large effect size). See [16] for details.
2. Effect of attention queries in the presence of a distractor
task: For the driving-related queries designated as environ-
ment queries, the human response time was faster in a
statistically significant manner (on average by 154ms, or
7%) when the environment queries immediately (i.e., on
objects that appeared 10s ago) were preceded by an attention
queries, as compared to the case when they were not. A post-
hoc paired-sample T-test (details in [16]) confirmed this with
p < 0.05 and Cohen’s D= 0.67 (large effect size).

We thus observe that attention does indeed impact the
performance of a human in the perception hand-off setting.
More importantly, we also note that the AIGA (attention
queries) improves human performance. These form the basis
for the modeling in the rest of this paper. Note, in the absence
of distractor task, the attention queries do not impact human
performance in a statistically significant manner (details in
[16]). This is expected, since with no distraction, human
attention level for the driving task is expected to be high.

V. FINITE STATE POMDP MODEL FOR THE HUMAN-AV
INTERACTION IN THE HAND-OFF PROCESS

In this section, we develop a Partially Observable Markov
Decision Process (POMDP) to represent the HRI for the
perception hand-off and model the impact of the active
information gathering actions (problem 1). The partial ob-
servability is over the internal level of human attention,
which we allow to be time varying and which has a direct
impact on the human’s behavior in a perception hand-off,
e.g. due to the NDRT as seen in section IV. Outside of a
controlled environment, such external factors cannot be mea-
sured directly; therefore, we assume probabilistic transitions
between attention levels. This allows the AV to maintain a
belief over the human’s attention.

Definition 1 (Human attentiveness level): We posit that
relevant to the perception hand-off, the human has L =
{l1, . . . , lN} levels of attention. At a discrete time step k,
the human attentiveness state can take a single value in L.
The attention levels are ordered li+1 � li, with � denoting
a total order, such that higher levels imply higher attention.

We are interesting in developing a discrete time model,
where time step k corresponds to time kdt. Here, dt is the
sampling time. The queries to the human have an associated
deadline of Tmax = Ddt seconds, or D time steps. The
queries from the HMI act as actions, or inputs to the human,
and the response to those queries is the output, or observation

from the human (Figure 1). Associated with whether the
actions are active information gathering queries or from the
perception module, there is a counter that keeps track of how
many time steps have elapsed since the query was asked.

Definition 2 (Query model): A query has states t ∈ T
where, T = {−D, . . . ,−1, 0, 1, . . . , D}. In the absence of
any active queries4, the state is 0. For an active information
gathering query, the state of the query increments from 1
to D in steps of 1 at each discrete time step if the human
does not respond to the query. If there is no response by the
query deadline, or Dth state, then the query times out and
the state resets to 0. If there is a response at the tth query
state (1 ≤ t ≤ D), the state again resets to 0. When the
query is from the perception module, e.g. an environment
query as in the experiment of section IV, the query state
decrements from −1 to −D and resets based on whether the
human responds within the query deadline or not.

We now define the POMDP obtained by considering a
probabilistic model for transitions of the human attentiveness
states and combining this with the query model.

Definition 3 (Perception hand-off model): The perception
hand-off process is then modeled by a POMDP, which is a
tuple (S,A,O,R,T,O, γ), where:

• S = L × T is the state space. Here, each state s =
{li, t} ∈ S represents the internal attention level of the
human and the (time) state of the query model.

• A = {aφ, aAIGA1 , . . . , aAIGAm , aPER1 , . . . , aPERm } is the
action space. aφ corresponds to no action (no query
displayed on the HMI). aAIGAj or aPERj refer to the
ith type of active information gathering actions (e.g.
attention query) or ith type of query from the perception
module (environment query) respectively. Also let the
set of AIGA be AAIGA, and the queries from the per-
ception module be APER, s.t. A = AAIGA∪APER∪aφ.

• O = {Oφ, O1, . . . , OP } is the observation space, which
consists of responses from the human to the query
or other auxiliary measurements on the human, e.g.,
from driver gaze tracking or pose detection. Here Oφ
corresponds to no response, and O1, . . . , OP are the
possible responses to the displayed query.

