This work has been published in CHI 2020 Late Breaking Work. This is a resubmission for the ICML HILL workshop.

SCRAM: Simple Checks for Realtime Analysis of Model Training for
Non-Expert ML Programmers

Eldon Schoop ' Forrest Huang'! Bjorn Hartmann !

Abstract

Many non-expert Machine Learning users wish
to apply deep learning models to their own do-
mains but encounter hurdles in the model train-
ing process. We introduce SCRAM, a tool which
uses heuristics to detect potential error conditions
in model output and suggest best practices to
help such users tune their models. Inspired by
metaphors from software engineering, SCRAM ex-
tends high-level deep learning development tools
to check model metrics during training and pro-
duce human-readable error messages. We validate
SCRAM through three author-created examples
with image and text datasets, and by collecting in-
formal feedback from ML researchers with teach-
ing experience. We reflect upon their feedback
for the design of future ML debugging tools.

1. Introduction

Many domain experts, hobbyists, and makers wish to adopt
Machine Learning (ML) models such as neural networks
into their applications, but lack formal training in ML. These
users often have some programming expertise and their own
novel datasets for a particular domain problem. For exam-
ple, a farmer may want to classify the types of cucumbers
from their farm, or an independent app developer may want
to recommend workouts in their fitness app. Several Deep
Learning (DL) toolkits, including Keras (Chollet, 2015) and
Apple Create ML (Inc, 2019a), make these tasks more ap-
proachable by providing high-level APIs to preprocess data,
train, and evaluate DL models (neural networks). However,
when non-expert ML developers use these APIs to train
models on novel datasets, they can produce unexpected
output without explicitly throwing errors.

While experts can rely on experience and tools such as

'EECS, UC Berkeley, Berkeley, CA, USA. Correspondence to:
Eldon Schoop <eschoop@berkeley.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

SCRAM
heuristics
SCRAM streaming | SCRAM
Instrumentation Jeeteigler) Checker
data Keras suggestions +
model Training logs
architecture Process

Figure 1. The Keras framework outputs data batches and model
metrics to SCRAM (left), and SCRAM outputs error messages and
visualizations to Tensorboard (right).

TensorBoard (Abadi et al., 2016) and tfdbg (Cai, 2017)
to inspect and correct model behavior, non-experts often
lack the theoretical and practical knowledge to interpret
results from these tools (Hill et al., 2016; Cai & Guo, 2019)
and could benefit from guidance through this unstructured
process (Amershi et al., 2019; Patel et al., 2008).

We introduce SCRAM, a prototype system which can in-
terpret potential error conditions in the DL training phase
and provide descriptive, actionable warning messages to
help users debug and produce well-trained models (see Fig-
ure 1). SCRAM draws inspiration from tools in software
engineering which inspect code to provide warning mes-
sages and suggestions to developers. Our goal is to develop
a system that can encode this tacit knowledge of experts
into heuristics which check model output over time during
training. This system will guide non-expert users to correct
errors with human-readable error messages that explain best
practices and code recipes to bridge theoretical and practical
knowledge gaps. During the tuning phase, users interpret
these error messages to make changes to hyperparameters,
correcting model behavior.

In this paper, we describe the SCRAM prototype; share three
heuristics for detecting common problems during neural
network training; and validate error messages produced by
SCRAM in three author-created scenarios with experienced
ML instructors for future iterations of our system.

SCRAM: Simple Checks for Realtime Analysis of Model Training for Non-Expert ML Programmers

Data Preparation
Random Crop

Prerequisites

Data Collection |_,

Model Selection

Figure 2. Once a dataset is collected and an ML algorithm is se-
lected, users must (1) preprocess data, (2) train and tune their
model, and (3) evaluate their model on test data.

2. Related Work

2.1. Interactive ML Development

HCI research has produced novel interfaces which allow
users to interactively train and tune ML models as early
as 2003 (Fails & Olsen, 2003). Gestalt is toolkit which
adds structure to the ML development process, allowing
developers to iteratively modify and analyze their models in
an IDE (Patel et al., 2010). Makers can alternatively use ESP
to interactively train and deploy gesture recognition models
on Arduino hardware (Mellis et al., 2017). While these
tools support the feature engineering workflow required for
classical ML, SCRAM focuses on training and tuning DL
models which enable powerful contemporary applications in
domains where manual feature selection is infeasible (e.g.,
image/speech recognition), but come with the trade-off of
an extended and hard-to-interpret training process.

