Vector - Test-1 (1) - 230610 - 111821

Download as pdf or txt
Download as pdf or txt
You are on page 1of 9

Vectors I

FIITJEE Ranchi

VECTORS - I
TEST TOTAL MARKS 135
TOTAL TIME 1.5 HOURS

INSTRUCTIONS
 The test paper contains 45 questions of single correct choice. For each correct
answer +3 marks and incorrect choice -1 mark will be awarded.

   
    
1. For any two vectors A and B , if A .B  A  B , the magnitude of c  A  B is

AB
(a) (b) A + B (c) A2  B2  (d) A 2  B2  2AB
A2  B2 2

  
2. Two vectors A and B lie in a plane. Another vector C lies outside this plane. The resultant
  
A + B + C of these three vectors
(a) can be zero (b) cannot be zero
   
(c) lies in the plane of A + B (d) lies in the plane of A - B

 
3. A is directed vertically downwards and B is directed along the north. What is the direction
 
of B  A ?

(a) east (b) west (c) north east (d) north west

   
4. Given : A = 3iˆ  2j
ˆ  k and B  6iˆ  4j
ˆ  2k . The two vectors A and B

(a) are parallel (b) are perpendicular

(c) make an angle of 30o to each other (d) make an angle of 60o to each other

1
Vectors I

5. The angle between ˆi  ˆj  k and 2iˆ  2j


ˆ  2k is

(a) 0o (b) 30o (c) 60o (d) 90o

6. The resultant of two forces makes angles of 30o and 60o with them and has a magnitude of
40 N. The magnitudes of the two forces are

(a) 2o N, 20 N (b) 20 N, 28 N (c) 20 N, 20 3 N (d) 20 N, 60 N

7. Which one of the following sets of horizontal forces can keep a body in equilibrium ?
(a) 12 N, 24 N and 48 N (b) 50 N, 75 N and 150 N
(c) 45 N, 90 N and 450 N (d) 35 N, 35 N and 35 N

  
8. The resultant of two vectors A and B is perpendicular to A . The magnitude of the resultant
  
is equal to half of the magnitude of B . The angle between A and B is
(a) 0 (b) 60 (c) 150 (d) 180

9. In an equilateral triangle ABC, AL, BM and CN are the medians. Which of the following would
correctly represent the resultant of two forces represented by BC and BA ?
(a) AC (b) 2AL (c) 2BM (d) 2CN.

   
10. ˆ and B  ˆi  ˆj  k
Given : A  2iˆ  ˆj  2k ˆ . The unit vector of A  B is

ˆ
3iˆ  k 3iˆ k̂ ˆ
3iˆ  k
(a) (b) (c) (d)
10 10 10 10

11. 
The angle which i  j  2 k  makes with x-axis, y-axis and z-axis respectively are :

(a) 60, 60and 45 (b) 60, 45 and 45 (c) 45, 45 and 45 (d) 60, 60, and 60

 
12. Two forces of F1 = 500 N due east and F2 = 250 N due north have their common initial point.
 
F2 - F1 is

(a) 250 5 N, tan-1 (2) W of N (b) 250 N, tan-1 (2) W of N


3
(c) zero (d) 750 N tan-1   N of W..
4

2
Vectors I

13. The vector 5iˆ  2j ˆ is perpendicular to the vector 3iˆ  ˆj  2k


ˆ  lk ˆ for l =
(a) 1 (b) 4.7 (c) 6.3 (d) 8.5

14. The adjacent sides of a parallelogram are represented by co-initial vectors 2iˆ  3j
ˆ and ˆi  4j
ˆ.
The area of the parallelogram is
(a) 5 units along z-axis (b) 5 units in x-y plane
(c) 3 units in x-z plane (d) 3 units in y-z plane.

 
15. Vector A is 2 cm long and is 60 above the x-axis in the first quadrant. Vector B is 2 cm long
 
and is 60 below the x-axis in the fourth quadrant. The sum A  B is a vector of magnitude
(a) 2 along + y-axis (b) 2 along + x-axis
(c) 1 along - x-axis (d) 2 along - x-axis

  
16. If P , Q and R are coplanar vectors, then which one of the following is definitely correct ?
        
     
  
(a) P  Q . R  0 (b) P . Q  R  0 (c) P  Q  R  0 (d) P . Q . R  0

17. What are the x and y components of a 25 m displacement at an angle of 210 ?


(a) 25 cos 30 and 25 sin 30 (b) - 25 cos 30 and - 25 sin 30
(c) 25 cos 30 and - 25 sin 30 (d) - 25 cos 30 and 25 sin 30

18. What is the angle made by 3iˆ  4j


ˆ with x-axis ?

