
‭WhatsApp‬

‭Encryption Overview‬
‭Technical white paper‬

‭Version 8 Updated August 19, 2024‬

‭Version 7 Updated September 27, 2023‬

‭Version 6 Updated January 24, 2023‬

‭Version 5 Preview (Applicable to Multi-Device Beta Only) Updated September 27, 2021‬

‭Version 4 Preview (Applicable to Multi-Device Beta Only) Updated July 14, 2021‬

‭Version 3 Updated October 22, 2020‬

‭Version 2 Updated December 19, 2017‬

‭Version 1 Originally published April 5, 2016‬

‭AUGUST 19, 2024‬

‭Contents‬

‭Messaging‬‭Security‬‭...‬‭2‬
‭Terms‬‭...‬‭3‬
‭Client‬‭Registration‬‭...‬‭5‬
‭Initiating‬‭Session‬‭Setup‬‭..‬‭13‬
‭Receiving‬‭Session‬‭Setup‬‭...‬‭14‬
‭Exchanging‬‭Messages‬‭..‬‭15‬
‭Group‬‭Messages‬‭...‬‭17‬
‭Message‬‭Add-ons‬‭in‬‭Community‬‭Announcement‬‭Groups‬‭.....................................‬‭18‬
‭Sender‬‭Side‬‭Backfill‬‭...‬‭19‬
‭Message‬‭History‬‭Syncing‬‭...‬‭20‬
‭Call‬‭Setup‬‭...‬‭21‬
‭Group‬‭Calling‬‭...‬‭21‬
‭Statuses‬‭...‬‭22‬
‭Live‬‭Location‬‭..‬‭22‬
‭App‬‭State‬‭Syncing‬‭Security‬‭...‬‭25‬
‭Verifying‬‭Keys‬‭..‬‭32‬
‭Companion‬‭Device‬‭Removal‬‭...‬‭33‬
‭Transport‬‭Security‬‭...‬‭35‬
‭Defining‬‭End-to-End‬‭Encryption‬‭..‬‭35‬
‭Implementation‬‭on‬‭WhatsApp‬‭Services‬‭...‬‭36‬
‭Implementation‬‭with‬‭Cloud‬‭API‬‭..‬‭37‬
‭Invocation‬‭Message‬‭Responses‬‭..‬‭38‬
‭Encryption‬‭Has‬‭No‬‭Off‬‭Switch‬‭..‬‭39‬
‭Displaying‬‭End-to-End‬‭Encryption‬‭Status‬‭...‬‭40‬
‭Conclusion‬‭...‬‭40‬

‭Messaging Security‬

‭Introduction‬

‭This white paper provides a technical explanation of WhatsApp’s end-to-end‬
‭encryption system. Please visit WhatsApp’s website at‬
‭www.whatsapp.com/security for more information.‬

‭WhatsApp Messenger allows people to exchange messages (including chats,‬
‭group chats, images, videos, voice messages and files), share status posts, and‬
‭make WhatsApp calls around the world. WhatsApp messages, voice, and video‬
‭calls between a sender and receiver that use WhatsApp client software use the‬

‭2‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Signal protocol outlined below. See “Defining End-to-End Encryption” for‬
‭information about which communications are end-to-end encrypted.‬

‭The Signal Protocol, designed by Open Whisper Systems, is the basis for‬
‭WhatsApp’s end-to-end encryption. This end-to-end encryption protocol is‬
‭designed to prevent third parties and WhatsApp from having plaintext access to‬
‭messages or calls. Due to the ephemeral nature of the cryptographic keys, even‬
‭in a situation where the current encryption keys from a user’s device are‬
‭physically compromised, they cannot be used to decrypt previously transmitted‬
‭messages.‬

‭A user can have multiple devices, each with its own set of encryption keys. If the‬
‭encryption keys of one device are compromised, an attacker cannot use them to‬
‭decrypt the messages sent to other devices, even devices registered to the same‬
‭user. WhatsApp also uses end-to-end encryption to encrypt the message history‬
‭transferred between devices when a user registers a new device.‬

‭This document gives an overview of the Signal Protocol and its use in WhatsApp.‬

‭Terms‬

‭Device Types‬

‭●‬ ‭Primary device - A device that is used to register a WhatsApp account‬
‭with a phone number. Each WhatsApp account is associated with a‬
‭single primary device. This primary device can be used to link additional‬
‭companion devices to the account. Supported primary device platforms‬
‭include Android and iPhone.‬

‭●‬ ‭Companion device - A device that is linked to an existing WhatsApp‬
‭account by the account’s primary device.‬

‭●‬ ‭Cloud API -‬‭A secure, Meta-hosted API service‬‭that‬‭enables‬
‭programmatic access to messaging and calling for WhatsApp. See‬
‭Implementation with Cloud API for more information.‬

‭Public Key Types‬

‭●‬ ‭Identity Key Pair‬‭– A long-term Curve25519 key pair,‬‭generated at‬
‭install time.‬

‭●‬ ‭Signed Pre Key‬‭– A medium-term Curve25519 key pair,‬‭generated at‬
‭install time, signed by the‬ ‭Identity Key‬‭, and rotated‬‭on a periodic‬
‭timed basis.‬

‭●‬ ‭One-Time Pre Keys‬‭– A queue of Curve25519 key pairs‬‭for one time‬
‭use, generated at install time, and replenished as needed.‬

‭3‬ ‭WhatsApp Encryption Overview‬

https://developers.facebook.com/docs/whatsapp/cloud-api/overview

‭AUGUST 19, 2024‬

‭Session Key Types‬

‭●‬ ‭Root Key‬‭– A 32-byte value that is used to create‬‭Chain Keys‬‭.‬

‭●‬ ‭Chain Key‬‭– A 32-byte value that is used to create‬‭Message Keys‬‭.‬

‭●‬ ‭Message Key‬‭– An 80-byte value that is used to encrypt‬‭message‬
‭contents. 32 bytes are used for an AES-256 key, 32 bytes for a‬
‭HMAC-SHA256 key, and 16 bytes for an IV.‬

‭Other Key Types‬

‭●‬ ‭Linking Secret Key‬‭- A 32-byte value that is generated‬‭on a‬
‭companion device and must be passed by a secure channel to the‬
‭primary device, used to verify an HMAC of the linking payload received‬
‭from a primary device. The transmission of this key from companion‬
‭devices to the primary device is done by scanning a QR code.‬

‭Companion Linking‬

‭●‬ ‭Linking Metadata - An encoded blob of metadata assigned to a‬
‭companion device during linking, used in conjunction with the‬
‭companion device’s‬‭Identity Key‬‭to identify a linked‬‭companion on‬
‭WhatsApp clients.‬

‭●‬ ‭Signed Device List Data - An encoded list identifying the currently linked‬
‭companion devices at the time of signing. Signed by the primary‬
‭device’s‬‭Identity Key‬‭using the 0x0602 prefix.‬

‭●‬ ‭Account Signature - A Curve25519 signature computed over a fixed‬
‭prefix, Linking Metadata, and companion device’s public‬‭Identity‬
‭Key‬‭using a primary device’s‬‭Identity Key‬‭.‬

‭●‬ ‭Device Signature - A Curve25519 signature computed over a fixed prefix,‬
‭Linking Metadata, companion device’s public‬‭Identity‬‭Key‬‭, and‬
‭primary’s devices public‬‭Identity Key‬‭using a companion‬‭device’s‬
‭Identity Key‬‭.‬

‭Client Registration‬

‭Primary Device Registration‬

‭At registration time, a WhatsApp client transmits its public‬‭Identity Key‬‭,‬
‭public‬‭Signed Pre Key‬‭(with its signature), and a‬‭batch of public‬‭One-Time‬

‭4‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Pre Keys‬‭to the server. The WhatsApp server stores these public keys‬
‭associated with the user’s identifier.‬