ML practitioners can add instrumentation and visualiza-
tions to their DL models using toolkits such as Tensor-
Watch (Shah et al., 2019) and Lucid (Olah et al., 2017),
but the choice of visualization and its interpretation requires
expertise. SCRAM uses heuristics to produce text error mes-
sages which can guide novices in the DL debugging process.
One recent commercial tool may help non-experts fine-tune
pretrained models, but does not interpret model output (Al,
2019). SCRAM integrates with a open source Python frame-
work, Keras (Chollet, 2015), which has a large support
community and can provide more advanced functionality as
needed.

2.2. Software Engineering Support Tools

SCRAM draws upon established paradigms in software en-
gineering such as linting (Johnson, 1978), unit testing, dy-
namic analysis (Myers et al., 2011), and explanation-based
debugging (Ko & Myers, 2009) to help users interpret the
behavior and inspect the points of failure of their ML ap-
plications. We draw additional inspiration from software
visualization (Stasko et al., 1997) and tutorial systems for
complex user interfaces (Grossman et al., 2009) which guide
novices through complex tasks.

2.3. Model Visualization and Inspection Tools

Because of the intrinsic relationship between training data
and a model, evaluation tools can highlight relevant train-
ing data contributing to outliers (PAIR, 2019) and refine
the model itself (Amershi et al., 2015). TensorFuzz can
assist debugging by adapting coverage-based fuzzing to
identify inputs which generate numerical errors (Odena
et al., 2019). Other tools track and visualize test results
to help select models for large-scale deployments (Li &
Wang, 2019; Inc, 2019b; Rolando Garcia, 2019; Murugesan
et al., 2019). Evaluating the performance of ML models
is a critical step, but depends on having an already trained
model. SCRAM assists users in the training step required
before evaluation.

2.3.1. EXPLANATIONS AND INTERPRETABILITY

SCRAM is inspired by systems which help practitioners
interpret the output and behavior of their ML models. Deep
neural networks often have too many parameters to easily
understand, and explaining their output is an active area of
research (Gilpin et al., 2018). Activation Maps highlight
the parts of an input image used to make a prediction (Olah
et al., 2017). A more recent algorithm, Concept Activation
Vectors (CAV), can explain the higher-level concepts used
in an output classification (Kim et al., 2017). Training and
tuning neural networks similarly produces output which is
difficult to interpret (Kaparthy, 2016; 2019), relying on tacit
knowledge and expertise to understand (Hill et al., 2016).
We believe SCRAM is an early step in providing explanations
of neural network output during the training process.

A key component of SCRAM is an automated checking
infrastructure that enables running tests over model runtime
behavior to flag problems. Other systems in HCI research
use this approach to assist debugging electrical circuits and
embedded systems (Drew et al., 2016; McGrath et al., 2017).
SCRAM adapts this approach to ML debugging.

3. Design Considerations

SCRAM targets scenarios when users have an existing prob-
lem formulation for applying ML to their applications. In
these cases, a novel dataset has already been collected and
a neural network architecture chosen. The remaining steps,
shown in Figure 2, are: (1) data preparation, in which the
data are split into training and tests sets, normalized, and
formatted for input; (2) training and tuning, where model
hyperparameters are tuned during training to help the model
fit the data; and (3) evaluation, in which model performance
is tested and compared. SCRAM focuses on guiding users
through the second phase, training and tuning. During this
phase, hyperparameters, such as the optimizer learning rate
or model regularization, tune how the model fits batches

SCRAM: Simple Checks for Realtime Analysis of Model Training for Non-Expert ML Programmers

of data, so it can generalize accurate predictions to new
input data. However, many non-experts are confused by
the model output during this phase, leading many to aban-
don ML approaches altogether (Cai & Guo, 2019). Experts
rely on tacit knowledge to interpret model output, e.g., by
visually inspecting the model loss and accuracy curves, or
running small scale tests (Kaparthy, 2016; 2019).

We chose to integrate our system with existing, popular DL
frameworks, Keras (Chollet, 2015), and Tensorboard (Abadi
et al., 2016). Keras is a popular choice for ML novices be-
cause it requires little code to construct and train neural net-
works, but its capabilities can also expand to meet advanced
needs such as those of ML researchers. SCRAM outputs
plots, suggestions, and error messages to TensorBoard, a
visualization framework built for DL instrumentation that
also integrates with Keras. Tensorboard supports real-time
data loading during training as well as keeping track of runs.