4
(a) 0 (b) 180 (c) tan-1 (3) (d) tan-1  
3

       
19. Three vectors A,B, C satisfy the relation A . B = 0 and A . C  0 . The vector A is parallel to
     
(a) B (b) C (c) B . C (d) B  C

20. The following four forces act simultaneously on a particle at rest at the origin of the co-ordinate

system.
   
F1  2iˆ  3j ˆ,
ˆ  2k F2  5iˆ  8j ˆ
ˆ  6k F3  4iˆ  5j ˆ
ˆ  5k and F4  3iˆ  4j ˆ
ˆ  7k

The particle will move in

(a) XY plane (b) YZ plane (c) ZX plane (d) space.

3
Vectors I
  
 
 
21. What is the scalar product of A and A  B if the vector product of A and B is zero ?

(a) A2 + AB (b) AB (c) A2 (d) zero

22. The maximum and minimum resultants of two forces are in the ratio 7 : 3. The ratio of the
forces is
(a) 4 : 1 (b) 5 : 2 (c) 7: 3 (d) 49 : 9.

23. The vector which must be added to the sum of the two vectors ˆi  2j ˆ and ˆi  2j
ˆk ˆ to get
ˆ  2k

a resultant of unit vector along z-axis is

(a) 2iˆ  ˆj (b) 2iˆ ˆ


(c) ˆi  ˆj  k ˆ
(d) ˆi  ˆj  k

24. 
Forces ˆi  ˆj  2k 
ˆ , 2iˆ  ˆj  k   
ˆ , 3iˆ  ˆj  4k
ˆ , 4iˆ  2j 
ˆ act on a body simultaneously. The
ˆ  3k

resultant force has a magnitude of

(a) 145 (b) 145 (c) 72.5 (d) 290

25. The sum of the magnitudes of two vectors is 18. The magnitude of their resultant is 12. If the
resultant is perpendicular to one of the vectors, then the magnitudes of the two vectors are
(a) 5 and 13 (b) 6 and 12 (c) 7 and 11 (d) 8 and 10.

26. Two forces 8 N and 12 N act at 120. The third force required to keep the body in equilibrium
is
(a) 4 N (b) 4 7 N (c) 20 N (d) None of these

     
27. Given : R  P  Q . Also, P , Q and R have magnitudes 5, 12 and 13 units respectively. The
 
angle between Q and R is

 12   5   7 
(a) cos-1   (b) cos-1   (c) cos-1   (d) 90.
 13   13   13 

   
28. If unit vectors A and B are inclined at an angle  then A  B is

  
(a) 2 sin (b) 2 cos (c) 2 tan (d) tan .
2 2 2

4
Vectors I

29. If the sum of two unit vectors is also a unit vector, then the magnitude of their difference is
(a) 2 (b) 3 (c) 5 (d) 7

30. Which vector should be added to 2iˆ  4j ˆ and 3iˆ  5j


ˆ  3k ˆ to get a unit vector along y-axis?
ˆ  7k

(a) 5iˆ  9j ˆ
ˆ k (b) î ˆ
(c) 3k (d) 5iˆ  2j ˆ
ˆ  4k

   
31. If P  4iˆ  2j ˆ and Q  ˆi  2j
ˆ  6k ˆ , then the angle which P  Q makes with x-axis is
ˆ  3k

 3   4   5   12 
(a) cos-1   (b) cos-1   (c) cos-1   (d) cos-1  
 50   50   50   50 

   
  
32. ˆ , B  2iˆ  ˆj  3k
Three forces A  ˆi  ˆj  k ˆ and C acting on a body keep it in equilibrium.

Then C is

(a) 3 (b) 14  ˆ
(c)  3iˆ  4k  (d) 3iˆ  4j ˆ
ˆ  5k

33. A man walks 4 m towards East and then 3 m towards North and there he fixes a pole 12 m
high. The distance between the starting point and tip of the pole in space is
(a) 7 m (b) 11 m (c) 13 m (d) 19 m.

