Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune evasion by staphylococci

Key Points

  • The first line of defence against Staphylococcus aureus is neutrophil phagocytosis. The bacterium thwarts neutrophils by several novel mechanisms. A capsule and surface protein reduce opsonization. Secreted proteins prevent complement activation and inhibit neutrophil chemotaxis and migration. There are several mechanisms to resist killing by reactive oxygen species and antibacterial defensin peptides.

  • Transcriptional microarray studies identified many genes that are differentially regulated after neutrophil uptake. Community-acquired meticillin-resistant S. aureus strains are more virulent, have increased resistance to neutrophils and a larger repertoire of differentially regulated genes.

  • Secreted and wall-associated superantigens stimulate proliferation of T cells and B cells and interfere with normal antibody responses, causing immunosuppression. Immunization with purified surface polysaccharide and protein stimulates protective immunity, offering the prospect of vaccines to protect against infections.

  • Staphylococcus epidermidis lacks the diverse mechanisms of avoiding immunity. It relies on surface polymers to resist neutrophil phagocytosis.

Abstract

Staphylococcus aureus can cause superficial skin infections and, occasionally, deep-seated infections that entail spread through the blood stream. The organism expresses several factors that compromise the effectiveness of neutrophils and macrophages, the first line of defence against infection. S. aureus secretes proteins that inhibit complement activation and neutrophil chemotaxis or that lyse neutrophils, neutralizes antimicrobial defensin peptides, and its cell surface is modified to reduce their effectiveness. The organism can survive in phagosomes, express polysaccharides and proteins that inhibit opsonization by antibody and complement, and its cell wall is resistant to lysozyme. Furthermore, S. aureus expresses several types of superantigen that corrupt the normal humoral immune response, resulting in anergy and immunosuppression. In contrast, Staphylococcus epidermidis must rely primarily on cell-surface polymers and the ability to form a biolfilm to survive in the host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways for complement activation.
Figure 2: Inhibition of the neutrophil response to infection.
Figure 3: Mechanisms by which Staphylococcus aureus avoids opsonophagocytosis.
Figure 4: Mechanisms of immunosuppression mediated by Staphylococcus aureus.

Similar content being viewed by others

References

  1. Peacock, S. J., de Silva, I. & Lowy, F. D. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 9, 605–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    CAS  PubMed  Google Scholar 

  3. Wertheim, H. F. et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364, 703–705 (2004).

    Article  PubMed  Google Scholar 

  4. von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 344, 11–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Hiramatsu, K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect. Dis. 1, 147–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Weigel, L. M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Foster, T. J. & Hook, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Skaar, E. P. & Schneewind, O. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect. 6, 390–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. O'Riordan, K. & Lee, J. C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218–234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohach, G. A. & Foster, T. J. Staphylococcus aureus Exotoxins (eds Fischetti, V. A., Novick, R. P., Ferretti, J. J. & Rood, J. I.) 367–378 (ASM, Washington DC, 1999).

    Google Scholar 

  11. Dinges, M. M., Orwin, P. M. & Schlievert, P. M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13, 16–34 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mazmanian, S. K., Ton-That, H. & Schneewind, O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40, 1049–1057 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Moore, F. in Immunology, Infection, and Immunity (eds Pier, G. B., Lyczak, J. B. & Wetzler, L. M.) 85–109 (ASM, Washington DC, 2004).

    Google Scholar 

  14. Roche, F. M. et al. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149, 643–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Etz, H. et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl Acad. Sci. USA 99, 6573–6578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dryla, A. et al. Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin. Diagn. Lab. Immunol. 12, 387–398 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schwarz-Linek, U., Hook, M. & Potts, J. R. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol. Microbiol. 52, 631–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz-Linek, U. et al. Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. Nature 423, 177–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Peacock, S. J., Foster, T. J., Cameron, B. J. & Berendt, A. R. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145, 3477–3486 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. von Eiff, C., Proctor, R. A. & Peters, G. Staphylococcus aureus small colony variants: formation and clinical impact. Int. J. Clin. Pract. Suppl. 115, 44–49 (2000).