• R : S ×A×O → R is a reward function that captures
the utility of the human’s response to a query.

• T : S × A × O → S is the state transition function
which contains conditional probabilities of the form
T(s′|s, a, o). Here s′ refers to the state of the model at
a time step k + 1, and s, a, o refer to the state ,action
and observation (respectively) at time step k5.

• O : S × A → O, the observation function O contains
conditional probabilities of the form O(o|s, a) and rep-
resents the probability of the human giving a particular
response to a query based on the attentiveness level and
time steps elapsed in the query.

• γ ∈ (0, 1) is a discount factor.

4Queries that have not timed out and for which the HMI has not yet
received a response from the human.

5Unlike a standard POMDP, the state transitions are conditioned on the
output due to the counters of the query state as in definition 2.
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Here, actions a ∈ aφ ∪ AAIGA are controllable in the
sense that they can be deployed through a policy in order
to monitor or influence the human’s attentiveness level l.
The actions from the perception module a ∈ APER are
triggered whenever the perception module needs to actually
perform a perception hand-off. In order to ensure that the
HMI is not displaying an AIGA when a perception hand-
off needs to happen, we impose the following assumption
(which formalizes assumption 3):

Assumption 2 (Precedence of a ∈ APER over a ∈ AAIGA):
If a policy wants to deploy an AIGA at the same time that
the perception module requires a perception hand-off, the
HMI will override the policy and perform the perception
hand-off, i.e. a ∈ APER has precedence over a ∈ AAIGA.
A. The problem specific structure of the model

Here, we define some elements of structure of the POMDP
developed above that make it specifically suited for modeling
the perception hand-off process. Let St ⊂ S represent the set
of states s = {., t} where the query state is t ∈ T .

1) Absence of an active query: At a time step k, when
there is no active query on the HMI, the state takes a value
s[k] ∈ S0. If there is no new query at time step k, i.e. a[k] =
aφ, then s[k + 1] ∈ S0. Only states in S0 can self transition
in the absence of an active query.

2) Active information gathering action: Assume that
s[k] ∈ S0. If a[k] ∈ AAIGA, then s[k + 1] ∈ S1, the further
evolution of states is covered in the cases below:
Case 1: No response at time step k+1. If o[k+1] = oφ, the
query remains active and the next state s[k+2] ∈ S2 and so
on until either a response is reached or the query times out.
Case 2: Response from human at time step k+1. If o[k+1] 6=
oφ, then the query is now inactive and the query state resets
s.t. s[k + 2] ∈ S0.
Case 3: Query time out. If there is no human response until
the point s[k +D] ∈ SD, and the human does not respond
on the last time step of the query, i.e. o[k +D] = oφ, then
the query times out and is inactive, and the state resets s.t.
s[k +D + 1] ∈ S0.

3) Actions from the perception module: For actions from
the perception module a[k] ∈ APER, the state transitions and
observations have a similar structure as for the AIGAs. We
use a notation here that the counter for states when a[k] ∈
APER decrements (see the query model, definition 2) s.t. for
no response from the human at a state s[k] ∈ S−i, the next
state is s[k + 1] ∈ S−i−1, ∀i ∈ {D − 1, . . . , 0}.

4) Precedence of actions from the perception module:
Finally, another structural constraint is imposed by assump-
tion 2. This implies that if s[k] ∈ Si, i ∈ {0, . . . , D} and
a[k] ∈ APER, then s[k + 1] ∈ S−1.

The modeling choices highlighted above introduce struc-
tural constraints and sparsity on the state transition function
T to capture the relevant behaviors for time-sensitive HRI.