‭Companion Device Registration‬

‭To link a companion device to a WhatsApp account, the user’s primary device‬
‭must first create an Account Signature by signing the new device’s public‬
‭Identity Key‬‭and the companion device must create‬‭a Device Signature by‬
‭signing the primary’s public‬ ‭Identity Key‬‭. Once both‬‭signatures are‬
‭produced, end-to-end encrypted sessions can be established with the companion‬
‭device.‬

‭Linking the WhatsApp Business App with Cloud API:‬‭A WhatsApp Business app‬
‭user can also link Cloud API as a companion. Linking to Cloud API is a special‬
‭event where prior to linking, the primary device generates a new random‬
‭Identity Key‬‭thereby invalidating all existing companions‬‭and existing‬
‭end-to-end encrypted Signal sessions.‬

‭WhatsApp supports the following options for linking a companion device.‬

‭Option 1: Link Using a QR-Code‬

‭With this option, the primary device scans a QR code which is displayed on the‬
‭companion device. The detailed steps are:‬

‭1.‬ ‭The companion client displays its public Identity Key‬ ‭(I‬‭companion‬‭)‬‭and a‬
‭generated ephemeral Linking Secret Key‬‭(L‬‭companion‬‭)‬‭in a linking QR‬
‭code.‬‭L‬‭companion‬‭is never sent to WhatsApp server.‬

‭2.‬ ‭The primary client scans the linking QR code and saves‬‭I‬‭companion‬‭to disk.‬

‭3.‬ ‭The primary loads its own Identity Key as‬‭I‬‭primary‬‭.‬

‭4.‬ ‭The primary generates Linking Metadata as‬‭L‬‭metadata‬‭and updated Device‬
‭List Data containing the new companion as ListData.‬

‭5.‬ ‭The primary generates an Account Signature for the companion,‬
‭A‬‭signature‬ ‭= CURVE25519_SIGN(I‬‭primary‬‭,‬
‭ACCOUNT_SIGNATURE_PREFIX || L‬‭metadata‬ ‭|| I‬‭companion‬‭)‬‭.‬

‭a.‬ ‭ACCOUNT_SIGNATURE_PREFIX‬‭is set to‬‭0x0605‬‭if the‬
‭companion is Cloud API. Else it’s set to‬‭0x0600‬

‭6.‬ ‭The primary generates a Device List Signature for the updated Device‬
‭List Data,‬‭ListSignature = CURVE25519_SIGN(I‬‭primary‬‭,‬‭0x0602‬
‭|| ListData)‬‭.‬

‭7.‬ ‭The primary serializes the Linking Data‬ ‭(L‬‭data‬‭)‬‭containing‬‭L‬‭metadata‬‭,‬
‭I‬‭primary‬‭and‬‭A‬‭signature‬‭.‬

‭5‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭8.‬ ‭The primary generates a Linking‬ ‭HMAC, PHMAC =‬
‭HMACSHA256(L‬‭companion‬‭, L‬‭data‬‭)‬‭.‬

‭9.‬ ‭The primary sends‬‭ListData, ListSignature, L‬‭data‬‭and‬‭PHMAC‬‭to‬
‭WhatsApp server. See “Transport Security” for information about the‬
‭secure connection between WhatsApp clients and servers.‬

‭10.‬ ‭The server stores‬‭ListData‬‭and‬‭ListSignature‬‭, and‬‭forwards‬‭L‬‭data‬
‭and‬‭PHMAC‬‭to the companion.‬

‭11.‬ ‭The companion verifies‬‭PHMAC‬‭, decodes‬‭L‬‭data‬‭into‬‭L‬‭metadata‬‭,‬‭I‬‭primary‬‭and‬
‭A‬‭signatur‬‭e‬‭, and verifies‬‭A‬‭signature‬‭.‬

‭12.‬ ‭The companion saves‬‭L‬‭metadata‬‭and‬‭I‬‭primary‬‭to disk.‬

‭13.‬ ‭The companion generates a Device Signature for itself,‬‭D‬‭signature‬ ‭=‬
‭CURVE25519_SIGN(Icompanion, DEVICE_SIGNATURE_PREFIX‬
‭|| L‬‭metadata‬ ‭|| I‬‭companion‬ ‭|| I‬‭primary‬‭)‬‭.‬

‭a.‬ ‭DEVICE_SIGNATURE_PREFIX‬‭is set to‬‭0x0606‬‭if the‬
‭companion is Cloud API. Else, it’s set to‬‭0x0601‬‭.‬

‭14.‬ ‭The companion uploads‬‭L‬‭metadata‬‭, A‬‭signature‬‭, D‬‭signature‬‭,‬‭I‬‭companion‬‭, the‬
‭companion’s public Signed Pre Key (with its signature), and a batch of‬
‭public One-Time Pre Keys to WhatsApp server.‬

‭15.‬ ‭The server stores the uploaded data associated with the user’s identifier‬
‭combined with a device specific identifier.‬

‭Option 2: Link Using an 8-character Code‬

‭With this option, the companion device generates and displays a random‬
‭8-character alphanumeric code‬‭(C‬‭companion‬‭)‬‭and the‬‭user types it into the primary‬
‭device to complete linking the device to their WhatsApp account.‬

‭In this mechanism the ephemeral Linking Secret Key‬‭(L‬‭companion‬‭)‬‭as described in‬
‭step 1 of the previous option, is not generated by the companion, but mutually‬
‭derived by both primary and companion devices when the user manually inputs‬
‭C‬‭companion‬‭. The lower entropy‬‭C‬‭companion‬‭is used to‬‭facilitate an encrypted ECDH Key‬
‭exchange between primary and companion to yield a high entropy‬‭AES256‬
‭shared key‬‭(linkCodePairingKeyBundleEncryptionKey)‬‭.‬‭This shared key‬
‭is then used for encrypted transfer of additional material from companion to‬
‭primary used for final derivation of‬‭(L‬‭companion‬‭)‬‭and verification of companion‬
‭(I‬‭companion‬‭)‬‭and primary‬‭(I‬‭primary‬‭)‬‭public identity‬‭keys used in the exchange.‬

‭To link a companion device to a WhatsApp account, the user’s primary device‬
‭must first create an Account Signature by signing the new device’s public‬
‭Identity Key‬‭and the companion device must create‬‭a Device Signature by‬

‭6‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭signing the primary’s public‬‭Identity Key‬‭. Once both signatures are produced,‬
‭end-to-end encrypted sessions can be established with the companion device.‬

‭The detailed steps are, in order:‬

‭On the companion:‬

‭1.‬ ‭The user types their phone number on the companion device.‬

‭2.‬ ‭The companion generates a random 40-bit‬‭linkCodePairingSecret‬
‭from CSPRNG. The companion displays‬‭linkCodePairingSecret‬‭to‬
‭the user as an 8-character, Base32 alphanumeric string.‬

‭3.‬ ‭The companion generates a 32 byte random,‬
‭linkCodePairingKdfCompanionNonce‬‭, and a 16 byte random,‬
‭companionHelloIV‬‭, from CSPRNG.‬

‭4.‬ ‭The companion generates a curve25519 keypair and stores it as‬
‭(‬‭linkCodePairingCompanionADVEphemeralPublic‬‭,‬
‭linkCodePairingCompanionADVEphemeralPrivate‬‭)‬‭.‬

‭5.‬ ‭The companion generates a 32 byte‬‭AES256‬‭key,‬
‭linkCodePairingECDHEncKeyCompanion‬‭, using PBKDF2 with‬
‭HMAC-SHA-256 as the PRF.‬‭linkCodePairingSecret‬‭is‬‭used as‬
‭initial key material and‬‭linkCodePairingKdfCompanionNonce‬‭is‬
‭used as salt for the key derivation.‬

‭var linkCodePairingECDHEncKeyCompanion =‬
‭PBKDF2-HMAC-SHA-256(iteration=2^17,‬
‭ikm=utf8.encode(linkCodePairingSecret),‬
‭salt=linkCodePairingKdfCompanionNonce, length=32);‬

