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Existing neural scene representations don't exploit 3D

structure. As a result, they’'re sample-inefficient, Features may represent color, material, signed distance, but
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Train only on data that could be collected by
walking around with a camera
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(Generalize across class of objects with Hypernetworks

Vision: Learn rich representations of 3D scenes by
watching videos!
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By using neural renderer, can supervise scene )
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