Example 1 (A POMDP for the Handoff Experiment):
We model the perception hand-off experiment in section IV
via the following design choices: 1) The human has two
attentiveness levels L = {l1, l2}, where l1 and l2 correspond
the human being inattentive or attentive respectively, 2) The
4s deadline for answering queries is discretized into D ≥ 1

Environment Query


No Query


Attention Query


Legend

Fig. 4: The state space for the POMDP formalizing the perception
hand-off experiment studied in section IV. Shown here are the
possible 1-step state transitions when starting in states l1, 0 or l2, 0
and under the different possible actions. Also see example 1.

time bins, 3) The action space is A = {aφ, aAIGA, aPER},
where aAIGA is the attention query and the environment
query is aPER, 4) The observation space is O = {oφ, oC , oI}
where oφ is no response to a query, oC is a correct and
oI is an incorrect response. Figure 4 shows a simplified
structure of such a model.
B. Connecting the model to the dual-task experiment
• Human responses when inattentive: When the human

subject is distracted, they are slower to answer queries,
and also get them wrong more often (section IV). This
is captured in the model as O(oI |s = {l1, .}) >
O(oI |s = {l2, .}), i.e. probability of incorrect response
is higher when the attention level is low. Also, O(oφ|s =
{l1, t}) > O(oφ|s = {l1, t}), t ∈ T (see definition 2),
i.e. the probability of the human not responding at a
time step in the query is higher if they are at a lower
attention level. Figure 5 shows the learned observation
probabilities for a model with D = 3 time steps in
a query. Note how the probability of getting a correct
response at a high attention level state s = {l2, .} is
higher than that at low attention level states s = {l1, .}.
Additionally, the probability of getting no response at
the first time step in the query (corresponding to the
time bin (or interval) [0s, 1.33s] since query was asked)
is much higher in the low attention level state.

• Impact of AIGA/attention queries: Section IV shows the
positive impact of well timed attention queries on the
human performance. The model captures this behavior
by increasing the probability of switching to a state with
a higher attention level once a query has been asked,
i.e. T(s = {l2, t + 1}|s = {l1, t}, a 6= aφ, .) > T(s =
{l1, t+ 1}|s = {l1, t}, a 6= aφ, .), e.g., in figure 4, this
implies that the probability of transitioning from {l1, 0}
to {l2, 1} is higher than that of transitioning to {l1, 1}.

To learn the POMDP from data, we use these insights
in creating the initial POMDP transition and observation
functions which are then iterated upon by the Baum-Welch
algorithm [17] (section V-D).

C. Belief updates
From the model in Definition 3, we can monitor the human

attention levels by using the Bayesian belief update below:

bs′ [k + 1] = η−1O(o|s′, a)
∑
s∈S

T(s′|s, a, o)bs[k],where,

η =
∑
s′∈S

O(o′|s′, a)
∑
s∈S

T(s′|s, a, o)bs[k]
(1)
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Fig. 5: Learned observation probabilities for all time steps in a
query with D = 3. Since the attention and environment queries are
displayed in an identical manner, we assume that the observation
probabilities are the same for getting responses for both types of
queries. These show that the human is more likely to answer queries
correctly (o = oC ) and earlier in the high attention level state
s = {l2, .} than in the low attention level state s = {l1, .}.

Here bs[k] represents the belief (or probability) that the
actual state is s at time step k. Also, o′ represents the
observation at time k + 1, a the action at time step k and o
the observation at time k. Note,

∑
s∈S bs[k] = 1 ∀k.

D. Learning the model from experimental data

In order to learn a model similar to the one proposed
above in example 1 from the dual-task experiment data, we
use the Baum-Welch algorithm [17], that aims to find the
POMDP state transition (T) and observation (O) parameters
that maximize the likelihood maxT,OP (o|a;T,O) via Expec-
tation Maximization (EM). Here, o = o[1], . . . , o[kmax] and
a = a[1], . . . , a[kmax] are the time series of observations and
actions collected via the dual-task experiment. Note, unlike
in a standard POMDP where state transition probabilities
are conditioned only on the current state and action, our
model has state transition probabilities that are additionally
also conditioned on the current observation (definition 3).