4. Using SCRAM

Sam, a molecular biologist, wants to count the number of
Gram positive bacteria in samples taken from an experi-
ment on microscope slides. They already have access to
thousands of annotated photos from previous experiments,
and wish to repurpose a pretrained object detection neural
network to count the bacteria in new samples. Formatting
the dataset is easy, but once training begins, the model loss
seems to increase, then reach NaN. A quick internet search
turns up a Twitter thread ' suggesting a lower learning rate.
With the learning rate corrected, the model begins training,
but the validation accuracy is much lower than expected
and doesn’t seem to be improving. Sam tweaks multiple
parameters of the network and optimizer, but nothing seems
to work. An ML engineer friend takes a quick pass over
the code, but doesn’t see anything obviously wrong and
suggests using SCRAM. SCRAM detects that some input
data points are reaching values as high as 255, and produces
an error message stating the training data isn’t being nor-
malized properly. The message also suggests a code snippet
to show how to normalize the training data to the model’s
expected input distribution, between -1 and 1. After Sam
implements the suggested snippet, the model’s accuracy
increases rapidly. Sam verifies the model’s correctness on
test data. The model is integrated into Sam’s lab workflow,
saving hours of cell-counting time.

5. Implementation

SCRAM hooks into the built-in callback mechanism of Keras,
which can invoke actions during model training. During
training runtime, data batches and model metrics (loss and

'nttps://twitter.com/karpathy/status/
1013244313327681536

step 0
step 0

NaN (Not a number) in

loss. Improper Data

Normalization
The loss value of your model has gone to NaN (could
indicate infinity). This could be caused by a learning

rate that s too high It seems like the data you passed in isn't

normalized.

Solution: —

Solution:
You can set your learning rate when you create your
optimizer object. Typical learning rates for the Adam
optimiser are between [0.00001, 0.01].

You should normalize the input data (setting the
range X_train and X_test to be from -1 to 1) before
passing them into the model. For image data (pixels

. ranging from 0-255), a typical way to normalize the
Code: pixel values is:

model. compile(optimizer=tf.keras.optimizers.Adan(learni x train = X train / 128.8 - 1

Figure 3. Error messages produced by SCRAM explain high-level
concepts as well as suggest code snippets.

accuracies) are fed into SCRAM, where they are logged and
checked against a list of heuristics to produce error mes-
sages. Checks are loaded individually, and can be swapped
and customized as needed within SCRAM. Error messages
and metrics are emitted directly to Tensorboard via the Ten-
sorflow Summary API. (See Figure 1)

5.0.1. MODEL CHECKING HEURISTICS AND ERROR
MESSAGES

SCRAM currently includes three heuristics which can iden-
tify common problems novices face when training their
neural networks (see Table 1). We collect these heuristics
from research literature, course notes, and tutorials from
ML experts (Kaparthy, 2019; 2016; Shewchuk, 2019; Good-
fellow et al., 2016). While these heuristics cover several
common scenarios novices may encounter during training,
there are many others which could be implemented in the
future as well. Each heuristic has an associated checking
function that tests if collected metrics violate the heuristic
and an associated error message which is authored to give
general theoretical advice as well as practical code snippets
that can be used.

6. Inital User Experiences

To explore the utility of SCRAM, we constructed 3 exam-
ple scenarios of errors with 3 different datasets: CIFAR-
10 (Krizhevsky, 2009), Fashion-MNIST (Xiao et al., 2017),
and Large Movie Reviews (Maas et al., 2011). Each sce-
nario is inoculated with a potentially faulty model setup to
generate errors from SCRAM: we use a large fully-connected
network without any regularization to overfit on Fashion-
MNIST; we set the model learning rate to 1e10 for Large
Movie Reviews; and we use unnormalized pixels of the
images in CIFAR-10 directly for model training.

To understand how SCRAM may help novices, we solicited
feedback from 2 ML researchers with experience teaching
introductory ML courses. We showed them our example
scenario notebooks and allowed them to interact with the

https://twitter.com/karpathy/status/1013244313327681536
https://twitter.com/karpathy/status/1013244313327681536

SCRAM: Simple Checks for Realtime Analysis of Model Training for Non-Expert ML Programmers

Table 1. SCRAM heuristics and associated detection methods.

Heuristic

Description

| Detection Method

Overfitting
Improper Data Nor-
malization

Unconventional Hy-
perparameters

When a model too closely fits its training data, it
loses its ability to generalize to new data.

