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Summary: The oxidation of norbornane by a reconstituted 
liver cytochrome P-450 system affords exo- and endo-2-norbor- 
neol in a ratio of 3.4:1. The ratio ofese products was found 
to be 0.76:l when exo!exo,exo,exo-2,3,5,6-tetradueteronorbornane --- 
was oxidized. Analysis of the mass spectra of the products from 
the deuterated hydrocarbon showed that 25% of the exo-norborneol 
contained four deuterium atoms whereas 9% of the endo-norborneol 
contained three deuterium atoms. These results, wm indicate 
a very large isotope effect (kH/kD = 11.521) and a significant 
amount of epimerization for the hydroxylation of norbornane by 
cytochrome P-450, suggest an initial hydrogen abstraction to 
give a carbon radical intermediate. 

The heme-containing mixed function oxidase of liver micro- 

somes, cytochrome P-450, has been the subject of much investiga- 

tion because of its ability to catalyze epoxidation or hydroxyla- 

tion of a wide variety of organic compounds (cf. l-3). Several - 

lines of evidence suggest that the reactive oxygen intermediate 

is a higher valent iron-oxo species equivalent to [Fe013+ (4-7). 

The mechanism by which this proposed oxo-species transfers the 

equivalent of atomic oxygen to the substrate has remained ob- 

scure. Recent observations in one of our laboratories (a-10) 

have shown that simple iron-peroxide systems effect hydroxyla- 

tion of saturated carboncentersby a mechanism which is similar 

. 
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to that of P-450 in several ways. We report here evidence that, 

like the model system, purified rabbit liver microsomal cyto- 

chrome P-450 (phenobarbital induced P-45OIM2) catalyzes ali- 

phatic hydroxylation by hydrogen abstraction to give a carbon 

radical intermediate. 

Materials and Methods. In a typical experiment, the reac- 
tion mixture contained electrophoretically homogeneous P-450~2 
(2 nmol) , NADPH-cytochrome P-450 reductase (1.5 nmol), dilauroyl 
glyceryl-3-phosphorylcholine (0.1 mg), norbornane (2 umol), and 
sodium phosphate buffer, pH 7.4 (100 1J.rnol). NADPH (2 umol) was 
added in one portion (final volume 1 ml) and the reaction mix- 
ture was allowed to stand at room temperature for 30 minutes. 
The mixture was extracted with 2 ml methylene chloride and ana- 
lyzed for reaction products by glc on a 5-ft, 3% STAP column at 
80°, 40 ml/min (exo-2-norborneol, 10 min; endo-2-norborneol, 11 
min; 7-norborneol,13 min; 2-norbornanone,-Fiiiin; 7-norbornanone, 
4.5 min). Products were identified by comparison of retention 
times and mass spectral fragmentations with those of authentic 
samples. Turnover numbers (nmol/min/nmol P-4501~21, determined 
by measuring the rate of disappearance of NADPH at 340 nm, were 
73 for benzphetamine, 50 for norbornane and 45 for & 

Trimethylsilyl ethers ofJ and 2 were prepared by standard 
techniques using O,N-bis-trimethylsiyylacetamide. The silyl 
ethers of L and & exhmted base peaks corresponding to M+-CH3 
which could be analyzed for deuterium content with confidence 
(1 and 2-OTMS from&, 
KtensiFies). 

d3/d4 = 0.615 from the ratio of M+-CH3 

chromatographic 
No conditions were found which would allow gas 

resolution of the stereoisomers. 

Results and Discussion. - The hydroxylation of alkanes by a 

reconstituted cytochrome P-450 ~2 system has been previously 

described (4,11-14). In the present study (151, norbornane was 

shown to be a substrate for this system and to produce only exo- 

and endo-2-norborneol (1 and 2) in a ratio of 3.4:1. In con- 

trast, exo,exo,exo,exo-2,3,5,6-tetradeuteronorbornane (3) ---- 

(16,171 gave a ratio of 0.76:1. Both starting materials pro- 

duced similar overall yields of product at nearly identical 

rates. The variation in stereoisomer ratio with deuterium sub- 

stitution is best interpreted as a result of a significant 

kinetic isotope effect (kH/kD) and some degree of intrinsic 

stereospecificity in the reaction. 
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Table 1. Mass Spectra of exo- and endo-Norborneols EM+-H2O(HOD) la 

m/e 93 94 95 96 97 98 99 %%I 

1 from 3 10.6 33.7 100 41.7 9.7 .' v 75% d3,25% Cl4 

calcd for g3/c14=3.0 6.6 33.3 100 41.7 4.6 -- -- 

&from 3 4.5 9.5 44.4 100 11.2 9% d3,91% C14 

calcd for c13/s=0.10 0.7 10.8 44.4 100 12.6 -- -- 

exo-4 b 6.9 35.8 100 14.3 -- >95% g2C 

*-& 6.9 35.8 100 14.3 >95% gzc 

exo-norborneol 6.8 100 10.7 100% da 

endo-norborneol 6.8 100 10.7 100% s 

aAll reported values are typical of multiple spectra (lo-151 of 
duplicate samples. Typical standard deviations were +l%. 

b Prepared by hydroboration-oxidation of norbornadiene and reduc- 
tion with D2, cf. ref. 16. 

'From the mass spectrum of the corresponding silyl ethers. 

The hydroxylations mediated by cytochrome P-450 generally 

proceed with net retention of configuration at the oxidized car- 

bon center. The degree to which this is so for the P-450m2- 

catalyzed hydroxylation of norbornane is readily apparent upon 

examination of the mass spectra of 1 and &derived from& (Table Y 

1). Qualitatively, the presence of a large peak at m/e 98 

(M+dA-H20) in the mass spectrum of_tfrom,3 requires a signifi- 

cant component of d4 material in the exo-norborneol product 

(exe-6) and, accordingly, a non-stereospecific hydroxylation. 

A more accurate measure of the deuterium content of the 

exo- and endo-norborneols formed $& and 2) can be derived from - 

the prominent M+-H20(HOD) spectral pattern of these compounds. 

Studies with various labeled norborneols have shown conclusively 
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that the exo and endo-stereoisomers have identical fragmenta- 

tion patterns and that negligible loss of deuterium occurs from 

position 2 or 3 upon loss of water from the parent ion (18-21). 

Accordingly, the tri- or tetradeuterated derivatives,? and 6 

are expected to have identical M-H20(HOD) spectral patterns 

,displaced by 1 and 2 nominal mass units from that of 4. Y 

Thus, the deuterium content of A produced from2 can be 

determined to be 75% c13 and 25% 3 while&produced from&is 

91% cI4 and 9% c3. Observed and calculated mass spectra for 

these deuterium distributions are compared in Table 1. The net 

ratio of norborneol-rd3 to norborneol-d4 determined in this way 

@3@4 = 6.0) was corroborated by that measured independently 

from the corresponding silyl ethers (c13/s = .615). 

The d4 alcohol in.Lresults from an 18% endo + exo inver- - -- 

sion component in the course of the hydroxylation while the d3 

alcohol in J-results from a 14% exo + endo crossover. Thus, -- 

aliphatic hydroxylation by P-450LM2 is not nearly as stereo- 

specific as has been commonly assumed, at least with this sub- 

strate. Further, the ratio ofri_to &derived from norbornane 

(3.4:1) must be corrected for this crossover and the intrinsic 

relative reactivities of the exo- and endo-hydrogens at C-2 can 

be calculated according to equation (1). 

0.86 kexo + 0.18 kendo k exo 
l/2 = NN = 3.4; = = 7.0 (1) 

0.82 kendo + 0.14 kexo k endo 
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The kinetic hydrogen isotope effect (kH/kD) for hydroxyla- 

tion is related to k exo'kendo and the deuterium content of all 
-- 

products from2 (cn) according to equation (2). 

kH'kD = (k exo'kendo) '%'a,) (2) 
-- 

The deuterium content in the products from-L (d_3/d_q), 

whether calculated from the alcohol mass spectra or determined 

from the silyl ether spectra, requires that the isotope effect 

for exo-hydrogen abstraction in 3 be at least 5.7. Account- 

ing for the stereochemical crossover noted above, the actual 

isotope effect is found to be 11.5+1. This large value is 

similar to those observed for alkane oxidations by well charac- 

terized 0x0 complexes of manganese and chromium (22,231, and 

similar also to intramolecular hydrogen isotope effects ob- 

served by Foster (24) and Hjelmeland (25) for liver microsomal 

preparations. In contrast, intermolecular hydrogen isotope ef- 

fects for hydroxylations by liver microsomes are usually less 

than 2 (cf. 26,27). - 

The large isotope effect and the significant amount of 

epimerization are consistent with homolytic hydrogen abstrac- 

tion of the C-2 hydrogen by P-450M2 as the site-determining 

step, leading to an intermediate carbon radical which undergoes 

partial epimerization in the enzyme-substrate cage (Scheme I). 

It is unlikely that a free carbonium ion is ever formed in this 

process since the participation of the 2-norbornyl cation should 

strongly mitigate against exo + endo crossover. This process, 

hydrogen abstraction followed by formal ligand transfer and ac- 

companied by some loss of stereochemistry, is reminiscent of the 

mechanism for the alkane oxidation by iron-peroxide systems in 

solution (8) . 
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Scheme I 

o2 + 2e- 
p-oil 

Fe(III)-P-450 - Fe(III)-P-450 

OH 

ie(rv)-P-450 

OH 

Lm+P-450 

Fe(III)-P-450 Fe(III)-P-450 
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