34. At what angle the forces of 2 N and 2 N act so that their combined effect is that of a single
force of 10 N ?
(a) 0 (b) 30 (c) 45 (d) 60

35. The rectangular components of a vector are 2, 2. The corresponding rectangular components
of another vector are 1, 3 . The angle between the vectors is
(a) 15 (b) 30 (c) 45 (d) 60.

36. ˆ is
The angle between ˆi  ˆj and ĵ  k
(a) 0 (b) 90 (c) 45 (d) 60.

 
37. Given : P  3iˆ  4j
ˆ .Which of the following is perpendicular to P ?

(a) 3iˆ ˆ
(b) 4j (c) 4iˆ  3j
ˆ (d) 4iˆ  3j
ˆ

5
Vectors I
  
38. Given : A  A cos ˆi  A sin ˆj . A vector B which is perpendicular to A is given by
y

(a) B cos ˆi  B sin ˆj (b) B sin ˆi  B cos ˆj

(c) B cos ˆi  B sin ˆj (d) B sin ˆi  B co s ˆj

39. What is the unit vector along ˆi  ˆj ?

ˆi  ˆj
(a)
2
(b) 
2 ˆi  ˆj  (c) ˆi  ˆj (d) k̂

40. The resultant of two forces has magnitude 20 N. One of the forces is of magnitude 20 3 N and
makes an angle of 30 with the resultant. Then, the other force must be of magnitude

(a) 10 N (b) 10 3 N (c) 20 N (d) 20 3 N.

41. What is the angle between two vector forces of equal magnitude such that the resultant is one-
third as much as either of the original forces ?

 17  1
(a) cos-1    (b) cos-1   (c) 45 (d) 120.
 18  3

  1 
42. If P and Q denote the sides of a parallelogram and its area is PQ, then the angle between P
2

and Q is
(a) 0 (b) 30 (c) 45 (d) 60.

 
43. Given : A  4iˆ  6ˆj and B  2iˆ  3j
ˆ . Which of the following is correct ?
   
(a) A  B  0 (b) A . B  24

A 1  
(c)   2 (d) A and B are anti-parallel.
B

  3 ab  
44. Given : a . b  . The angle between a and b is
2
(a) 0 (b) 30 (c) 60 (d) 90.

   
45. The resultant of P and Q makes an angle 1 with P and 2 with Q . Now,,
     
(a) 1 < 2 (b) 1 < 2 if P  Q (c) 1 < 2 if P  Q (d) 1 < 2 if P  Q .

6
Vectors I

ANSWER SHEET

NAME BATCH

1. a b c d 2. a b c d 3. a b c d

4. a b c d 5. a b c d 6. a b c d

7. a b c d 8. a b c d 9. a b c d

10. a b c d 11. a b c d 12. a b c d

13. a b c d 14. a b c d 15. a b c d

16. a b c d 17. a b c d 18. a b c d

19. a b c d 20. a b c d 21. a b c d

22. a b c d 23. a b c d 24. a b c d

25. a b c d 26. a b c d 27. a b c d

28. a b c d 29. a b c d 30. a b c d

31. a b c d 32. a b c d 33. a b c d

34. a b c d 35. a b c d 36. a b c d

37. a b c d 38. a b c d 39. a b c d

40. a b c d 41. a b c d 42. a b c d

43. a b c d 44. a b c d 45. a b c d

7
Vectors I

Answers
Vectors Test I

1. (d) 2. (b) 3. (b)

4. (a) 5. (a) 6. (c)

7. (d) 8. (c) 9. (c)

10. (a) 11. (a) 12. (a)

13. (d) 14. (a) 15. (b)

16. (a) 17. (b) 18. (d)

19. (d) 20. (b) 21. (a)

22. (b) 23. (b) 24. (a)

25. (a) 26. (b) 27. (a)

28. (a) 29. (b) 30. (d)

31. (c) 32. (c) 33. (c)

34. (c) 35. (a) 36. (d)

37. (c) 38. (b) 39. (a)

40. (c) 41. (a) 42. (b)

43. (a) 44. (b) 45. (c)

You might also like