    Google Scholar 

  21. Murdoch, C. & Finn, A. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95, 3032–3043 (2000).

    CAS  PubMed  Google Scholar 

  22. de Haas, C. J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004). Initial characterization of CHIPS, which can inhibit C5a and formyl peptide receptors on neutrophils to reduce chemotaxis and migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haas, P. J. et al. N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J. Immunol. 173, 5704–5711 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Postma, B. et al. Residues 10–18 within the C5a receptor N terminus compose a binding domain for chemotaxis inhibitory protein of Staphylococcus aureus. J. Biol. Chem. 280, 2020–2027 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Postma, B. et al. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J. Immunol. 172, 6994–7001 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Chavakis, T. et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nature Med. 8, 687–693 (2002). The Map protein binds to ICAM-1 on endothelial cells and reduces neutrophil migration in response to S. aureus infection.

    Article  CAS  PubMed  Google Scholar 

  27. Montoya, M. & Gouaux, E. β-barrel membrane protein folding and structure viewed through the lens of α-hemolysin. Biochim. Biophys. Acta 1609, 19–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Menestrina, G. et al. Ion channels and bacterial infection: the case of β-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett. 552, 54–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Peacock, S. J. et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect. Immun. 70, 4987–4996 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prevost, G. et al. Panton–Valentine leucocidin and γ-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect. Immun. 63, 4121–4129 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Said-Salim, B., Mathema, B. & Kreiswirth, B. N. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen. Infect. Control Hosp. Epidemiol. 24, 451–455 (2003).

    Article  PubMed  Google Scholar 

  32. Gillet, Y. et al. Association between Staphylococcus aureus strains carrying gene for Panton–Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359, 753–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Lina, G. et al. Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128–1132 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Narita, S. et al. Phage conversion of Panton–Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, φSLT. Gene 268, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Said-Salim, B. et al. Differential distribution and expression of Panton–Valentine leucocidin among community-acquired methicillin-resistant Staphylococcus aureus strains. J. Clin. Microbiol. 43, 3373–3379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uhlen, M. et al. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J. Biol. Chem. 259, 1695–1702 (1984).

    CAS  PubMed  Google Scholar 

  37. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20, 2361–2370 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. Cedergren, L., Andersson, R., Jansson, B., Uhlen, M. & Nilsson, B. Mutational analysis of the interaction between staphylococcal protein A and human IgG1. Protein Eng. 6, 441–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Gemmell, C., Tree, R., Patel, A., O'Reilly, M., Foster, T. J. Susceptibility to opsonophagocytosis of protein A, α-haemolysin and β-toxin deficient mutants of Staphylococcus aureus isolated by allele-replacement. Zentralbl. Bakteriol. 21 (Suppl.), 273–277 (1991).

    CAS  Google Scholar 

  40. Palmqvist, N., Foster, T., Tarkowski, A. & Josefsson, E. Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb. Pathog. 33, 239–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Patel, A. H., Nowlan, P., Weavers, E. D. & Foster, T. Virulence of protein A-deficient and α-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect. Immun. 55, 3103–3110 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. O'Brien, L. et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol. Microbiol. 44, 1033–1044 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Bischoff, M. et al. Microarray-based analysis of the Staphylococcus aureus σB regulon. J. Bacteriol. 186, 4085–4099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McDevitt, D. et al. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur. J. Biochem. 247, 416–424 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Josefsson, E., Hartford, O., O'Brien, L., Patti, J. M. & Foster, T. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 184, 1572–1580 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Palmqvist, N., Patti, J. M., Tarkowski, A. & Josefsson, E. Expression of staphylococcal clumping factor A impedes macrophage phagocytosis. Microbes Infect. 6, 188–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Ni Eidhin, D. et al. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol. Microbiol. 30, 245–257 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Wann, E. R., Gurusiddappa, S. & Hook, M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J. Biol. Chem. 275, 13863–13871 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Roghmann, M. et al. Epidemiology of capsular and surface polysaccharide in Staphylococcus aureus infections complicated by bacteraemia. J. Hosp. Infect. 59, 27–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Luong, T. T. & Lee, C. Y. Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infect. Immun. 70, 3389–3395 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thakker, M., Park, J. S., Carey, V. & Lee, J. C. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect. Immun. 66, 5183–5189 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nilsson, I. M., Lee, J. C., Bremell, T., Ryden, C. & Tarkowski, A. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect. Immun. 65, 4216–4221 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Baddour, L. M. et al. Staphylococcus aureus microcapsule expression attenuates bacterial virulence in a rat model of experimental endocarditis. J. Infect. Dis. 165, 749–753 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, J. C., Park, J. S., Shepherd, S. E., Carey, V. & Fattom, A. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect. Immun. 65, 4146–4151 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rooijakkers, S. H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature Immunol. 6, 920–927 (2005). A newly discovered protein called SCIN is a powerful inhibitor of complement fixation by targeting cell-bound C3 convertases.