1) Transforming the POMDP for model learning: As
explained in Section V, the state transition probabilities
of the perception hand-off POMDP are conditioned on the
previous state, action and observation. To use the Baum-
Welch algorithm to learn this POMDP from data (section V-
D), we need to transform it into a standard POMDP where
state transitions are conditioned only on the state and action.
To do so, we lift the state, and define a new state:

ŝ[k] =
[
s[k], o[k − 1]

]T ∈ Ŝ = S ×O

The state transition function for the next lifted state
ŝ′ is now given by conditional probabilities of the form,
T̂(ŝ′|ŝ, a). By construction, this is now dependent only on the
previous lifted state ŝ and the action a. The corresponding
observation function is simply: Ô(o|ŝ, a) = O(o|s, a). The
lifted state transition function is related to T and O as:

T̂([s′, o′] | [s, o], a) = T(s′ | s, a, o′)O(o′|s, a)

This is obtained by applying the chain rule of probabilities
(i.e., P (A,B|C) = P (A|B,C)P (B|C)) on the conditional
probability T̂([s′, o′] | [s, o], a) and then using the definition

of T and O (definition 3). The state transition matrix for
this lifted state (given a, o′) corresponds to the Kronecker
product of the matrices T(.|., a, o′) and O(o′|., a). The re-
sultant transition probability matrices (T̂) and observation
probability matrices (Ô) for the lifted state can be learned
from the experimental data via the Baum-Welch algorithm
[17]. Following this, T and O for the model of Definition
3 can be recovered using a structured Kronecker product
recovery method [18].

E. Learning a policy for the HMI
With a model of the perception hand-off HRI and a method

to learn it from data, we next want to exploit the model’s
suitability for control by developing a policy to use the
AIGAs and influence the human to make better decisions in
perception hand-offs (Problem 1). Given the model structure
and assumptions in Section V, this policy is dependent on
the perception module’s behavior (Figure 1). To take this into
account, we make the following simplifying assumption.

Assumption 3 (Probability of Environment queries):
Environment queries are deployed at random with a constant
probability p, i.e. at any time step k, P (a[k] = aPER) = p.

This assumption allows us to develop a model where we
can marginalize out the impact of the environment queries
on the dynamics and have a transition function dependent
only on the AIGA (the attention query), as explained next.

1) Marginalizing the actions from the perception module:
Since actions in APER are not controllable, we must account
for their impact before we can learn the POMDP. For
simplicity, we explain this process through the POMDP for
the perception hand-off as outlined in example 1. Assumption
3 states that the environment queries (aPER) are deployed
at any time step with a constant probability p. Using this,
we can now marginalize out this action from the POMDP
(aPER), and obtain a transition function Tp over only the
AIGA/attention queries (aAIGA) as follows:

Tp(s′|s, a ∈ {aAIGA, aφ}, o) =
pT(s′|s, aPER, o) + (1− p)T(s′|s, a ∈ {aAIGA, aφ}, o)

(2)

The resulting POMDP is then used to learn an AIGA policy.
2) Value iteration-based learned policy: Given that solu-

tions for POMDP policy learning are not exact and often
difficult to interpret, we used the Value Iteration algorithm
[19] to derive an interpretable policy with respect to the
POMDP in (2), and then compute the optimal action to take
based on our belief of the POMDP at a given point in time.
Results of policy performance were generated by deploying
each policy in an environment based on the learned model,
and recording the actions and rewards earned by the policy
(which did not have access to the underlying state of the
environment). The policy aims to maximize the reward:

R =

∞∑
k=0

γkr[k], where, γ ∈ (0, 1] and, (3)

r[k] =


−C1, if a[k] = aAIGA

C2, if o[k] = oC , s[k] ∈ Si, i ∈ {1, . . . , D}
C3λ|−i|, if o[k] = oC , s[k] ∈ Si, i ∈ {−1, . . . ,−D}
−C4, if o[k] = oI , s[k] ∈ Si, i ∈ {−1, . . . ,−D}
0, otherwise.
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TABLE I: Ratio of likelihoods (over data for 250 time steps) of the
learned POMDP model versus POMDPs with the same structure but
randomly generated parameters. The evaluation is done over models
with varying number of time steps per query D, i.e. discretizing
the 4s until the query deadline into bins with different sampling
times dt. We compare the likelihoods to the average likelihood
from 10 random models (Ratioavg) and to the random model with
the highest likelihood (Ratiobest). A ratio ≤ 1 implies the random
model fits the data as well or better than the learned model, while
ratios > 1 imply that the learned model better represents the data.