‭6.‬ ‭The companion encrypts‬
‭linkCodePairingCompanionADVEphemeralPublic‬‭with AES-CTR‬
‭using‬‭linkCodePairingECDHEncKeyCompanion‬‭from above,‬‭as‬
‭follows:‬

‭linkCodePairingWrappedCompanionEphemeralPub =‬
‭AES-CTR-ENCRYPT(‬
‭payload_data=linkCodePairingCompanionADVEphemeralKe‬
‭yPairPub,‬
‭aes_key=linkCodePairingECDHEncKeyCompanion,‬
‭iv=companionHelloIV‬
‭);‬

‭7‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭7.‬ ‭The companion constructs‬
‭linkCodePairingWrappedCompanionEphemeralPub‬‭by‬
‭prepending‬‭linkCodePairingKdfCompanionNonce‬‭, and‬
‭companionHelloIV‬‭to‬
‭linkCodePairingEncryptedCompanionEphemeralPub‬‭derived‬
‭above. The companion sends the‬
‭linkCodePairingWrappedCompanionEphemeralPub‬‭to the‬
‭primary device via WhatsApp server as a Companion Hello message.‬
‭See “Transport Security” for information about the secure connection‬
‭between WhatsApp clients and servers.‬

‭On the primary:‬

‭8.‬ ‭Upon receipt of Companion Hello by the primary device, the user can‬
‭choose to proceed with pairing by entering the‬
‭linkCodePairingSecret‬‭that appears on the companion‬‭device‬
‭described in step 2 on their primary device. Primary device will read and‬
‭save first 32 bytes of‬
‭linkCodePairingWrappedCompanionEphemeralPub‬‭as‬
‭linkCodePairingKdfCompanionNonce‬‭, the next 16 bytes‬‭as‬
‭companionHelloIV‬‭, and remaining as‬
‭linkCodePairingEncryptedCompanionEphemeralPub‬‭.‬

‭9.‬ ‭Mirroring step 5 as described above, the primary device will use the‬
‭same modality to derive‬‭linkCodePairingECDHEncKeyCompanion‬‭.‬
‭linkCodePairingSecret‬‭and‬
‭linkCodePairingKdfCompanionNonce‬‭from step 8 are‬‭used as‬
‭initial key material and salt inputs to PBKDF2-HMAC-SHA-256‬
‭respectively.‬

‭10.‬ ‭The primary decrypts‬
‭linkCodePairingWrappedCompanionEphemeralPub‬‭using‬
‭linkCodePairingECDHEncKeyCompanion‬‭as follows:‬

‭linkCodePairingDecryptedCompanionEphemeralPub =‬
‭AES-CTR-DECRYPT(‬
‭aes_key=linkCodePairingECDHEncKeyCompanion,‬
‭payload=linkCodePairingEncryptedCompanionEphemeralP‬
‭ub,‬
‭iv=companionHelloRandomIV,‬
‭);‬

‭11.‬ ‭If an incorrect‬‭linkCodePairingSecret‬‭was supplied‬‭by the user,‬
‭step 9 and 10 will not abort, and‬‭AES-CTR-DECRYPT‬‭will produce‬
‭incorrect plain text output. The resultant‬

‭8‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭linkCodePairingDecryptedCompanionEphemeralPub‬‭will yield‬
‭incorrect key agreement described in upcoming step 13, and result in‬
‭validation failure and cancellation of the pairing attempt by the primary‬
‭device, described later at step 25.‬

‭12.‬ ‭Mirroring step 4 as described above, the primary device generates its‬
‭own curve25519 keypair, and saves it as‬
‭linkCodePairingPrimaryADVEphemeralPublic‬‭,‬
‭linkCodePairingPrimaryADVEphemeralPrivate‬‭.‬

‭13.‬ ‭Similar to step 5 as described above, the primary device generates its‬
‭own AES256 key,‬‭linkCodePairingECDHEncKeyPrimary‬‭.‬‭The same‬
‭starting material,‬‭linkCodePairingSecret‬‭, is used‬‭in the derivation,‬
‭but a new random salt,‬‭linkCodePairingKdfPrimaryNonce‬‭,‬‭is‬
‭supplied to the key derivation function, PBKDF2-HMAC-SHA-256.‬

‭14.‬ ‭Similar to step 6 as described above, the primary device encrypts‬
‭linkCodePairingPrimaryADVEphemeralPublic‬‭with AES-CTR‬
‭using‬‭linkCodePairingECDHEncKeyPrimary‬‭from step 12‬‭with new‬
‭random IV,‬ ‭primaryHelloRandomIV‬‭, as follows:‬

‭linkCodePairingEncryptedPrimaryEphemeralPub =‬
‭AES-CTR-ENCRYPT(‬
‭payload_data=linkCodePairingCompanionADVEphemeralKe‬
‭yPairPub,‬
‭aes_key=linkCodePairingECDHEncKeyPrimary,‬
‭iv=primaryHelloRandomIV‬
‭);‬

‭15.‬ ‭The primary constructs‬
‭linkCodePairingWrappedPrimaryEphemeralPub‬‭by prepending‬
‭linkCodePairingKdfPrimaryNonce‬‭, and‬‭primaryHelloIV‬‭to‬
‭linkCodePairingEncryptedPrimaryEphemeralPub‬‭derived‬
‭above. The primary loads its own Identity Key as‬‭I‬‭primary‬‭,‬‭sends‬‭I‬‭primary‬‭,‬
‭and‬‭linkCodePairingWrappedPrimaryEphemeralPub‬‭to the‬
‭companion via WhatsApp Server as a Primary Hello message.‬

‭On the companion:‬

‭16.‬ ‭Upon receipt of Primary Hello, companion will read and save first 32‬
‭bytes of‬‭linkCodePairingWrappedPrimaryEphemeralPub‬‭as‬
‭linkCodePairingKdfPrimaryNonce‬‭, the next 16 bytes‬‭as‬
‭primaryHelloIV‬‭, and remaining as‬
‭linkCodePairingEncryptedPrimaryEphemeralPub‬‭. Companion‬
‭will use the similar modality as described in step 9 to derive‬
‭linkCodePairingECDHEncKeyPrimary‬‭. Locally stored‬

‭9‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭linkCodePairingSecret‬‭from steps 2 and‬
‭linkCodePairingKdfPrimaryNonce‬‭are used as initial‬‭key material‬
‭and salt inputs to PBKDF2-HMAC-SHA-256 respectively.‬

‭17.‬ ‭The companion decrypts‬
‭linkCodePairingEncryptedPrimaryEphemeralPub‬‭using‬
‭linkCodePairingECDHEncKeyPrimary‬‭from previous step‬‭as‬
‭follows:‬

‭linkCodePairingDecryptedPrimarEphemeralPub =‬
‭AES-CTR-DECRYPT(aes_key=linkCodePairingECDHEncKeyPr‬
‭imary,‬
‭payload=linkCodePairingEncryptedPrimaryEphemeralPub‬
‭, iv=primaryHelloIV);‬

‭18.‬ ‭The companion derives ECDH shared secret between its ephemeral‬
‭private key and the primary ephemeral public key:‬

‭shareEphemeralSecret = ECDH(‬
‭linkCodePairingCompanionADVEphemeralKeyPairPriv,‬
‭linkCodePairingDecryptedPrimarEphemeralPub‬
‭);‬

‭19.‬ ‭The companion generates a random 32-byte‬
‭linkCodePairingEphemeralRootSecret‬‭.‬

‭20.‬ ‭The companion creates a key bundle composed of‬
‭linkCodePairingEphemeralRootSecret‬‭from the previous‬‭step,‬
‭its own public identity key (‬‭I‬‭companion‬‭) and the primary’s‬‭public Identity‬
‭Key (‬‭I‬‭primary‬‭) received as a part of Primary hello‬‭as described in step 14.‬