    Article  CAS  Google Scholar 

  56. Lee, L. Y. et al. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 190, 571–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, L. Y., Liang, X., Hook, M. & Brown, E. L. Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J. Biol. Chem. 279, 50710–50716 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, L. Y. et al. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J. Clin. Invest. 110, 1461–1471 (2002). Map inhibits T-cell proliferation. In animal models, a Map-defective mutant is less virulent, possibly due to reduced cell-mediated immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rooijakkers, S. H., van Wamel, W. J., Ruyken, M., van Kessel, K. P. & van Strijp, J. A. Anti-opsonic properties of staphylokinase. Microbes Infect. 7, 476–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Fedtke, I., Gotz, F. & Peschel, A. Bacterial evasion of innate host defenses — the Staphylococcus aureus lesson. Int. J. Med. Microbiol. 294, 189–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Peschel, A. How do bacteria resist human antimicrobial peptides? Trends Microbiol. 10, 179–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Staubitz, P., Neumann, H., Schneider, T., Wiedemann, I. & Peschel, A. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol. Lett. 231, 67–71 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193, 1067–1076 (2001). Lysine modification of membrane lipid increases positive charges, which helps repel human defensin peptides and contributes to resistance to neutrophils and to virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kristian, S. A., Durr, M., Van Strijp, J. A., Neumeister, B. & Peschel, A. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect. Immun. 71, 546–549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Collins, L. V. et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J. Infect. Dis. 186, 214–219 (2002). D -alanine modification of teichoic acids neutralizes their negative charge, decreases sensitivity to defensin peptides and contributes to resistance to neutrophils and to virulence.

    Article  CAS  PubMed  Google Scholar 

  67. Bokarewa, M. & Tarkowski, A. Human α-defensins neutralize fibrinolytic activity exerted by staphylokinase. Thromb. Haemost. 91, 991–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Jin, T. et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172, 1169–1176 (2004). Staphylokinase binds defensins and contributes to bacterial resistance to killing.

    Article  CAS  PubMed  Google Scholar 

  69. Sieprawska-Lupa, M. et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48, 4673–4679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Keshav, S., Chung, P., Milon, G. & Gordon, S. Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization. J. Exp. Med. 174, 1049–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Bera, A., Herbert, S., Jakob, A., Vollmer, W. & Gotz, F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol. 55, 778–787 (2005). Lysozyme resistance is due to O -acetylation of muramic acid in peptidoglycan.

    Article  CAS  PubMed  Google Scholar 

  72. Verhoef, J. in The Staphylococci in Human Disease (eds Crossley, K. B. & Archer, G. L.) 213–232 (Churchill Livinstone, New York, 1997).

    Google Scholar 

  73. Heyworth, P. G., Cross, A. R. & Curnutte, J. T. Chronic granulomatous disease. Curr. Opin. Immunol. 15, 578–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Verdrengh, M. & Tarkowski, A. Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus. Infect. Immun. 65, 2517–2521 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Molne, L., Verdrengh, M. & Tarkowski, A. Role of neutrophil leukocytes in cutaneous infection caused by Staphylococcus aureus. Infect. Immun. 68, 6162–6167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gresham, H. D. et al. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164, 3713–3722 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202, 209–215 (2005). A novel mechanism for resisting oxidants in neutrophils. Mutants defective in pigment are more susceptible to neutrophil killing and have reduced virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karavolos, M. H., Horsburgh, M. J., Ingham, E. & Foster, S. J. Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149, 2749–2758 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Horsburgh, M. J. et al. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol. Microbiol. 44, 1269–1286 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Singh, V. K. & Moskovitz, J. Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiology 149, 2739–2747 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Mei, J. M., Nourbakhsh, F., Ford, C. W. & Holden, D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Voyich, J. M. et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175, 3907–3919 (2005). Transcriptional microarrays identify genes that are upregulated following ingestion by neutrophils. CA-MRSA have increased resistance to neutrophil killing and have a larger array of differentially regulated genes.