In transfer learning, new data should be normalized
to a similar range as the original data the model
was trained on.

Some hyperparameters for training deep models
significantly affect model performance (Goodfel-
low et al., 2016). For instance, using too high of a
learning rate will cause the model to produce NaN

Check if validation accuracy decreases over two
epochs while training accuracy increases, which
likely indicates overfitting (Kaparthy, 2016).
Check if the values of input features of cur-
rent batch lie within the conventional range of
[—1, 1] (Shewchuk, 2019).

Check if the loss value reaches NaN, which indi-
cates a possible incorrect range of hyperparame-
ters (Kaparthy, 2019).

loss.

training code and error messages produced by SCRAM. Ses-
sions lasted under half an hour each.

Both participants stated the notifications would be useful to
novices, and that the heuristics capture common problems
encountered by non-expert ML developers. One participant
expressed its potential use to experienced ML developers—
since training with large datasets may take days or weeks,
notifications produced by SCRAM could direct attention to
model training when needed. One participant remarked that
SCRAM can catch errors that might not even be detected
by a novice at all, such as normalization. Both participants
expressed interest in adding other heuristics, such as pre-
dicting when a batch size may be too large to fit in memory
(usually resulting in an error and program interruption).
Other suggestions were for tightening integration between
SCRAM and the code itself, by differentiating warnings
and errors for conditions that can break execution during
runtime, or by identifying the particular lines of code that
generated the error (e.g., which part of the model generated
a NaN output). Finally, one participant remarked that de-
bugging strategies aren’t often taught in ML courses, and
SCRAM could serve as an instructional aid.

7. Future Work and Conclusion

SCRAM represents a first step in making the neural network
training and tuning process more manageable, thus making
applying ML more approachable to non-experts. Beyond
adding additional heuristics, we are excited to continue work
on SCRAM in the following areas:

Dynamic Error Messages: Error messages produced by
SCRAM are written to apply to general cases, and provide ex-
planations to help users narrow down the root cause and im-
plement fixes. Dynamically generated error messages such
as those produced by software tutorial systems (Head et al.,
2015) could steer users closer to identifying the root causes
of error conditions. Future iterations of SCRAM could even
learn from examples to dynamically generate messages.

Code-Aware Tutorial Content: Making the error mes-
sages from SCRAM interactive could significantly improve
its use as a tutorial system. For example, SCRAM could
highlight specific lines of user code or Tensorboard visu-
alizations. Another potential approach could be gleaned
from the Java Whyline, which allows users to ask questions
about program output during runtime to identify bugs (Ko
& Myers, 2009).

Integrating Active Tests with SCRAM: Further engineer-
ing work could enable SCRAM to run static checks of the
ML program, enabling many more heuristics (e.g., checking
initialization). SCRAM could also be extended to execute op-
erations with the model, such as overfitting on small batches
of data or running user-defined unit tests.

Controlled User Evaluation of SCRAM: Our exploratory
validation of SCRAM had a limited number of participants
and was conducted with experienced instructors, not target
users directly. A controlled user evaluation of the next
iteration of SCRAM would determine the effectiveness of
its heuristics and error messages. One possible experiment
design could be that of Gestalt (Patel et al., 2010), in which
novices were asked to debug ML models inoculated with
errors in randomized conditions.

Communicating Uncertainty of Heuristics: The heuris-
tics used by SCRAM are designed to detect and explain
common errors, but these explanations are assumptions of
model behavior and may not always be applicable. To miti-
gate this, the language of the messages are adapted to convey
this intrinsic uncertainty, guiding the user to consider mul-
tiple possible underlying root causes and offering different
solutions to mitigate them.

Recent advances in ML research have impacted numerous
aspects of daily living, from transportation to healthcare
to entertainment. We believe that artists, makers, domain
experts, software engineers, and scientists can benefit from
these advances by introducing tools to help understand and
adapt their domain-specific data.

SCRAM: Simple Checks for Realtime Analysis of Model Training for Non-Expert ML Programmers

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., and
et al. Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’ 16,
pp- 265-283, USA, 2016. USENIX Association. ISBN
9781931971331.

Al R. Runway ml, 2019. URL https://runwayml.

com/.

Amershi, S., Chickering, M., Drucker, S. M., Lee, B.,
Simard, P., and Suh, J. Modeltracker: Redesigning
performance analysis tools for machine learning. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI 15, pp.
337-346, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450331456. doi: 10.
1145/2702123.2702509. URL https://doi.org/
10.1145/2702123.27025009.

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H.,
Kamar, E., Nagappan, N., Nushi, B., and Zimmermann, T.
Software engineering for machine learning: A case study.
In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice,
ICSE-SEIP °19, pp. 291-300. IEEE Press, 2019. doi:

10.1109/ICSE-SEIP.2019.00042. URL https://doi.

org/10.1109/ICSE-SEIP.2019.00042.

Cai, C. J. and Guo, P. J. Software developers learning
machine learning: Motivations, hurdles, and desires. In
2019 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 25-34, Oct 2019. doi:
10.1109/VLHCC.2019.8818751.

Cai, S. Debug tensorflow models with
tfdbg, Feb 2017. URL https://
developers.googleblog.com/2017/02/
debug-tensorflow-models-with-tfdbg.
html.

Chollet, F. keras. https://github.com/fchollet/
keras, 2015.

Drew, D., Newcomb, J. L., McGrath, W., Maksimovic, F.,
Mellis, D., and Hartmann, B. The toastboard: Ubiquitous
instrumentation and automated checking of breadboarded
circuits. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology, UIST 16,
pp. 677-686, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450341899. doi: 10.
1145/2984511.2984566. URL https://doi.org/
10.1145/2984511.2984566.

Fails, J. A. and Olsen, D. R. Interactive machine learning.

In Proceedings of the 8th International Conference on
Intelligent User Interfaces, IUL *03, pp. 39-45, New York,
NY, USA, 2003. Association for Computing Machinery.
ISBN 1581135866. doi: 10.1145/604045.604056. URL
https://doi.org/10.1145/604045.604056.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M.,

and Kagal, L. Explaining explanations: An overview of
interpretability of machine learning, 2018.

Goodfellow, 1., Bengio, Y., and Courville, A. Deep

Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Grossman, T., Fitzmaurice, G., and Attar, R. A survey of

software learnability: metrics, methodologies and guide-
lines. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, pp. 649-658. ACM,
2009.

Head, A., Appachu, C., Hearst, M. A., and Hartmann,

B. Tutorons: Generating context-relevant, on-demand
explanations and demonstrations of online code. In
2015 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 3—12, Oct 2015. doi:
10.1109/VLHCC.2015.7356972.

Hill, C., Bellamy, R., Erickson, T., and Burnett, M. Tri-

als and tribulations of developers of intelligent systems:
A field study. In 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC),
pp. 162-170, Sep. 2016. doi: 10.1109/VLHCC.2016.
7739680.

Inc, A. Apple create ml, 2019a. URL https://

developer.apple.com/machine-learning/
create-ml/.

Inc, D. Mlflow, 2019b. URL https://mlflow.org/.

Johnson, S. C. Lint, a ¢ program checker. In Technical

Report, pp. 78—1273. Bell Telephone Laboratories, 1978.

Kaparthy, A. Training neural networks, part 1. Convo-

lutional Neural Networks for Visual Recognition. Lec-
ture Slides, January 2016. URL http://cs231n.
stanford.edu/2016/syllabus.html.

Kaparthy, A. A recipe for training neural networks,

Apr2019. URL https://karpathy.github.io/
2019/04/25/recipe/.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J.,

Viegas, F., and Sayres, R. Interpretability beyond feature
attribution: Quantitative testing with concept activation
vectors (tcav), 2017.

https://runwayml.com/
https://runwayml.com/
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://developers.googleblog.com/2017/02/debug-tensorflow-models-with-tfdbg.html
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/604045.604056
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://mlflow.org/
http://cs231n.stanford.edu/2016/syllabus.html
http://cs231n.stanford.edu/2016/syllabus.html
https://karpathy.github.io/2019/04/25/recipe/
https://karpathy.github.io/2019/04/25/recipe/

SCRAM: Simple Checks for Realtime Analysis of Model Training for Non-Expert ML Programmers

Ko, A.J. and Myers, B. A. Finding causes of program output
with the java whyline. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI
’09, pp. 1569-1578, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605582467.

doi: 10.1145/1518701.1518942. URL https://doi.

org/10.1145/1518701.1518942.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Li, L. and Wang, Y. Manifold: A model-agnostic visual
debugging tool for machine learning at uber, Aug 2019.
URL https://eng.uber.com/manifold/.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng,
A. Y., and Potts, C. Learning word vectors for sen-
timent analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 142—150, Port-
land, Oregon, USA, June 2011. Association for Com-

putational Linguistics. URL http://www.aclweb.

org/anthology/P11-1015.