Query deadline D = 1 D = 2 D = 3 D = 4
Ratioavg 52.6 10.0 11.32 17.9
Ratiobest 34.4 4.1 4.6 6.5

This reward function penalizes AIGA actions (C1 ≥ 0) to
avoid asking too many attention queries, but rewards correct
responses to attention queries C2 ≥ 0. For environment
queries, it rewards correct responses earlier in the query
λkC3 ≥ 0, where λ ∈ (0, 1] is a factor that lowers the reward
for responses later on. Finally, we also penalize incorrect
responses to environment queries C4 ≥ 0, i.e. the human
making a wrong decision in the perception hand-off. For
the simulations in the next section, we use the following
parameters γ = 0.99, λ = 0.95, C1 = C2 = 0.01, C3 =
1, C4 = −2 for the reward function (3).

VI. CASE STUDY: LEARNING A MODEL AND A POLICY
FOR THE HUMAN-AV PERCEPTION HAND-OFF PROCESS

We first show the ability of the proposed model to repre-
sent the perception hand-off via experimental data gathered
from 39 human subjects performing a trial of 10 minutes
each (section IV). Next, we show that the model is suited
for influencing the human’s attentiveness levels.
Implementation details: The Baum-Welch algorithm of [17]
for learning the model was implemented in Python 3.7,
as was the value-iteration algorithm for learning a policy.
Simulation evaluations of the policy interacting with the
learned model were done via the OpenAI gym environment.

A. Learning a model from data

We use a subset of the collected data to learn a model (see
section V-D) with different sampling times dt and associated
number of time steps in a query before it expires, D. Figure
5 shows the learned observation probabilities for each time
step in the query for D = 3.

Next, we evaluate the likelihood of the action-observation
sequence (see Section V-D) over a smaller subset of the
data, and compare it to the likelihood of obtaining this
sequence from models with a similar structure but randomly
generated state and observation transition probabilities. Table
I shows how the learned models (for different values of D)
are a much better fit than the random models. In addition
to the specific structure of our model, this can also be
partly attributed to the modeling insights (section V-B) used
to initialize the Baum-Welch algorithm. The model with
D = 1 has the highest (absolute and relative) likelihood over
the experimental data. This model lumps all responses and
response times into a single time step in the query, and this

results in a simpler model working on a coarse time scale
(dt = 4s sampling time) that can represent the aggregate
data better. Due to the coarse timescale however, this model
is not well suited to closed loop applications. Models with
D > 1 also fit the data well, while allowing for more fine
grained (in time) HRI. The likelihoods are in general small
(of the order of 10−2 forD = 1, and 10−3 for D ≥ 2) since
we compute them over sequences of hundreds of time steps.
B. AIGA policy for perception hand-off

From the learned model (we pick the setting of D = 3), we
learn a policy (section V-E.2) to deploy the AIGA (attention
queries) to maximize a reward function (3) that corresponds
to valuing correct and early responses from the human to
actions from the perception module, or the actual perception
hand-off (environment) queries.
Baselines for comparison We compare the learned policy
that maximizes the reward defined above to three baselines:
• Belief-based: This policy uses the belief over the states

of the model (1) to deploy attention queries if the sum
of belief over states with the lower attention level i.e.
over s′ s.t., s′ = {l1, .} is greater than the sum of belief
over states with the higher attention level (by ε = 0.1):

a[k] =

{
aAIGA, if

∑
s′={l1,.} bs′ [k]−

∑
s′=(l2,.)

bs′ [k] ≥ 0.5

aφ, otherwise.

• Random: The policy randomly deploys attention
queries, P (a[k] = aAIGA) = 0.5.

• No AIGA: Here, we don’t use the AIGA. This base-
lines corresponds to the perception hand-off happening
without any human monitoring or HMI policy in place.

1) Simulation results and summary: In addition to mod-
eling the experimental data gathered for the perception hand-
off as gathered by the web experiment, the proposed POMDP
is also suitable for learning a policy to interact with the hu-
man during such hand-offs. Table II presents the averages and
standard deviations over 100 runs (of 100 time steps), with
random initial state s[0] ∈ S0, of the following quantities,
evaluated for the learnt and baseline policies interacting with
the learnt POMDP model simulating the human driver:
Accumulated reward: The learned policy results in a higher
accumulated reward than the baseline policies, demonstrating
how AIGA in a systematic manner can show improvements
over not using the AIGA or deploying it randomly.

TABLE II: Performance of policies on learned model with D =

3. The table shows the means ± standard deviations across 100
simulation runs of 100 time steps each. Here, f ∗ 100 represents
the percentage of environment queries (aPER) that were correctly
responsed too, Tresp is the number of time steps taken on average
for a response, #aAIGA : #aPER is the averaged ratio of attention
queries asked for one environment query. Finally, R is the average
accumulated reward for each policy.

Policy Reward (R) Tresp f ∗ 100 #aAIGA : #aPER

Learned 15.52 ± 5.27 1.56 ± 0.05 98.2± 2.8 0.83 ± 0.12
No AIGA 11.29 ± 5.55 1.57 ± 0.07 92.8± 3.9 0
Random 11.78± 6.42 1.55 ± 0.04 95.4 ± 3.1 1.48 ± 0.14
Belief 13.83 ± 4.39 1.54 ± 0.03 95.9 ± 2.8 2.9 ± 0.11
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Percentage of environment queries correctly responded
to: The learned policy also results in the highest percentage
f ∗ 100 of environment queries with correct responses,
showing an improvement of 5.4% over the no AIGA policy.
Time to respond to environment queries: In terms of
number of time steps for a response, the belief-based policy
results in fastest responses on average. This is possibly due to
the higher number attention queries deployed by this policy,
as opposed to the learned policy or even the random policy.
Number of AIG actions taken per perception hand-off
(environment) query: The learned policy asks the least
number of attention queries per environment query. This is
due to the reward function that penalizes asking attention
queries, which would in practice be to avoid causing fatigue
to the driver by querying them too frequently.

These simulation results show the potential for improving
human responses to perception hand-off queries, demonstrat-
ing the benefit of using model-based AIGA.

Showing the potential applicability of our approach, in an
online survey that we hosted on Amazon mechanical turk
(mturk), 45 of 56 users preferred that their AV ask non-
critical questions if it can help them respond faster and more
accurately in a critical scenario. A majority (49 out of 56)
also preferred to be kept in the loop if the AV is uncertain
about the environment during autonomous operation.

VII. DISCUSSION

Summary: We present a model-based formalization of the
perception hand-off, or the problem of bringing the human
in the decision making loop when an autonomous system
is uncertain about the perceived environment. We collect
data on such a Human-Robot Interaction via a web-based
human study, and use it to learn parameters for the proposed
model and to also explore the use of an active information
gathering (AIG) mechanism (attention queries) to influence
the human attentiveness level. We also learn a policy for
leveraging the AIG mechanism and show the benefit of our
approach through the experimental data and simulations.
Limitations and future work: Due to COVID-19, the hu-
man subject experiment was conducted via a web experiment
in a game-like environment. Here, we lacked many of the
signals that could otherwise be collected in an in person
study simulating autonomous driving, e.g. gaze tracking,
pose detection etc. The experiment design in its current form
also restricted the use of AIG actions to once every 10s.
While this still resulted in a statistically significant speed up
in the response time of the human, the lack of fine grained
control resulted in an insignificant increase in the correctness
of the human responses when the AIG mechanism was used.

Ongoing work focuses on validating the results on the
impact of the policy via another human subject web exper-
iment with the learned (and baseline) policies operating in
the loop. This experiment will allow for the AIG actions to
be deployed on a finer time scale than the one in this paper.
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