    Article  CAS  PubMed  Google Scholar 

  83. Voyich, J. M., Musser, J. M. & DeLeo, F. R. Streptococcus pyogenes and human neutrophils: a paradigm for evasion of innate host defense by bacterial pathogens. Microbes Infect. 6, 1117–1123 (2004).

    Article  PubMed  Google Scholar 

  84. von Eiff, C., Peters, G. & Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2, 677–685 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Gill, S. R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Heilmann, C., Hussain, M., Peters, G. & Gotz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24, 1013–1024 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Nilsson, M. et al. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66, 2666–2673 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hartford, O., O'Brien, L., Schofield, K., Wells, J. & Foster, T. J. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147, 2545–2552 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Vuong, C. et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6, 269–275 (2004). A cell surface polymer (PIA) involved in biofilm formation increases resistance of S. epidermidis to neutrophil phagocytosis.

    Article  CAS  PubMed  Google Scholar 

  91. Rohde, H. et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55, 1883–1895 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Fluckiger, U. et al. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect. Immun. 73, 1811–1819 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cramton, S. E., Ulrich, M., Gotz, F. & Doring, G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 4079–4085 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McKenney, D. et al. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284, 1523–1527 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Kocianova, S. et al. Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Invest. 115, 688–694 (2005). S. epidermidis expresses a polymer associated with B. anthracis infection which contributes to resistance to neutrophils.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Little, S. F. & Ivins, B. E. Molecular pathogenesis of Bacillus anthracis infection. Microbes Infect. 1, 131–139 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Mehlin, C., Headley, C. M. & Klebanoff, S. J. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J. Exp. Med. 189, 907–918 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liles, W. C., Thomsen, A. R., O'Mahony, D. S. & Klebanoff, S. J. Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin. J. Leukoc. Biol. 70, 96–102 (2001).

    CAS  PubMed  Google Scholar 

  99. Vuong, C. et al. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell. Microbiol. 6, 753–759 (2004). A family of small proinflammatory peptides are expressed only when the cell density is high. It is postulated that they contribute to abscess formation and sepsis.

    Article  CAS  PubMed  Google Scholar 

  100. Goodyear, C. S. & Silverman, G. J. Staphylococcal toxin induced preferential and prolonged in vivo deletion of innate-like B lymphocytes. Proc. Natl Acad. Sci. USA 101, 11392–11397 (2004). Protein A binds B-cell-bound IgM and acts as a superantigen to stimulate proliferation and depletion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Graille, M. et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc. Natl Acad. Sci. USA 97, 5399–5404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Silverman, G. J. & Goodyear, C. S. A model B-cell superantigen and the immunobiology of B lymphocytes. Clin. Immunol. 102, 117–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Silverman, G. J. et al. A B-cell superantigen that targets B-1 lymphocytes. Curr. Top. Microbiol. Immunol. 252, 251–263 (2000).

    CAS  PubMed  Google Scholar 

  104. Alber, G., Hammer, D. K. & Fleischer, B. Relationship between enterotoxic- and T lymphocyte-stimulating activity of staphylococcal enterotoxin B. J. Immunol. 144, 4501–4506 (1990).

    CAS  PubMed  Google Scholar 

  105. Chesney, P. J., Bergdoll, M. S., Davis, J. P. & Vergeront, J. M. The disease spectrum, epidemiology, and etiology of toxic-shock syndrome. Annu. Rev. Microbiol. 38, 315–338 (1984).

    Article  CAS  PubMed  Google Scholar 

  106. Llewelyn, M. & Cohen, J. Superantigens: microbial agents that corrupt immunity. Lancet Infect. Dis. 2, 156–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Proft, T. & Fraser, J. D. Bacterial superantigens. Clin. Exp. Immunol. 133, 299–306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Choi, Y. et al. Selective expansion of T cells expressing Vβ2 in toxic shock syndrome. J. Exp. Med. 172, 981–984 (1990).

