Key Points
-
The first line of defence against Staphylococcus aureus is neutrophil phagocytosis. The bacterium thwarts neutrophils by several novel mechanisms. A capsule and surface protein reduce opsonization. Secreted proteins prevent complement activation and inhibit neutrophil chemotaxis and migration. There are several mechanisms to resist killing by reactive oxygen species and antibacterial defensin peptides.
-
Transcriptional microarray studies identified many genes that are differentially regulated after neutrophil uptake. Community-acquired meticillin-resistant S. aureus strains are more virulent, have increased resistance to neutrophils and a larger repertoire of differentially regulated genes.
-
Secreted and wall-associated superantigens stimulate proliferation of T cells and B cells and interfere with normal antibody responses, causing immunosuppression. Immunization with purified surface polysaccharide and protein stimulates protective immunity, offering the prospect of vaccines to protect against infections.
-
Staphylococcus epidermidis lacks the diverse mechanisms of avoiding immunity. It relies on surface polymers to resist neutrophil phagocytosis.
Abstract
Staphylococcus aureus can cause superficial skin infections and, occasionally, deep-seated infections that entail spread through the blood stream. The organism expresses several factors that compromise the effectiveness of neutrophils and macrophages, the first line of defence against infection. S. aureus secretes proteins that inhibit complement activation and neutrophil chemotaxis or that lyse neutrophils, neutralizes antimicrobial defensin peptides, and its cell surface is modified to reduce their effectiveness. The organism can survive in phagosomes, express polysaccharides and proteins that inhibit opsonization by antibody and complement, and its cell wall is resistant to lysozyme. Furthermore, S. aureus expresses several types of superantigen that corrupt the normal humoral immune response, resulting in anergy and immunosuppression. In contrast, Staphylococcus epidermidis must rely primarily on cell-surface polymers and the ability to form a biolfilm to survive in the host.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
209,00 € per year
only 17,42 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Peacock, S. J., de Silva, I. & Lowy, F. D. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol. 9, 605–610 (2001).
Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).
Wertheim, H. F. et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364, 703–705 (2004).
von Eiff, C., Becker, K., Machka, K., Stammer, H. & Peters, G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med. 344, 11–16 (2001).
Hiramatsu, K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect. Dis. 1, 147–155 (2001).
Weigel, L. M. et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302, 1569–1571 (2003).
Foster, T. J. & Hook, M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488 (1998).
Skaar, E. P. & Schneewind, O. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect. 6, 390–397 (2004).
O'Riordan, K. & Lee, J. C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218–234 (2004).
Bohach, G. A. & Foster, T. J. Staphylococcus aureus Exotoxins (eds Fischetti, V. A., Novick, R. P., Ferretti, J. J. & Rood, J. I.) 367–378 (ASM, Washington DC, 1999).
Dinges, M. M., Orwin, P. M. & Schlievert, P. M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13, 16–34 (2000).
Mazmanian, S. K., Ton-That, H. & Schneewind, O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40, 1049–1057 (2001).
Moore, F. in Immunology, Infection, and Immunity (eds Pier, G. B., Lyczak, J. B. & Wetzler, L. M.) 85–109 (ASM, Washington DC, 2004).
Roche, F. M. et al. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149, 643–654 (2003).
Etz, H. et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl Acad. Sci. USA 99, 6573–6578 (2002).
Dryla, A. et al. Comparison of antibody repertoires against Staphylococcus aureus in healthy individuals and in acutely infected patients. Clin. Diagn. Lab. Immunol. 12, 387–398 (2005).
Schwarz-Linek, U., Hook, M. & Potts, J. R. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol. Microbiol. 52, 631–641 (2004).
Schwarz-Linek, U. et al. Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. Nature 423, 177–181 (2003).
Peacock, S. J., Foster, T. J., Cameron, B. J. & Berendt, A. R. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145, 3477–3486 (1999).
von Eiff, C., Proctor, R. A. & Peters, G. Staphylococcus aureus small colony variants: formation and clinical impact. Int. J. Clin. Pract. Suppl. 115, 44–49 (2000).
Murdoch, C. & Finn, A. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95, 3032–3043 (2000).
de Haas, C. J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004). Initial characterization of CHIPS, which can inhibit C5a and formyl peptide receptors on neutrophils to reduce chemotaxis and migration.
Haas, P. J. et al. N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J. Immunol. 173, 5704–5711 (2004).
Postma, B. et al. Residues 10–18 within the C5a receptor N terminus compose a binding domain for chemotaxis inhibitory protein of Staphylococcus aureus. J. Biol. Chem. 280, 2020–2027 (2005).
Postma, B. et al. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J. Immunol. 172, 6994–7001 (2004).
Chavakis, T. et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nature Med. 8, 687–693 (2002). The Map protein binds to ICAM-1 on endothelial cells and reduces neutrophil migration in response to S. aureus infection.
Montoya, M. & Gouaux, E. β-barrel membrane protein folding and structure viewed through the lens of α-hemolysin. Biochim. Biophys. Acta 1609, 19–27 (2003).
Menestrina, G. et al. Ion channels and bacterial infection: the case of β-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett. 552, 54–60 (2003).
Peacock, S. J. et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect. Immun. 70, 4987–4996 (2002).
Prevost, G. et al. Panton–Valentine leucocidin and γ-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect. Immun. 63, 4121–4129 (1995).
Said-Salim, B., Mathema, B. & Kreiswirth, B. N. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen. Infect. Control Hosp. Epidemiol. 24, 451–455 (2003).
Gillet, Y. et al. Association between Staphylococcus aureus strains carrying gene for Panton–Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359, 753–759 (2002).
Lina, G. et al. Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128–1132 (1999).
Narita, S. et al. Phage conversion of Panton–Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, φSLT. Gene 268, 195–206 (2001).
Said-Salim, B. et al. Differential distribution and expression of Panton–Valentine leucocidin among community-acquired methicillin-resistant Staphylococcus aureus strains. J. Clin. Microbiol. 43, 3373–3379 (2005).
Uhlen, M. et al. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J. Biol. Chem. 259, 1695–1702 (1984).
Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20, 2361–2370 (1981).
Cedergren, L., Andersson, R., Jansson, B., Uhlen, M. & Nilsson, B. Mutational analysis of the interaction between staphylococcal protein A and human IgG1. Protein Eng. 6, 441–448 (1993).
Gemmell, C., Tree, R., Patel, A., O'Reilly, M., Foster, T. J. Susceptibility to opsonophagocytosis of protein A, α-haemolysin and β-toxin deficient mutants of Staphylococcus aureus isolated by allele-replacement. Zentralbl. Bakteriol. 21 (Suppl.), 273–277 (1991).
Palmqvist, N., Foster, T., Tarkowski, A. & Josefsson, E. Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb. Pathog. 33, 239–249 (2002).
Patel, A. H., Nowlan, P., Weavers, E. D. & Foster, T. Virulence of protein A-deficient and α-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect. Immun. 55, 3103–3110 (1987).
O'Brien, L. et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol. Microbiol. 44, 1033–1044 (2002).
Bischoff, M. et al. Microarray-based analysis of the Staphylococcus aureus σB regulon. J. Bacteriol. 186, 4085–4099 (2004).
McDevitt, D. et al. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur. J. Biochem. 247, 416–424 (1997).
Josefsson, E., Hartford, O., O'Brien, L., Patti, J. M. & Foster, T. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 184, 1572–1580 (2001).
Palmqvist, N., Patti, J. M., Tarkowski, A. & Josefsson, E. Expression of staphylococcal clumping factor A impedes macrophage phagocytosis. Microbes Infect. 6, 188–195 (2004).
Ni Eidhin, D. et al. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol. Microbiol. 30, 245–257 (1998).
Wann, E. R., Gurusiddappa, S. & Hook, M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J. Biol. Chem. 275, 13863–13871 (2000).
Roghmann, M. et al. Epidemiology of capsular and surface polysaccharide in Staphylococcus aureus infections complicated by bacteraemia. J. Hosp. Infect. 59, 27–32 (2005).
Luong, T. T. & Lee, C. Y. Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infect. Immun. 70, 3389–3395 (2002).
Thakker, M., Park, J. S., Carey, V. & Lee, J. C. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect. Immun. 66, 5183–5189 (1998).
Nilsson, I. M., Lee, J. C., Bremell, T., Ryden, C. & Tarkowski, A. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect. Immun. 65, 4216–4221 (1997).
Baddour, L. M. et al. Staphylococcus aureus microcapsule expression attenuates bacterial virulence in a rat model of experimental endocarditis. J. Infect. Dis. 165, 749–753 (1992).
Lee, J. C., Park, J. S., Shepherd, S. E., Carey, V. & Fattom, A. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect. Immun. 65, 4146–4151 (1997).
Rooijakkers, S. H. et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature Immunol. 6, 920–927 (2005). A newly discovered protein called SCIN is a powerful inhibitor of complement fixation by targeting cell-bound C3 convertases.
Lee, L. Y. et al. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 190, 571–579 (2004).
Lee, L. Y., Liang, X., Hook, M. & Brown, E. L. Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J. Biol. Chem. 279, 50710–50716 (2004).
Lee, L. Y. et al. The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J. Clin. Invest. 110, 1461–1471 (2002). Map inhibits T-cell proliferation. In animal models, a Map-defective mutant is less virulent, possibly due to reduced cell-mediated immunity.
Rooijakkers, S. H., van Wamel, W. J., Ruyken, M., van Kessel, K. P. & van Strijp, J. A. Anti-opsonic properties of staphylokinase. Microbes Infect. 7, 476–484 (2005).
Fedtke, I., Gotz, F. & Peschel, A. Bacterial evasion of innate host defenses — the Staphylococcus aureus lesson. Int. J. Med. Microbiol. 294, 189–194 (2004).
Peschel, A. How do bacteria resist human antimicrobial peptides? Trends Microbiol. 10, 179–186 (2002).
Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).
Staubitz, P., Neumann, H., Schneider, T., Wiedemann, I. & Peschel, A. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol. Lett. 231, 67–71 (2004).
Peschel, A. et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J. Exp. Med. 193, 1067–1076 (2001). Lysine modification of membrane lipid increases positive charges, which helps repel human defensin peptides and contributes to resistance to neutrophils and to virulence.
Kristian, S. A., Durr, M., Van Strijp, J. A., Neumeister, B. & Peschel, A. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect. Immun. 71, 546–549 (2003).
Collins, L. V. et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J. Infect. Dis. 186, 214–219 (2002). D -alanine modification of teichoic acids neutralizes their negative charge, decreases sensitivity to defensin peptides and contributes to resistance to neutrophils and to virulence.
Bokarewa, M. & Tarkowski, A. Human α-defensins neutralize fibrinolytic activity exerted by staphylokinase. Thromb. Haemost. 91, 991–999 (2004).
Jin, T. et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172, 1169–1176 (2004). Staphylokinase binds defensins and contributes to bacterial resistance to killing.
Sieprawska-Lupa, M. et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother. 48, 4673–4679 (2004).
Keshav, S., Chung, P., Milon, G. & Gordon, S. Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization. J. Exp. Med. 174, 1049–1058 (1991).
Bera, A., Herbert, S., Jakob, A., Vollmer, W. & Gotz, F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol. 55, 778–787 (2005). Lysozyme resistance is due to O -acetylation of muramic acid in peptidoglycan.
Verhoef, J. in The Staphylococci in Human Disease (eds Crossley, K. B. & Archer, G. L.) 213–232 (Churchill Livinstone, New York, 1997).
Heyworth, P. G., Cross, A. R. & Curnutte, J. T. Chronic granulomatous disease. Curr. Opin. Immunol. 15, 578–584 (2003).
Verdrengh, M. & Tarkowski, A. Role of neutrophils in experimental septicemia and septic arthritis induced by Staphylococcus aureus. Infect. Immun. 65, 2517–2521 (1997).
Molne, L., Verdrengh, M. & Tarkowski, A. Role of neutrophil leukocytes in cutaneous infection caused by Staphylococcus aureus. Infect. Immun. 68, 6162–6167 (2000).
Gresham, H. D. et al. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164, 3713–3722 (2000).
Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202, 209–215 (2005). A novel mechanism for resisting oxidants in neutrophils. Mutants defective in pigment are more susceptible to neutrophil killing and have reduced virulence.
Karavolos, M. H., Horsburgh, M. J., Ingham, E. & Foster, S. J. Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149, 2749–2758 (2003).
Horsburgh, M. J. et al. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol. Microbiol. 44, 1269–1286 (2002).
Singh, V. K. & Moskovitz, J. Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiology 149, 2739–2747 (2003).
Mei, J. M., Nourbakhsh, F., Ford, C. W. & Holden, D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407 (1997).
Voyich, J. M. et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175, 3907–3919 (2005). Transcriptional microarrays identify genes that are upregulated following ingestion by neutrophils. CA-MRSA have increased resistance to neutrophil killing and have a larger array of differentially regulated genes.
Voyich, J. M., Musser, J. M. & DeLeo, F. R. Streptococcus pyogenes and human neutrophils: a paradigm for evasion of innate host defense by bacterial pathogens. Microbes Infect. 6, 1117–1123 (2004).
von Eiff, C., Peters, G. & Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect. Dis. 2, 677–685 (2002).
Gill, S. R. et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol. 187, 2426–2438 (2005).
Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).
Heilmann, C., Hussain, M., Peters, G. & Gotz, F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24, 1013–1024 (1997).
Nilsson, M. et al. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66, 2666–2673 (1998).
Hartford, O., O'Brien, L., Schofield, K., Wells, J. & Foster, T. J. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology 147, 2545–2552 (2001).
Vuong, C. et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol. 6, 269–275 (2004). A cell surface polymer (PIA) involved in biofilm formation increases resistance of S. epidermidis to neutrophil phagocytosis.
Rohde, H. et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55, 1883–1895 (2005).
Fluckiger, U. et al. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect. Immun. 73, 1811–1819 (2005).
Cramton, S. E., Ulrich, M., Gotz, F. & Doring, G. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 4079–4085 (2001).
McKenney, D. et al. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284, 1523–1527 (1999).
Kocianova, S. et al. Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J. Clin. Invest. 115, 688–694 (2005). S. epidermidis expresses a polymer associated with B. anthracis infection which contributes to resistance to neutrophils.
Little, S. F. & Ivins, B. E. Molecular pathogenesis of Bacillus anthracis infection. Microbes Infect. 1, 131–139 (1999).
Mehlin, C., Headley, C. M. & Klebanoff, S. J. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J. Exp. Med. 189, 907–918 (1999).
Liles, W. C., Thomsen, A. R., O'Mahony, D. S. & Klebanoff, S. J. Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin. J. Leukoc. Biol. 70, 96–102 (2001).
Vuong, C. et al. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell. Microbiol. 6, 753–759 (2004). A family of small proinflammatory peptides are expressed only when the cell density is high. It is postulated that they contribute to abscess formation and sepsis.
Goodyear, C. S. & Silverman, G. J. Staphylococcal toxin induced preferential and prolonged in vivo deletion of innate-like B lymphocytes. Proc. Natl Acad. Sci. USA 101, 11392–11397 (2004). Protein A binds B-cell-bound IgM and acts as a superantigen to stimulate proliferation and depletion.
Graille, M. et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc. Natl Acad. Sci. USA 97, 5399–5404 (2000).
Silverman, G. J. & Goodyear, C. S. A model B-cell superantigen and the immunobiology of B lymphocytes. Clin. Immunol. 102, 117–134 (2002).
Silverman, G. J. et al. A B-cell superantigen that targets B-1 lymphocytes. Curr. Top. Microbiol. Immunol. 252, 251–263 (2000).
Alber, G., Hammer, D. K. & Fleischer, B. Relationship between enterotoxic- and T lymphocyte-stimulating activity of staphylococcal enterotoxin B. J. Immunol. 144, 4501–4506 (1990).
Chesney, P. J., Bergdoll, M. S., Davis, J. P. & Vergeront, J. M. The disease spectrum, epidemiology, and etiology of toxic-shock syndrome. Annu. Rev. Microbiol. 38, 315–338 (1984).
Llewelyn, M. & Cohen, J. Superantigens: microbial agents that corrupt immunity. Lancet Infect. Dis. 2, 156–162 (2002).
Proft, T. & Fraser, J. D. Bacterial superantigens. Clin. Exp. Immunol. 133, 299–306 (2003).
Choi, Y. et al. Selective expansion of T cells expressing Vβ2 in toxic shock syndrome. J. Exp. Med. 172, 981–984 (1990).
Hudson, K. R., Robinson, H. & Fraser, J. D. Two adjacent residues in staphylococcal enterotoxins A and E determine T cell receptor Vβ specificity. J. Exp. Med. 177, 175–184 (1993).
Lussow, A. R. & MacDonald, H. R. Differential effects of superantigen-induced “anergy” on priming and effector stages of a T cell-dependent antibody response. Eur. J. Immunol. 24, 445–449 (1994).
Petersson, K., Forsberg, G. & Walse, B. Interplay between superantigens and immunoreceptors. Scand. J. Immunol. 59, 345–355 (2004).
Jonsson, K., McDevitt, D., McGavin, M. H., Patti, J. M. & Hook, M. Staphylococcus aureus expresses a major histocompatibility complex class II analog. J. Biol. Chem. 270, 21457–21460 (1995).
Haggar, A., Shannon, O., Norrby-Teglund, A. & Flock, J. I. Dual effects of extracellular adherence protein from Staphylococcus aureus on peripheral blood mononuclear cells. J. Infect. Dis. 192, 210–217 (2005).
Moreillon, P. & Que, Y. A. Infective endocarditis. Lancet 363, 139–149 (2004).
Moreillon, P., Que, Y. A. & Bayer, A. S. Pathogenesis of streptococcal and staphylococcal endocarditis. Infect. Dis. Clin. North Am. 16, 297–318 (2002).
Loughman, A. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol. Microbiol. 57, 804–814 (2005).
Fitzgerald, J. R. et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Mol. Microbiol. (in the press).
Nilsson, I. M., Patti, J. M., Bremell, T., Hook, M. & Tarkowski, A. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J. Clin. Invest. 101, 2640–2649 (1998).
Fattom, A. I., Horwith, G., Fuller, S., Propst, M. & Naso, R. Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine 22, 880–887 (2004).
Vernachio, J. et al. Anti-clumping factor A immunoglobulin reduces the duration of methicillin-resistant Staphylococcus aureus bacteremia in an experimental model of infective endocarditis. Antimicrob. Agents Chemother. 47, 3400–3406 (2003).
Patti, J. M. A humanized monoclonal antibody targeting Staphylococcus aureus. Vaccine 22, S39–S43 (2004).
Hall, A. E. et al. Characterization of a protective monoclonal antibody recognizing Staphylococcus aureus MSCRAMM protein clumping factor A. Infect. Immun. 71, 6864–6870 (2003).
Brogden, K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Rev. Microbiol. 3, 238–250 (2005).
Arbeit, R. D., Karakawa, W. W., Vann, W. F. & Robbins, J. B. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 2, 85–91 (1984).
Boutonnier, A. et al. Direct testing of blood culture for detection of the serotype 5 and 8 capsular polysaccharides of Staphylococcus aureus. J. Clin. Microbiol. 27, 989–993 (1989).
Hochkeppel, H. K. et al. Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J. Clin. Microbiol. 25, 526–530 (1987).
Sompolinsky, D. et al. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J. Clin. Microbiol. 22, 828–834 (1985).
Jin, T. et al. Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient Staphylococcus aureus strains. J. Med. Microbiol. 52, 919–923 (2003).
Hussain, M., Herrmann, M., von Eiff, C., Perdreau-Remington, F. & Peters, G. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65, 519–524 (1997).
Tristan, A. et al. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J. Clin. Microbiol. 41, 4465–4467 (2003).
Sabat, A. et al. Two allelic forms of the aureolysin gene (aur) within Staphylococcus aureus. Infect. Immun. 68, 973–976 (2000).
Gravet, A. et al. Characterization of a novel structural member, LukE–LukD, of the bi-component staphylococcal leucotoxins family. FEBS Lett. 436, 202–208 (1998).
Fujita, T. Evolution of the lectin–complement pathway and its role in innate immunity. Nature Rev. Immunol. 2, 346–353 (2002).
Acknowledgements
I would like to thank the Science Foundation Ireland, the Health Research Board, the Wellcome Trust, the European Commission Framework 5 and Inhibitex Inc. for funding.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Related links
DATABASES
Entrez
Swiss-Prot
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Foster, T. Immune evasion by staphylococci. Nat Rev Microbiol 3, 948–958 (2005). https://doi.org/10.1038/nrmicro1289
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1289
This article is cited by
-
Staphylococcal protein A modulates inflammation by inducing interferon signaling in human nasal epithelial cells
Inflammation Research (2023)
-
Teg58, a small regulatory RNA, is involved in regulating arginine biosynthesis and biofilm formation in Staphylococcus aureus
Scientific Reports (2022)
-
Skeletal infections: microbial pathogenesis, immunity and clinical management
Nature Reviews Microbiology (2022)
-
The promising anti-virulence activity of candesartan, domperidone, and miconazole on Staphylococcus aureus
Brazilian Journal of Microbiology (2022)
-
Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection
Nano Research (2022)