McGrath, W., Drew, D., Warner, J., Kazemitabaar, M.,
Karchemsky, M., Mellis, D., and Hartmann, B. Bifrost:
Visualizing and checking behavior of embedded sys-
tems across hardware and software. In Proceedings
of the 30th Annual ACM Symposium on User Inter-
face Software and Technology, UIST °17, pp. 299-310,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450349819. doi: 10.1145/
3126594.3126658. URL https://doi.org/10.
1145/3126594.3126658.

Mellis, D. A., Zhang, B., Leung, A., and Hartmann,
B. Machine learning for makers: Interactive sen-
sor data classification based on augmented code exam-
ples. In Proceedings of the 2017 Conference on De-
signing Interactive Systems, DIS *17, pp. 1213-1225,
New York, NY, USA, 2017. Association for Comput-
ing Machinery. ISBN 9781450349222. doi: 10.1145/
3064663.3064735. URL https://doi.org/10.
1145/3064663.3064735.

Murugesan, S., Malik, S., Du, F., Koh, E., and Lai, T.
Deepcompare: Visual and interactive comparison of
deep learning model performance. IEEE Computer
Graphics and Applications, PP:1-1, 05 2019. doi:
10.1109/MCG.2019.2919033.

Myers, G. J., Sandler, C., and Badgett, T. The Art of Soft-
ware Testing. Wiley Publishing, 3rd edition, 2011. ISBN
1118031962.

Odena, A., Olsson, C., Andersen, D., and Goodfel-
low, I. TensorFuzz: Debugging neural networks

with coverage-guided fuzzing. In Chaudhuri, K. and
Salakhutdinov, R. (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp.
49014911, Long Beach, California, USA, 09—-15 Jun
2019. PMLR. URL http://proceedings.mlr.
press/v97/odenal9a.html.

Olah, C., Mordvintsev, A., and Schubert, L. Feature vi-
sualization. Distill, 2017. doi: 10.23915/distill.00007.
https://distill.pub/2017/feature-visualization.

PAIR, G. What-if tool, 2019. URL https://
pair-code.github.io/what-if-tool/.

Patel, K., Fogarty, J., Landay, J. A., and Harrison, B. In-
vestigating statistical machine learning as a tool for soft-
ware development. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI
"08, pp. 667-676, New York, NY, USA, 2008. Associa-
tion for Computing Machinery. ISBN 9781605580111.
doi: 10.1145/1357054.1357160. URL https://doi.
org/10.1145/1357054.1357160.

Patel, K., Bancroft, N., Drucker, S. M., Fogarty, J., Ko,
A. J., and Landay, J. Gestalt: Integrated support for
implementation and analysis in machine learning. In
Proceedings of the 23nd Annual ACM Symposium on
User Interface Software and Technology, UIST 10, pp.
37-46, New York, NY, USA, 2010. Association for Com-
puting Machinery. ISBN 9781450302715. doi: 10.
1145/1866029.1866038. URL https://doi.org/
10.1145/1866029.1866038.

Rolando Garcia, Vikram Sreekanti, D. C. N. Y. J. G.
flor, 2019. URL https://github.com/ucbrise/
flor.

Shah, S., Fernandez, R., and Drucker, S. M. A system
for real-time interactive analysis of deep learning train-
ing. In Proceedings of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems, EICS
2019, Valencia, Spain, June 18-21, 2019, pp. 16:1-16:6,
2019. doi: 10.1145/3319499.3328231. URL https:
//arxiv.org/abs/2001.01215.

Shewchuk, J. R. Concise machine learning, May
2019. URL https://people.eecs.berkeley.
edu/~jrs/papers/machlearn.pdf.

Stasko, J. T., Brown, M. H., and Price, B. A. Software
Visualization. MIT press, 1997.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

https://doi.org/10.1145/1518701.1518942
https://doi.org/10.1145/1518701.1518942
https://eng.uber.com/manifold/
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3064663.3064735
https://doi.org/10.1145/3064663.3064735
http://proceedings.mlr.press/v97/odena19a.html
http://proceedings.mlr.press/v97/odena19a.html
https://pair-code.github.io/what-if-tool/
https://pair-code.github.io/what-if-tool/
https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/1866029.1866038
https://github.com/ucbrise/flor
https://github.com/ucbrise/flor
https://arxiv.org/abs/2001.01215
https://arxiv.org/abs/2001.01215
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