    Article  CAS  PubMed  Google Scholar 

  109. Hudson, K. R., Robinson, H. & Fraser, J. D. Two adjacent residues in staphylococcal enterotoxins A and E determine T cell receptor Vβ specificity. J. Exp. Med. 177, 175–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Lussow, A. R. & MacDonald, H. R. Differential effects of superantigen-induced “anergy” on priming and effector stages of a T cell-dependent antibody response. Eur. J. Immunol. 24, 445–449 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Petersson, K., Forsberg, G. & Walse, B. Interplay between superantigens and immunoreceptors. Scand. J. Immunol. 59, 345–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Jonsson, K., McDevitt, D., McGavin, M. H., Patti, J. M. & Hook, M. Staphylococcus aureus expresses a major histocompatibility complex class II analog. J. Biol. Chem. 270, 21457–21460 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Haggar, A., Shannon, O., Norrby-Teglund, A. & Flock, J. I. Dual effects of extracellular adherence protein from Staphylococcus aureus on peripheral blood mononuclear cells. J. Infect. Dis. 192, 210–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Moreillon, P. & Que, Y. A. Infective endocarditis. Lancet 363, 139–149 (2004).

    Article  PubMed  Google Scholar 

  115. Moreillon, P., Que, Y. A. & Bayer, A. S. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect. Dis. Clin. North Am. 16, 297–318 (2002).

    Article  PubMed  Google Scholar 

  116. Loughman, A. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol. Microbiol. 57, 804–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Fitzgerald, J. R. et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Mol. Microbiol. (in the press).

  118. Nilsson, I. M., Patti, J. M., Bremell, T., Hook, M. & Tarkowski, A. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J. Clin. Invest. 101, 2640–2649 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fattom, A. I., Horwith, G., Fuller, S., Propst, M. & Naso, R. Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine 22, 880–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Vernachio, J. et al. Anti-clumping factor A immunoglobulin reduces the duration of methicillin-resistant Staphylococcus aureus bacteremia in an experimental model of infective endocarditis. Antimicrob. Agents Chemother. 47, 3400–3406 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Patti, J. M. A humanized monoclonal antibody targeting Staphylococcus aureus. Vaccine 22, S39–S43 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Hall, A. E. et al. Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect. Immun. 71, 6864–6870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol. 3, 238–250 (2005).

    Article  CAS  Google Scholar 

  124. Arbeit, R. D., Karakawa, W. W., Vann, W. F. & Robbins, J. B. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 2, 85–91 (1984).

    Article  CAS  PubMed  Google Scholar 

  125. Boutonnier, A. et al. Direct testing of blood culture for detection of the serotype 5 and 8 capsular polysaccharides of Staphylococcus aureus. J. Clin. Microbiol. 27, 989–993 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hochkeppel, H. K. et al. Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J. Clin. Microbiol. 25, 526–530 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sompolinsky, D. et al. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J. Clin. Microbiol. 22, 828–834 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jin, T. et al. Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient Staphylococcus aureus strains. J. Med. Microbiol. 52, 919–923 (2003).

    Article  PubMed  Google Scholar 

  129. Hussain, M., Herrmann, M., von Eiff, C., Perdreau-Remington, F. & Peters, G. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65, 519–524 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tristan, A. et al. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J. Clin. Microbiol. 41, 4465–4467 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sabat, A. et al. Two allelic forms of the aureolysin gene (aur) within Staphylococcus aureus. Infect. Immun. 68, 973–976 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gravet, A. et al. Characterization of a novel structural member, LukE–LukD, of the bi-component staphylococcal leucotoxins family. FEBS Lett. 436, 202–208 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Fujita, T. Evolution of the lectin–complement pathway and its role in innate immunity. Nature Rev. Immunol. 2, 346–353 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank the Science Foundation Ireland, the Health Research Board, the Wellcome Trust, the European Commission Framework 5 and Inhibitex Inc. for funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus anthracis

Pseudomonas aeruginosa

Staphylococcus aureus

Staphylococcus epidermis

Streptococcus pyogenes

Swiss-Prot

Aap

aureolysin

AtlE

C5aR

CHIPS

ClfA

ClfB

Cna

Efb

exotoxin A

Fbe

FPR

ICAM-1

lactoferrin

LFA-1

lysozyme

MrpF

protein A

PVL

SarA

SdrG

staphylokinase

TSST-1

FURTHER INFORMATION

Timothy J. Foster's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, T. Immune evasion by staphylococci. Nat Rev Microbiol 3, 948–958 (2005). https://doi.org/10.1038/nrmicro1289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing