Abstract
This paper provides a survey of motion planning techniques under uncertainty with a focus on their application to autonomous guidance of unmanned aerial vehicles (UAVs). The paper first describes the primary sources of uncertainty arising in UAV guidance and then describes relevant practical techniques that have been reported in the literature. The paper makes a point of distinguishing between contributions from the field of robotics and artificial intelligence, and the field of dynamical systems and controls. Mutual and individual contributions for these fields are highlighted providing a roadmap for tackling the UAV guidance problem.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: structural assumptions and computational leverage. J. Artif. Intell. Res. 11, 1–64 (1999)
Blythe, J.: Decision-theoretic planning. AI Mag. 20(2), 37–54 (1999)
LaValle, S., Sharma, R.: A framework for motion planning in stochastic environments: modeling and analysis. In: IEEE International Conference on Robotics and Automation (1995)
LaValle, S., Sharma, R.: A framework for motion planning in stochastic environments: application and computational issues. In: IEEE International Conference on Robotics and Automation (1995)
Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1), 65–100 (2010)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press (2005)
Spaan, M.T.J.: Approximate planning under uncertainty in partially observable environments. Ph.D. dissertation, Universiteit van Amsterdam, Netherlands (2006)
Bellman, R.: Dynamic Programming. Princeton University Press (1957)
Bertsekas, D.: Dynamic programming and optimal control: vols. 1 & 2. Athena Scientific, Belmont, MA (2005)
Cassandra, A.R.: Exact and approximate algorithms for partially observable markov decision process. Ph.D. dissertation, Brown University, USA (1994)
Cassandra, A., Kaelbling, L., Kurien, J.: Acting under uncertainty: discrete bayesian models for mobile-robot navigation. In: IEEE Conference on Intelligent Robots and Systems (IROS) (1996)
Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)
Papadimitriou, C., Tsisiklis, J.: The complexity of markov decision processes. Math. Oper. Res. 12(3), 441450 (1987)
Chang, H., Fu, M., Hu, J., Marcus, S.: Simulation-based Algorithms for Markov Decision Processes. Springer Berlin (2007)
Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Taylor and Francis, Bristol, PA (1975)
Bryson, A.E.: Dynamic Optimization. Addison Wesley Longman (1999)
Hull, D.: Conversion of optimal control problems into parameter optimization problems. J. Guid. Control Dyn. 20(1), 57–60 (1997)
Borrelli, F., Subramanian, D., Raghunathan, A., Biegler, L.: MILP and NLP techniques for centralized trajectory planning of multiple unmanned air vehicles. In: American Control Conference, pp. 5763–5768 (2006)
Schouwenaars, T., Mettler, B., Feron, E., How, J.: Hybrid model for trajectory planning of agile autonomous vehicles. Journal of Aerospace Computing, Information, and Communication, vol. 1 (2004)
Mayne, D.: Nonlinear model predictive control: an assessment. In: American Institute of Chemical Engineers (AIChE) Symposium Series, pp. 217–231 (1997)
Mayne, D., Rawling, J., Rao, C., Scokaert, P.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (1987)
Primbs, J.A., Nevistic, V., Doyle, J.C.: A receding horizon generalization of pointwise min-norm controllers. IEEE Trans. Automat. Contr. 45(5), 898–909 (2000)
Jadbabaie, A., Yu, J., Hauser, J.: Unconstrained receding-horizon control of nonlinear systems. IEEE Trans. Automat. Contr. 776–783 (2001)
Bemporad, A., Morari, M.: Robust model predictive control: a survey. Lect. Notes Control Inf. Sci. 207–226 (1999)
Lee, Y.I., Kouvaritakis, B.: A linear programming approach to constrained robust predictive control. IEEE Trans. Automat. Contr. 45(9), 1765–1770 (2000)
Cuzzola, F.A., Geromel, J.C., Morari, M.: An improved approach for constrained robust model predictive control. Automatica 38, 1138 (2002)
Lee, J.H., Yu, Z.: Worst-case formulations of model predictive control for systems with bounded parameters. Automatica 33(5), 763–781 (1997)
Kerrigan, E.C., Mayne, D.Q.: Optimal control of constrained, piecewise affine systems with bounded disturbances. In: IEEE Conference on Decision and Control (2002)
Lee, Y.I., Kouvaritakis, B.: Constrained receding horizon predictive control for systems with disturbances. Int. J. Control 72(11), 1027–1032 (1999)
Frazzoli, E., Dahleh, M.A., Feron, E.: A hybrid control architecture for aggressive maneuvering of autonomous helicopter. In: IEEE Conference on Decision and Control, Phoenix, AZ (1999)
Mettler, B., Valenti, M., Schouwenaars, T., Frazzoli, E., Feron, E.: Rotorcraft motion planing for agile maneuvering. In: Proceedings of the 58th Forum of the American Helicopter Society, Montreal, Canada (2002)
Schouwenaars, T., Mettler, B., How, J., Feron, E.: Robust Motion Planning Using a Maneuver Automaton with Built-in Uncertainties. American Control Conference, Denver, CO (2003)
Calafiore, G.C., Ghaoui, L.E.: Linear Programming with Probability Constraints Part 1. American Control Conference, New York City, NY (2007)
Calafiore, G.C., Ghaoui, L.E.: Linear Programming with Probability Constraints Part 2. American Control Conference, New York City, NY (2007)
Blackmore, A.B.L., Ono, M., Williams, B.C.: A probabilistic particle control approximation of chance constrained stochastic predictive control. IEEE Trans. Robot. 26(3), 502–517 (2010)
Doucet, A., De Freitas, N., Gordon, N.: Sequential Monte Carlo methods in Practice. Springer Verlag (2001)
Shapiro, A.: Stochastic programming approach to optimization under uncertainty. Math. Program. 112(1), 183–220 (2008)
Blackmore, L., Li, H., Williams, B.: A Probabilistic Approach to Optimal Robust Path Planning with Obstacles. American Control Conference, Minneapolis, MN (2006)
Richards, A.: Robust Constrained Model Predictive Control. Ph.D. dissertation, Massachusetts Institute of Technology, USA (2005)
Goerzen, C., Whalley, M.: Minimal risk motion planning: a new planner for autonomous uavs in uncertain environment. In: AHS International Specialists’ Meeting on Unmmaned Rotorcraft, Tempe, Arizona (2011)
Weiß, B., Naderhirn, M., del Re, L.: Global real-time path planning for uavs in uncertain environment. In: IEEE International Symposium on Intelligent Control and International Conference on Control Applications, pp. 2725–2730. Munich, Germany (2006)
Frazzoli, E.: Robust Hybrid Control for Autonomous Vehicle Motion Planning. PhD Thesis, MIT, Cambridge, MA (2001)
Kavraki, L., Svestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)
LaValle, S., Kuffner, J. Jr.: Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 378 (2001)
Pettersson, P., Doherty, P.: Probabilistic roadmap based path planning for an autonomous unmanned aerial vehicle. J. Intell. Fuzzy Syst. 17, 395–405 (2006)
Missiuro, P., Roy, N.: Adapting probabilistic roadmaps to handle uncertain maps. In: IEEE Conference on Robotics and Automation (ICRA), pp. 1261–1267. Orlando, FL (2006)
Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for maintaining shortest paths trees. J. Algorithms 34(2), 251–281 (2000)
Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms 21(2), 267–305 (1996)
Stentz, A.: Optimal and efficient path planning for partially-known environments. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3310–3317 (1994)
Stentz, A.: The focussed D ∗ algorithm for real-time replanning. In: International Joint Conference on Artificial Intelligence (1995)
Koenig, S., Likhachev, M.: D ∗ lite. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pp. 476–483 (2002)
Zilberstein, S., Russell, S.: Approximate reasoning using anytime algorithms. In: Imprecise and Approximate Computation. The Kluwer International Series in Engineering and Computer Science, vol. 318, pp. 43–62. Springer US (1995)
Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artif. Intell. 172(14), 1613–1643 (2008)
Thrun, S.: Robotic mapping: a survey. In: Exploring artificial intelligence in the new millennium, pp. 1–35 (2002)
Csorba, M.: Simultaneous Localization and Map Building. Ph.D. dissertation, University of Oxford (1997)
Castellanos, J., Tardos, J.: Mobile robot localization and map building: a multisensor fusion approach. Kluwer Academic Pub (1999)
McLachlan, G., Krishnan, T.: The EM algorithm and extensions. Wiley New York (1997)
Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: IEEE Conference on Robotics and Automation (ICRA), vol. 2 (1985)
Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Comput. 22(6), 46–57 (1989)
Konolige, K.: Improved occupancy grids for map building. Auton. Robots 4(4), 351–367 (1997)
Pathak, K., Birk, A., Poppinga, J., Schwertfeger, S.: 3D Forward sensor modeling and application to occupancy grid based sensor fusion. In: IEEE Conference on Intelligent Robots and Systems (IROS), San Diego, CA (2007)
Shim, D., Chung, H., Sastry, S.: Conflict-free navigation in unknown urban environments. IEEE Robot. Autom. Mag. 13(3), 27–33 (2006)
Sinopoli, B., Micheli, M., Donato, G., Koo, T.: Vision based navigation for an unmanned aerial vehicle. In: IEEE Conference on Robotics and Automation (ICRA), vol. 2, pp. 1757–1764. Seoul, Korea (2001)
Hrabar, S.: 3D path planning and stereo-based obstacle avoidance for rotorcraft UAVs. In: IEEE Conference on Intelligent Robots and Systems (IROS), pp. 807–814. Nice, France (2008)
Scherer, S., Singh, S., Chamberlain, L., Saripalli, S.: Flying fast and low among obstacles. In: IEEE Conference on Robotics and Automation (ICRA), pp. 2023–2029. Roma, Italy (2007)
Li, Z., Bui, T.: Robot path planning using fluid model. J. Intell. Robot. Syst. 21(1), 29–50 (1998)
Andert, F., Adolf, F.: Online world modeling and path planning for an unmanned helicopter. Auton. Robots, 27(3), 147–164 (2009)
Davis, J., Chakravorty, S.: Motion planning under uncertainty: application to an unmanned helicopter. J. Guid. Control Dyn. 30(5), 1268–1276 (2007)
Kumar, P.R., Varaiya, P.: Stochastic Systems: Estimation, Identification and Adaptive Control. Prentice-Hall, New Jersey, USA (1986)
Jennings, A., Ordonez, R., Ceccarelli, N.: Dynamic programming applied to UAV way point path planning in wind. In: IEEE International Conference on Computer-Aided Control Systems, CACSD, pp. 215–220 (2008)
McGee, T., Spry, S., Hedrick, J.: Optimal path planning in a constant wind with a bounded turning rate. In: AIAA Guidance, Navigation, and Control Conference (2005)
Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)
Boissonnat, J.D., Cerezo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. In: IEEE Conference on Robotics and Automation (ICRA), vol. 3, pp. 2315–2320 (1992)
McGee, T., Hedrick, J.: Path planning and control for multiple point surveillance by an unmanned aircraft in wind. In: American Control Conference, Minneapolis, Minnesota, USA (2006)
Ceccarelli, N., Enright, J., Frazzoli, E., Rasmussen, S., Schumacher, C.: Micro UAV path planning for reconnaissance in wind. In: American Control Conference, pp. 5310–5315. New York City, USA (2007)
Ketema, Y., Zhao, Y.: Micro Air Vehicle Trajectory Planning in Winds. J. Aircr. 47(4), 1460–1463 (2010)
Nelson, D.R., Barber, D.B., McLain, T.W., Beard, R.W.: Vector field path following for small unmanned air vehicles. In: American Control Conference, Minneapolis, Minnesota, USA (2006)
Kuwata, Y., Schouwenaars, T., Richards, A., How, J.: Robust constrained receding horizon control for trajectory planning. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (2005)
Kendoul, F., Fantoni, I., Nonami, K.: Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles. Robot. Auton. Syst. 57(6–7), 591–602 (2009)
Celik, K., Chung, S.-J., Clausman, M., Somani, A.K.: Monocular vision SLAM for indoor aerial vehicles. IEEE Conference on Intelligent Robots and Systems (IROS), St. Louis, MO (2009)
Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. Proceedings of the SPIE, Unmanned Systems Technology XI. Orlando, Florida (2009)
Roy, N., Gordon, G., Thrun, S.: Finding approximate POMDP solutions through belief compression. J. Artif. Intell. Res. 23, 1–40 (2005)
Aberdeen, D.: A (revised) Survey of Approximate Methods for Solving Partially Observable Markov Decision Processes. National ICT Australia, Tech. Rep., Canberra, Australia (2003)
Roy, N., Thrun, S.: Coastal navigation with mobile robots. Advances in Neural Processing Systems 12(12), 1043–1049 (1999)
Prentice, S., Roy, N.: The belief roadmap: efficient planning in linear pomdps by factoring the covariance. In: Proceedings of the 13th International Symposium of Robotics Research (ISRR), Hiroshima, Japan (2007)
Olson, C.F.: Probabilistic self-localization for mobile robots. IEEE Trans. Robot. Autom. 16(1), 55–66 (2000)
Thrun, S., Fox, D., Burgard, W.: Robust Monte Carlo localization for mobile robots. Artif. Intell, 128(1–2), 91–141 (2000)
Takeda, H., Latombe, J.: Sensory uncertainty field for mobile robot navigation. In: IEEE Conference on Robotics and Automation, pp. 2465–2472 (1992)
Djekoune, A.O., Achour, K., Toumi, R.: A sensor based navigation algorithm for a mobile robot using the DVFF approach. Int. J. Adv. Robot. Syst. 6(2), 97–108 (2009)
Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An invitation to 3-D Vision. Springer-Verlag, LCC (2003)
Qian, G., Chellappa, R., Zheng, Q.: Robust structure from motion estimation using inertial data. J. Opt. Soc. Am. A, 18(12), 2982–2997 (2001)
Prazenica, R.J., Kurdila, A.J., Sharpley, R.C.: Receding horizon control for mav with vision-based state and obstacle estimation. AIAA Guidance, Navigation, and Control Conference, South Carolina (2007)
Yu, H., Beard, R.W., Byrne, J.: Vision-based local multi-resolution mapping and path planning for miniature air vehicles. In: American Control Conference, St. Louis, Missouri, USA (2009)
Watanabe, Y., Calise, A., Johnson, E.: Vision-based obstacle avoidance for UAVs. In: AIAA Guidance, Navigation and Control Conference, South Carolina (2007)
Barrows, G., Chahl, J., Srinivasan, M.: Biomimetic visual sensing and flight control. The Aeronautical Journal, London: The Royal Aeronautical Society, 107(1069), 159–168 (2003)
Ruffier, F., Franceschini, N.: Optic flow regulation: the key to aircraft automatic guidance. Robot. Auton. Syst. 50(4), 177–194 (2005)
Green, W., Oh, P., Sevcik, K., Barrows, G.: Autonomous landing for indoor flying robots using optic flow. In: ASME international mechanical engineering congress and exposition, vol. 2, pp. 1347–1352. (2003)
Green, W., Oh, P., Barrows, G.: Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments. In: IEEE Conference on Robotics and Automation, ICRA (2004)
Beyeler, A., Zufferey, J., Floreano, D.: Vision-based control of near-obstacle flight. Auton. robots, 27(3), 201–219 (2009)
Zufferey, J.C., Floreano, D.: Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans. Robot. 22(1), 137–146 (2006)
Hrabar, S., Sukhatme, G., Corke, P., Usher, K., Roberts, J.: Combined optic-flow and stereo-based navigation of urban canyons for a UAV. In: IEEE Conference on Intelligent Robots and Systems, IROS, pp. 3309–3316 (2005)
Borenstein, J., Koren, Y.: Real-time obstacle avoidance for fast mobile robots. IEEE Trans. Syst. Sci. Cybern. 19(5), 1179–1187 (1989)
Borenstein, J., Koren, Y.: The vector field histogram - fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)
Minguez, J., Montano, L.: Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios. IEEE Trans. Robot. Autom. 20(1), 45–59 (2004)
Simmons, R.: The curvature-velocity method for local obstacle avoidance. In: IEEE International Conference on Robotics and Automation, pp. 3375–3382. Minneapolis, Minnesota (1996)
Ko, N., Simmons, R.: The lane-curvature method for local obstacle avoidance. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1615–1621. B.C, Canada (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dadkhah, N., Mettler, B. Survey of Motion Planning Literature in the Presence of Uncertainty: Considerations for UAV Guidance. J Intell Robot Syst 65, 233–246 (2012). https://doi.org/10.1007/s10846-011-9642-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-011-9642-9