‭keyBundle = I‬‭companion‬ ‭|| I‬‭primary‬‭||‬
‭linkCodePairingEphemeralRootSecret;‬

‭21.‬ ‭Companion uses HKDF to create a 32 byte AES256 encryption key‬
‭(‬‭linkCodePairingKeyBundleEncryptionKey‬‭) from the shared‬
‭secret (‬‭shareEphemeralSecret‬‭) derived in step 17 and‬‭a new 16‬
‭byte random salt (‬‭companionFinishKdfSalt‬‭).‬

‭linkCodePairingKeyBundleEncryptionKey =‬
‭HKDF-SHA256(‬
‭ikm=shareEphemeralSecret,‬
‭info="link_code_pairing_key_bundle_encryption_key",‬

‭10‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭salt=companionFinishKdfSalt,‬
‭length=32,‬
‭);‬

‭22.‬ ‭Companion uses‬‭linkCodePairingKeyBundleEncryptionKey‬
‭derived above and new 12 byte random IV,‬
‭companionFinishRandomIV‬‭to encrypt the‬‭keyBundle‬‭derived‬‭in‬
‭step 19 using‬‭AES256‬‭in GCM mode.‬

‭linkCodePairingEncryptedKeyBundle =‬
‭AES-GCM-ENCRYPT(‬
‭aes_key=linkCodePairingKeyBundleEncryptionKey,‬

‭payload=keyBundle,‬
‭iv=companionFinishIV,‬

‭);‬

‭23.‬ ‭The companion loads its own private identity key‬
‭(‬‭companionIdentityPrivate‬‭) and computes the final‬‭Linking‬
‭Secret Key (‬‭linkingSecretKey‬‭). The Linking Secret‬‭Key‬
‭(‬‭linkingSecretKey‬‭) described here is analogous to‬‭L‬‭companion‬
‭referenced in step 1 of the QR code flow (Option 1) and used in the‬
‭same modalities in subsequent linking steps.‬

‭identitySharedSecret =‬
‭ECDH(companionIdentityPrivate, I‬‭primary‬‭);‬
‭var linkingSecretKeyMaterial = shareEphemeralSecret‬
‭|| identitySharedSecret ||‬
‭linkCodePairingEphemeralRootSecret;‬

‭var linkingSecretKey (L‬‭companion‬‭) =‬
‭HKDF-SHA256(length=32,‬

‭ikm=linkingSecretKeyMaterial,‬
‭info='adv_secret',‬
‭salt=null‬
‭);‬

‭24.‬ ‭The companion constructs‬‭linkCodePairingWrappedKeyBundle‬
‭by prepending‬‭companionFinishKdfSalt‬‭, and‬
‭companionFinishIV‬‭to‬‭linkCodePairingEncryptedKeyBundle‬
‭derived above. The companion sends‬
‭linkCodePairingWrappedKeyBundle‬‭to the primary device.‬

‭11‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭On the primary device:‬

‭25.‬ ‭Upon receipt of Companion Finish, primary will read and save first 32‬
‭bytes of‬‭linkCodePairingWrappedKeyBundle‬‭as‬
‭companionFinishKdfSalt‬‭, the next 12 bytes as‬
‭companionFinishIV‬‭, and remaining as‬
‭linkCodePairingEncryptedKeyBundle‬‭. The primary decrypts‬‭the‬
‭key bundle (‬‭linkCodePairingEncryptedKeyBundle‬‭) by‬‭performing‬
‭the same key derivation made by the companion in step 11. It stores the‬
‭decrypted value as‬‭linkCodePairingKeyBundle‬‭. If AES-GCM‬
‭decryption fails, it indicates the user may have entered the incorrect‬
‭linkCodePairingSecret‬‭, during step 8. Primary will‬‭allow users to‬
‭re-enter‬‭linkCodePairingSecret‬‭two additional times,‬‭triggering‬
‭new rounds of Primary Hello and Companion Finish as previously‬
‭described.‬

‭linkCodePairingKeyBundleDecryptionKey = HKDF-SHA256(‬
‭ikm=shareEphemeralSecret,‬
‭info="link_code_pairing_key_bundle_encryption_key",‬
‭salt=companionFinishKdfSalt,‬
‭length=32,‬
‭);‬

‭linkCodePairingEncryptedWrappedKeyBundle = AES-GCM-DECRYPT(‬
‭aes_key=linkCodePairingKeyBundleDecryptionKey,‬

‭payload=linkCodePairingEncryptedKeyBundle,‬
‭iv=companionFinishIV,‬

‭);‬

‭26.‬ ‭The primary asserts the integrity of key materials by comparing its own‬
‭copy of the companion public identity key and its own public identity key‬
‭against corresponding values in‬‭linkCodePairingKeyBundle‬‭.‬‭If the‬
‭two keys differ, the primary device will abort pairing. Failure during this‬
‭stage is inedible for retry with existing‬‭linkCodePairingSecret‬‭.‬

‭27.‬ ‭The primary can now calculate the final secret similarly to how the‬
‭companion did it in step 14.‬

‭At this point the primary has the ephemeral Linking Secret Key (‬‭L‬‭companion‬‭) and‬
‭can continue the pairing from step 3 of section “Option 1: Link Using a QR-Code”.‬

‭12‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Option 3: Linking Cloud API Using a Network Call‬

‭Option 3 is only available to WhatsApp Business app users who want to link‬
‭Cloud API as a companion. This option is a variation of Option 1 where steps 1‬
‭and 2 from option 1 are merged as follows:‬

‭1.‬ ‭The primary device fetches the QR code from Cloud API through a‬
‭secure call to Meta’s infrastructure.‬

‭The process then continues from step 3 from Option 1.‬

‭Initiating Session Setup‬
‭In order for WhatsApp users to communicate with each other securely and‬
‭privately, the sender client establishes a pairwise encrypted session with each of‬
‭the recipient’s devices. Additionally, the sender client establishes a pairwise‬
‭encrypted session with all other devices associated with the sender account.‬
‭Once these pairwise encrypted sessions have been established, clients do not‬
‭need to rebuild new sessions with these devices unless the session state is lost,‬
‭which can be caused by an event such as an app reinstall or device change.‬

‭WhatsApp uses this “client-fanout” approach for transmitting messages to‬
‭multiple devices, where the WhatsApp client transmits a single message N‬
‭number of times to N number of different devices. Each message is individually‬
‭encrypted using the established pairwise encryption session with each device.‬

‭To establish a session:‬

‭1.‬ ‭The initiating client (“initiator”) requests the public Identity Key, public‬
‭Signed Pre Key, and a single public One-Time Pre Key for each device of‬
‭the recipient and each additional device of the initiating user (excluding‬
‭the initiator).‬

‭2.‬ ‭The server returns the requested public key values. A One-Time Pre Key‬
‭is only used once, so it is removed from server storage after being‬
‭requested. If the recipient’s latest batch of One-Time Pre Keys has been‬
‭consumed and the recipient has not replenished them, no One-Time Pre‬
‭Key will be returned. Additionally, for each companion device (for both‬
‭the initiator’s account and the recipient’s), the server also returns the‬
‭Linking Metadata‬‭(L‬‭metadata‬‭)‬‭, Account Signature‬‭(A‬‭signature‬‭)‬‭and Device‬
‭signature‬‭(D‬‭signature‬‭)‬‭that was uploaded by the companion‬‭device when‬
‭linked.‬

‭3.‬ ‭For every returned key set for a companion device, the initiator needs to‬
‭verify‬‭A‬‭signature‬‭by‬ ‭CURVE25519_VERIFY_SIGNATURE(I‬‭primary‬‭,‬
‭0x0600 || L‬‭metadata‬ ‭|| I‬‭companion‬‭),‬‭and‬ ‭D‬‭signature‬ ‭by‬
‭CURVE25519_VERIFY_SIGNATURE(I‬‭companion‬‭, 0x0601 ||‬‭L‬‭metadata‬

‭13‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭|| I‬‭companion‬ ‭||‬‭I‬‭primary‬‭).‬‭If any of the verification fails for a‬
‭companion device, the initiator terminates the encryption session‬
‭building process immediately and will not send any messages to that‬
‭device.‬

‭After getting the keys from server and verifying each device identity, the initiator‬
‭starts to establish the encryption session with each individual device:‬

‭1.‬ ‭The initiator saves the recipient’s‬‭Identity Key‬‭as‬‭I‬‭recipient‬‭, the‬
‭Signed Pre Key‬‭as‬‭S‬‭recipient‬‭, and the‬ ‭One-Time Pre‬‭Key‬‭as‬
‭O‬‭recipient‬‭.‬

‭2.‬ ‭The initiator generates an ephemeral Curve25519 key pair,‬‭E‬‭initiator‬‭.‬

‭3.‬ ‭The initiator loads its own‬‭Identity Key‬‭as‬‭I‬‭initiator‬‭.‬

‭4.‬ ‭The initiator calculates a master secret as‬‭master_secret‬‭=‬
‭ECDH(I‬‭initiator‬‭, S‬‭recipient‬‭) || ECDH(E‬‭initiator‬‭, I‬‭recipient‬‭)‬‭||‬
‭ECDH(E‬‭initiator‬‭, S‬‭recipient‬‭) || ECDH(E‬‭initiator‬‭, O‬‭recipient‬‭).‬‭If there‬
‭is no‬‭One Time Pre Key‬‭, the final ECDH is omitted.‬

‭5.‬ ‭The initiator uses HKDF to create a‬‭Root Key‬‭and‬ ‭Chain‬‭Keys‬‭from‬
‭the‬‭master_secret‬‭.‬

‭Receiving Session Setup‬
‭After building a long-running encryption session, the initiator can immediately‬
‭start sending messages to the recipient, even if the recipient is offline.‬

‭Until the recipient responds, the initiator includes the information (in the header‬
‭of all messages sent) that the recipient requires to build a corresponding‬
‭session. This includes the initiator’s (‬‭E‬‭initiator‬‭and‬‭I‬‭initiator‬‭). Additionally, if the‬
‭initiator is a companion device, it also includes its‬‭I‬‭primary‬‭,‬‭L‬‭metadata‬‭,‬‭A‬‭signature‬‭and‬
‭D‬‭signature‬‭.‬

‭When the recipient receives a message that includes session setup information:‬

‭1.‬ ‭If the sender is a companion device, the recipient needs to verify‬
‭A‬‭signature‬‭by‬‭CURVE25519_VERIFY_SIGNATURE(I‬‭primary‬‭,‬‭0x0600 ||‬
‭L‬‭metadata‬ ‭|| I‬‭companion‬‭)‬‭, and‬‭D‬‭signature‬‭by‬
‭CURVE25519_VERIFY_SIGNATURE(I‬‭companion‬‭, 0x0601 ||‬‭L‬‭metadata‬
‭|| I‬‭companion‬ ‭|| I‬‭primary‬‭)‬‭. If any of the verifications‬‭fail, the receiver‬
‭stops building the encryption session and rejects the message from‬
‭that sender device.‬

‭14‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭2.‬ ‭The recipient calculates the corresponding‬‭master_secret‬‭using its‬
‭own private keys and the public keys advertised in the header of the‬
‭incoming message.‬

‭3.‬ ‭The recipient deletes the‬‭One-Time Pre Key‬‭used by‬‭the initiator.‬

‭4.‬ ‭The initiator uses HKDF to derive a corresponding‬‭Root Key‬‭and‬
‭Chain Keys‬‭from the‬‭master_secret‬‭.‬

‭Exchanging Messages‬
‭Once a session has been established, clients exchange messages that are‬
‭protected with a‬‭Message Key‬‭using‬‭AES256‬‭in CBC mode‬‭for encryption and‬
‭HMAC-SHA256‬‭for authentication. The client uses client-fanout‬‭for all the‬
‭exchanged messages, which means each message is encrypted for each device‬
‭with the corresponding pairwise session.‬

‭The‬‭Message Key‬‭changes for each message transmitted,‬‭and is ephemeral,‬
‭such that the‬‭Message Key‬‭used to encrypt a message‬‭cannot be reconstructed‬
‭from the session state after a message has been transmitted or received.‬

‭The‬‭Message Key‬‭is derived from a sender’s‬‭Chain Key‬‭that “ratchets”‬
‭forward with every message sent. Additionally, a new ECDH agreement is‬
‭performed with each message roundtrip to create a new‬‭Chain Key‬‭. This‬
‭provides forward secrecy through the combination of both an immediate “hash‬
‭ratchet” and a round trip “DH ratchet.”‬

‭Calculating a Message Key from a Chain Key‬

‭Each time a new‬‭Message Key‬‭is needed by a message‬‭sender, it is calculated‬
‭as:‬

‭1.‬ ‭Message Key = HMAC-SHA256(Chain Key, 0x01)‬‭.‬

‭2.‬ ‭The‬‭Chain Key‬‭is then updated as‬ ‭Chain Key =‬
‭HMAC-SHA256(Chain Key, 0x02)‬‭.‬

‭This causes the‬‭Chain Key‬‭to “ratchet” forward, and‬‭also means that a stored‬
‭Message Key‬‭can’t be used to derive current or past‬‭values of the‬‭Chain Key‬‭.‬

‭Calculating a Chain Key from a Root Key‬

‭Each time a message is transmitted, an ephemeral‬‭Curve25519‬‭public key is‬
‭advertised along with it. Once a response is received, a new‬‭Chain Key‬‭and‬
‭Root Key‬‭are calculated as:‬

‭15‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭1.‬ ‭ephemeral_secret = ECDH(Ephemeral‬‭sender‬‭,‬
‭Ephemeral‬‭recipient‬‭)‬‭.‬

‭2.‬ ‭Chain Key, Root Key =‬
‭HKDF(Root Key, ephemeral_secret)‬‭.‬

‭A chain is only ever used to send messages from one user, so message keys are‬
‭not reused. Because of the way‬‭Message Keys‬‭and‬‭Chain‬‭Keys‬‭are‬
‭calculated, messages can arrive delayed, out of order, or can be lost entirely‬
‭without any problems.‬

‭In Chat Device Consistency‬

‭In end-to-end encrypted chats, for each outgoing message to a pairwise‬
‭encryption session, including those sent during session setup, the sender‬
‭includes information about the list of the sender and receiver’s devices inside the‬
‭encrypted payload. This information includes:‬

‭1.‬ ‭The timestamp of the sender’s most recent Signed Device List‬

‭2.‬ ‭A flag indicating whether the sender has any companion devices‬
‭currently linked‬

‭3.‬ ‭A flag indicating if any of the sender's companion devices are Cloud API.‬

‭4.‬ ‭The timestamp of the recipient’s most recent Signed Device List‬

‭5.‬ ‭A flag indicating whether the recipient has any known linked companion‬
‭devices‬

‭6.‬ ‭A flag indicating if any of the recipient’s companion devices are Cloud‬
‭API.‬

‭When performing “client-fanout” to your own devices, 3 and 4 above continue to‬
‭refer to the recipient of the original message.‬

‭Transmitting Media and Other Attachments‬

‭Large attachments of any type (video, audio, images, or files) are also end-to-end‬
‭encrypted:‬

‭1.‬ ‭The WhatsApp user’s device sending a message (“sender”) generates‬
‭an ephemeral 32 byte‬‭AES256‬‭key, and an ephemeral‬‭32 byte‬
‭HMAC-SHA256 key‬‭.‬

‭2.‬ ‭The sender encrypts the attachment with the‬‭AES256‬‭key in CBC mode‬
‭with a random IV, then appends a MAC of the ciphertext using‬
‭HMAC-SHA256.‬

‭16‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭3.‬ ‭The sender uploads the encrypted attachment to a blob store.‬

‭4.‬ ‭The sender transmits a normal encrypted message to the recipient that‬
‭contains the encryption key, the HMAC key, a SHA256 hash of the‬
‭encrypted blob, and a pointer to the blob in the blob store.‬

‭5.‬ ‭All receiving devices decrypt the message, retrieve the encrypted blob‬
‭from the blob store, verify the SHA256 hash of it, verify the MAC, and‬
‭decrypt the plaintext.‬

‭Group Messages‬
‭End-to-end encryption of messages sent to WhatsApp groups utilize the‬
‭established pairwise encrypted sessions, as previously described in the “Initiation‬
‭Session Setup” section, to distribute the “Sender Key” component of the Signal‬
‭Messaging Protocol.‬

‭When sending a message to a group for the first time, a “Sender Key” is‬
‭generated and distributed to each member device of the group, using the‬
‭pairwise encrypted sessions. The message content is encrypted using the‬
‭“Sender Key”, achieving an efficient and secure fan-out for the messages that are‬
‭sent to groups.‬

‭The first time a WhatsApp group member sends a message to a group:‬

‭1.‬ ‭The sender generates a random 32-byte‬‭Chain Key‬‭.‬

‭2.‬ ‭The sender generates a random Curve25519‬‭Signature‬‭Key‬‭key pair.‬

‭3.‬ ‭The sender combines the 32-byte‬‭Chain Key‬‭and the‬‭public key from‬
‭the‬‭Signature Key‬‭into a‬‭Sender Key‬‭message.‬

‭4.‬ ‭The sender individually encrypts the‬‭Sender Key‬‭to‬‭each member of‬
‭the group, using the pairwise messaging protocol explained previously.‬

‭For all subsequent messages to the group:‬

‭1.‬ ‭The sender derives a‬‭Message Key‬‭from the‬‭Chain Key‬‭,‬‭and updates‬
‭the‬‭Chain Key‬‭.‬

‭2.‬ ‭The sender encrypts the message using‬‭AES256‬‭in CBC‬‭mode.‬

‭3.‬ ‭The sender signs the ciphertext using the‬‭Signature‬‭Key‬‭.‬

‭4.‬ ‭The sender transmits the single ciphertext message to the server, which‬
‭does server-side fan-out to all group participants.‬

‭17‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭The “hash ratchet” of the message sender’s‬‭Chain Key‬‭provides forward‬
‭secrecy. Whenever a group member leaves, all group participants clear their‬
‭Sender Key‬‭and start over.‬

‭In Chat Device Consistency information is included when distributing a “Sender‬
‭Key” and then excluded from the subsequent messages encrypted with the‬
‭Sender Key.‬

‭See Implementation with Cloud API‬‭for details on Groups‬‭on Cloud API.‬

‭Message Add-ons in Community‬
‭Announcement Groups‬
‭Group members cannot send regular messages in Community Announcement‬
‭Groups but are able to interact with messages such as reacting to them by‬
‭sending Message Add-ons. In order to improve the performance of Community‬
‭Announcement Groups we will use Add-on Sender Keys instead of traditional‬
‭Group Sender Keys to encrypt the Add-ons. When an admin sends a message‬
‭into a Community Announcement Group it will be encrypted with a traditional‬
‭“Group Sender Key” as described in “Group Messages”, the end-to-end encrypted‬
‭message payload will also contain a random key “Message Secret”.‬

‭End-to-end encryption of add-ons sent to WhatsApp Community Announcement‬
‭Groups utilize the established pairwise encrypted sessions, as previously‬
‭described in the “Initiation Session Setup” section, to distribute a dedicated‬
‭“Add-on Sender Key” component of the Signal Messaging Protocol. When‬
‭sending an Add-on to a Community Announcement Group for the first time, an‬
‭“Add-on Sender Key” is generated and distributed to each member device of the‬
‭group, using the pairwise encrypted sessions. The Add-on content is encrypted‬
‭using a key derived from the target message’s “Message Secret” and then‬
‭encrypted again using the “Add-on Sender Key”, achieving an efficient and secure‬
‭fan-out for the Add-ons that are sent to Community Announcement Groups.‬

‭The first time a WhatsApp group member sends an Add-on to a Community‬
‭Announcement Group::‬

‭1.‬ ‭The sender generates a random 32-byte‬‭Chain Key‬‭.‬

‭2.‬ ‭The sender generates a random Curve25519‬‭Signature‬‭Key‬‭key pair.‬

‭3.‬ ‭The sender combines the 32-byte‬‭Chain Key‬‭and the‬‭public key from‬
‭the‬‭Signature Key‬‭into an Add-on‬‭Sender Key‬‭message.‬

‭18‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭4.‬ ‭The sender individually encrypts the Add-on‬‭Sender Key‬‭to each‬
‭member of the community announcement group, using the pairwise‬
‭messaging protocol explained previously.‬

‭For all Add-ons sent to a community announcement group:‬

‭1.‬ ‭The sender derives an encryption key from the target message’s‬
‭Message Secret Add-on‬‭Target Key = HKDF(length=32,‬
‭key=Target Message Secret, info=Target Message‬
‭Identifier || Target sender Identifier || Add-on‬
‭Sender Identifier || “Add-on type string”)‬‭.‬

‭2.‬ ‭The sender then encrypts the Add-on content with Add-on‬ ‭Target‬
‭Key‬‭using‬‭AES-256-GCM‬‭to produce inner ciphertext.‬

‭3.‬ ‭The sender derives a‬‭Message Key‬‭from the‬‭Chain Key‬‭,‬‭and updates‬
‭the‬‭Chain Key‬

‭4.‬ ‭The sender encrypts the inner ciphertext using‬‭AES256‬‭in CBC mode to‬
‭produce outer ciphertext.‬

‭5.‬ ‭The sender signs the outer ciphertext using the‬‭Signature‬‭Key‬‭.‬

‭6.‬ ‭The sender transmits the single outer ciphertext Add-on message to the‬
‭server, which does server-side fan-out to all group participants.‬

‭The “hash ratchet” of the Add-on sender’s‬‭Chain Key‬‭in conjunction with the‬
‭target message’s message secret provides forward secrecy. Whenever a group‬
‭member leaves, all Admins clear their‬‭Group Sender‬‭Key‬‭and start over. Group‬
‭members, including admins, will not clear their Add-on Sender Key when a group‬
‭member leaves and instead will continue to use the existing key to encrypt for the‬
‭remaining participants of the group. When promoted to admin group members‬
‭will generate a new regular Group Sender Key but will not update their Add-on‬
‭Sender Key.‬

‭Sender Side Backfill‬
‭As described above, in WhatsApp, because each message is encrypted for each‬
‭device with the corresponding pairwise session, the sender client must specify all‬
‭the destination devices at the sending time. Any device which is not listed at the‬
‭sending time will not be able to receive the encrypted message. Each client‬
‭maintains a list of verified companion devices for WhatsApp accounts the user‬
‭communicates with, as well as all other devices associated with its own account,‬
‭and uses this list to specify the destination devices at the sending time.‬

‭However, when sending a message, it is possible for a client to miss valid‬
‭companion devices if its maintained device list is out-of-date. The mechanism‬
‭“Sender Side Backfill” is designed so that these missed devices may recover from‬

‭19‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭permanently missing the entire message. When WhatsApp receives the‬
‭encrypted message from the sender, it compares the hash of all the destination‬
‭devices listed by the sender, to the hash of server-side device records of these‬
‭accounts. If there is a mismatch between two hash values, the server will notify‬
‭the sender to update the devices list for itself and all the recipient accounts. The‬
‭sender client will verify all fetched new companion devices, establish the‬
‭pairwise sessions with those devices using the same method described in the‬
‭“Initiating Session Setup” section, encrypt and resend the original message to‬
‭these new devices.‬

‭To ensure the confidentiality of the message, this backfill mechanism is only‬
‭allowed within a short duration after the initial message sending. Additionally, the‬
‭backfill message will not be sent to any companion device which failed the‬
‭device verification. Moreover, during the backfill process, if a recipient registers‬
‭on a new phone, all its companion devices will be excluded from the resending‬
‭list. Therefore, the resend message will not be sent to any companion device of a‬
‭recipient with a changed identity key. Finally, the sender will not honor a request‬
‭to backfill a message to Cloud API when it is linked as a companion.‬

‭Message History Syncing‬
‭Immediately after linking a companion device, the primary device end-to-end‬
‭encrypts a copy of messages from recent chats.‬

‭The primary device will also include a copy of the user’s stored public identity key‬
‭when copying messages for one-to-one chats. This process, called Messaging‬
‭History Syncing, generates bundles of the end-to-end encrypted messages and‬
‭other data for the chat using the same mechanism of encryption as described in‬
‭the “Transmitting Media and Other Attachments” section. Steps 1 through 5‬
‭explain the specifics regarding key, IV, mac generation, as well as the encryption,‬
‭transmission, and decryption of these end-to-end encrypted bundles. Once a‬
‭companion device has successfully decrypted, unpacked, and stored all the‬
‭messages of a given bundle, all the associated data (including the downloaded‬
‭encrypted bundle blob, the pointer to the encrypted blob storage, and all the keys)‬
‭are deleted from the companion device.‬

‭See Implementation with Cloud API for details on Message History Syncing with‬
‭Cloud API.‬

‭Call Setup‬
‭Personal WhatsApp voice and video calls, and those with the WhatsApp Business‬
‭App, are end-to-end encrypted. When a WhatsApp user initiates a voice or video‬
‭call:‬

‭20‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭1.‬ ‭The initiating client (“initiator”) establishes encrypted sessions with‬
‭each of the devices of the recipient (as outlined in the Initiating Session‬
‭Setup Section), if these haven’t been set up yet.‬

‭2.‬ ‭The initiator generates a set of random 32-byte‬‭SRTP‬‭master secrets for‬
‭each of the recipient’s devices.‬

‭3.‬ ‭The initiator sends an incoming call message to each of the devices of‬
‭the recipient. Each recipient’s device receives this message, which‬
‭contains the end-to-end encrypted‬‭SRTP‬‭master secret.‬

‭4.‬ ‭If the responder answers the call from one of the devices, a‬‭SRTP‬
‭encrypted call is started, protected by the‬‭SRTP‬‭master‬‭secret generated‬
‭for that device.‬

‭The‬‭SRTP‬‭master secret is persisted in memory on the‬‭client device and used‬
‭only during the call. WhatsApp servers do not have access to the‬‭SRTP‬‭master‬
‭secrets.‬

‭See Implementation with Cloud API for details on calls involving Cloud API.‬

‭Group Calling‬
‭WhatsApp group calls are end-to-end encrypted. Unlike one-to-one calls that‬
‭setup keys only once, in group calls, keys are reset whenever a participant joins‬
‭the call or leaves the call.‬

‭Key reset in group calls is achieved by the following steps:‬

‭1.‬ ‭When a participant joins or leaves the call, the WhatsApp server‬
‭arbitrarily selects one of the active participants as the key distributor.‬

‭2.‬ ‭The key distributor generates a random 32-byte‬‭SRTP‬‭master secret.‬

‭3.‬ ‭The key distributor establishes an encrypted session with the active‬
‭device of each connected participant in the current group call (as‬
‭outlined in the Initiating Session Setup Section), if these haven’t been‬
‭setup yet.‬

‭4.‬ ‭The key distributor initiates one message with end-to-end encrypted‬
‭SRTP‬‭master secret for each participant. When these‬‭messages are‬
‭delivered, a‬‭SRTP‬‭encrypted group call ensues.‬

‭Note that in a group call, a participant becomes active when they initiate a group‬
‭call or accepts the group call invitation from any of their devices. Therefore each‬
‭active participant has exactly one active device.‬

‭21‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭The‬‭SRTP‬‭master secret is persisted in-memory, and is overwritten when a new‬
‭SRTP‬‭master secret is generated and delivered. To continue decrypting data‬
‭encrypted with the old key while all participants transition to the new key, the old‬
‭̀SRTP` crypto session is kept alive for up to 5 seconds after group update.‬

‭Whatsapp servers do not have access to them, and cannot access the actual‬
‭audio and video media.‬‭The‬‭SRTP‬‭master secret for‬‭the call is not distributed to‬
‭the Cloud API when it’s linked as a companion.‬

‭To ensure call quality and to avoid race conditions from conflicting user actions,‬
‭the WhatsApp server stores the state of the current group call (for example:‬
‭participant list, call initiator) and media metadata (e.g. resolution, media type).‬
‭With this information, the WhatsApp server is able to broadcast participant‬
‭membership changes and select one as key distributor to initiate key reset.‬

‭Statuses‬
‭WhatsApp statuses use the same encryption protocol as group messages. The‬
‭first status sent to a given set of devices follows the same sequence of steps as‬
‭the first time a WhatsApp group member sends a message to a group. Similarly,‬
‭subsequent statuses sent to the same set of devices follow the same sequence‬
‭of steps as all subsequent messages to a group. When a status sender removes‬
‭a receiver either through changing status privacy settings or removing a number‬
‭from their address book, the status sender clears their Sender Key and starts‬
‭over.‬

‭Sender keys are not distributed to‬‭Cloud API when‬‭it is linked as a companion.‬

‭Live Location‬
‭Live location messages and updates are encrypted in much the same way as‬
‭group messages. Currently, sending and receiving live locations is only supported‬
‭on primary devices. The first live location message or update sent follows the‬
‭same sequence of steps as the first time a WhatsApp group member sends a‬
‭message to a group. But, live location demands a high volume of location‬
‭broadcasts and updates with lossy delivery where receivers can expect to see‬
‭large jumps in the number of ratchets, or iteration counts. The Signal Protocol‬
‭uses a linear-time algorithm for ratcheting that is too slow for this application.‬
‭This document offers a fast ratcheting algorithm to solve this problem.‬

‭Chain keys are currently one-dimensional. To ratchet‬‭N‬‭steps takes‬‭N‬
‭computations. Chain keys are denoted as‬‭CK(iteration‬‭count)‬‭and‬
‭message keys as‬‭MK(iteration count)‬‭.‬

‭22‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Consider an extension where we keep two chains of chain keys:‬

‭In this example, message keys are always derived from‬‭CK‬‭2‬‭. A receiver who‬
‭needs to ratchet by a large amount can skip M iterations at a time (where M is an‬
‭agreed-upon constant positive integer) by ratcheting‬‭CK‬‭1‬‭and generating a new‬
‭CK‬‭2‬‭:‬

‭A value of‬‭CK‬‭2‬‭may be ratcheted up to‬‭M‬‭times. To‬‭ratchet‬‭N‬‭steps takes up to‬
‭[N÷M] + M‬‭computations.‬

‭After a sender creates a message key and encrypts a message with it, all chain‬
‭keys on the path that led to its creation must be destroyed to preserve forward‬
‭secrecy.‬

‭23‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Generalizing to‬‭D‬‭dimensions, a sender can produce‬‭D‬‭initial chain keys. Each‬
‭chain key but the first is derived from the preceding chain key using a distinct‬
‭one-way function: these are the right-pointing arrows in the diagram above.‬
‭Senders distribute all‬‭D‬‭chain keys to receivers who‬‭need them, except as noted‬
‭below.‬

‭Legal values for‬‭D‬‭are positive powers of two less‬‭than or equal to the number of‬
‭bits in the iteration counter: 1, 2, 4, 8, 16, and 32. Implementors select a value of‬
‭D as an explicit CPU-memory (or CPU-network bandwidth) tradeoff.‬

‭If a chain key‬‭CK‬‭j‬‭(for‬‭j‬‭in‬‭[1, D]‬‭) has an iteration‬‭count of‬‭M‬‭, it cannot be used.‬
‭This algorithm restores the chain keys to a usable state:‬

‭1. If‬‭j‬‭= 1, fail because the iteration count has‬‭reached its limit.‬

‭2. Derive‬‭CK‬‭j‬‭from‬‭CK‬‭j-1‬‭.‬

‭3. Ratchet‬‭CK‬‭j-1‬‭once, recursing if necessary.‬

‭Moving from one iteration count to another never ratchets a single chain key‬
‭more than M times. Therefore, no ratcheting operation takes more than‬‭D×M‬
‭steps.‬

‭Signal uses different functions for ratcheting versus message key computation,‬
‭since both come from the same chain key. In this notation‬‭{x}‬‭refers to an array‬
‭of bytes containing a single byte‬‭x‬‭.‬

‭Each dimension must use a different function. Keys are initialized as:‬

‭And ratcheted as:‬

‭24‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Chain Keys are not distributed to Cloud API when it’s linked as a companion.‬

‭App State Syncing Security‬

‭Introduction‬

‭App State Syncing enables a consistent experience across devices, and is‬
‭end-to-end encrypted. Prior to supporting companion devices, the WhatsApp‬
‭client was the sole owner and the source of truth for all client settings and other‬
‭data, referred to as App State. With the introduction of companion devices, App‬
‭State is synchronized between all of the user’s devices securely, using end-to-end‬
‭encryption.‬

‭Example App State Syncing client settings and other data include the following:‬

‭●‬ ‭Chat properties, such as Muted, Pinned, Deleted‬

‭●‬ ‭Message properties, such as Deleted for Me, Starred‬

‭●‬ ‭Contact-related properties, such as contact names, broadcast list‬
‭names‬

‭●‬ ‭Most recently used GIFs, stickers, emojis‬

‭App State does not include users’ message content, nor keys that could be used‬
‭to decrypt messages, nor settings that might impact the secrecy of messages.‬

‭The synchronization of App State between a user’s devices requires storage of‬
‭end-to-end encrypted data on the WhatsApp server to facilitate the transmission‬
‭between the different devices for the user’s account. WhatsApp servers do not‬
‭have access to the keys that could be used to decrypt the App State data that is‬
‭stored.‬

‭A‬‭Collection‬‭is a representation of several use-cases‬‭that are grouped together.‬
‭For example, various Chat Properties (see above) can be modeled as a single‬
‭Collection. Collections are implemented as a dictionary (a set of Index-Value‬
‭pairs) and are fixed to specific client versions.‬

‭Initially, Collections are empty. To modify a Collection, a client device submits a‬
‭Mutation‬‭which either sets a new Value for a given‬‭Index (SET Mutation), or‬
‭removes the pair from the Collection (REMOVE Mutation).‬

‭A group of Mutations submitted together constitute a‬‭Patch‬‭, which atomically‬
‭changes the Collection from version N to version N + 1. The server maintains an‬
‭ordered queue of Patches (‬‭Patch Queue‬‭), which consists‬‭of all Patches‬
‭submitted in the last X days.‬

‭25‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭A server-side process, called a‬‭Base Roller‬‭, periodically builds a‬‭Snapshot‬‭which‬
‭represents the state of the Collection after applying all Patches up until and‬
‭including the Patch with version N. The first Snapshot is built from the entire‬
‭Patch Queue, while subsequent Snapshots are built by applying new Patches to‬
‭the previous Snapshot. A Snapshot can be used to initialize a newly registered‬
‭device or to optimize the data traffic by sending a Snapshot instead of the list of‬
‭Patches.‬

‭App State Syncing is designed to guarantee the secrecy and integrity of the data‬
‭being synchronized. The pairwise encrypted sessions (as outlined in the Initiating‬
‭Session Setup Section) are used for transferring secret keys between different‬
‭devices of the same account.‬

‭See Implementation with Cloud API for details on App State Syncing Security‬
‭with Cloud API.‬

‭Terms‬

‭●‬ ‭Base Key‬‭- Input key material used to generate the‬‭keys used to‬
‭encrypt the data or provide its integrity.‬

‭●‬ ‭Index MAC Key‬‭- Key derived from the‬‭Base Key‬‭via‬‭HKDF and used‬
‭to compute the HMAC of the index.‬

‭●‬ ‭Value Encryption Key‬‭- Key derived from the‬‭Base Key‬‭via HKDF‬
‭and used to encrypt the combined Mutation index and value. The‬
‭encryption is done via AES-256 in CBC mode.‬

‭●‬ ‭Value MAC Key‬‭- Key derived from the‬‭Base Key‬‭via‬‭HKDF and used‬
‭to compute the HMAC of the combined Mutation index and value. Used‬
‭on the MAC stage of‬‭Encrypt-then-MAC‬‭approach to provide‬
‭authenticated encryption.‬

‭●‬ ‭Snapshot MAC Key‬‭- Key derived from the‬‭Base Key‬‭via‬‭HKDF and‬
‭used to provide anti-tampering for Snapshots generated by Base Roller.‬

‭●‬ ‭Patch MAC Key‬‭- Key derived from the‬‭Base Key‬‭via‬‭HKDF and used‬
‭to provide anti-tampering for Patches.‬

‭●‬ ‭KeyID‬‭- Unique identifier for the‬‭Base Key‬‭. Base Keys‬‭are rotated‬
‭periodically and when a device is removed from the account to provide‬
‭eventual future secrecy. An attacker in possession of a removed device‬
‭and access to the server can no longer decrypt the content of‬‭SET‬
‭Mutations submitted after the removal.‬

‭●‬ ‭Operation‬‭- Byte value which identifies a Mutation‬‭as‬‭SET‬‭or‬‭REMOVE‬‭.‬

‭Encryption of Mutations‬

‭In order for Base Roller to coalesce sequences of actions to the same index, it‬
‭needs the index submitted to the server to be deterministic. HMAC of the index is‬
‭used as an identifier of the index-value record the Mutations refers to. This also‬
‭makes sure that the indexes that the server sees have the same length and‬
‭prevents the server from guessing the record for which the Mutation is applied.‬

‭26‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Values (together with indexes, as mentioned above) are encrypted using‬
‭standard authenticated encryption (described below) with random IVs.‬

‭Combined index and value plaintext are supplemented with arbitrary length‬
‭padding in order to enable some model of differential privacy on the type of the‬
‭records.‬

‭1.‬ ‭Generate the‬‭Index MAC Key, Value Encryption Key,‬‭Value‬
‭MAC Key, Snapshot MAC Key‬‭, and‬‭Patch MAC Key‬‭from‬‭Base‬
‭Key‬‭by means of HKDF.‬

‭2.‬ ‭Compute‬‭HMAC-SHA2-256‬‭of the index.‬

‭3.‬ ‭Construct the plaintext by combining Index and Value with random‬
‭padding (used to obfuscate the size of the Mutation from the server).‬

‭4.‬ ‭Construct the associated data by concatenating‬‭Operation‬‭with‬
‭KeyID‬‭.‬

‭5.‬ ‭Apply‬‭Encrypt-then-MAC‬‭approach with‬‭AES-256-CBC‬‭keyed‬‭by‬
‭Value Encryption Key‬‭and‬‭HMAC-SHA2-512‬‭keyed by‬ ‭Value‬
‭MAC Key‬‭.‬

‭6.‬ ‭MAC computed on Step 2, ciphertext computed on Step 5, together with‬
‭Operation‬‭and‬‭KeyID‬‭form an encrypted Mutation.‬

‭Anti-Tampering‬

‭The anti-tampering mechanisms described below are designed to prevent:‬

‭●‬ ‭Drop, reorder, or replay Mutation within a Patch‬

‭●‬ ‭Drop, reorder, or replay (including a construction of new Patches)‬
‭Patches within a Collection or even between the Collection‬

‭●‬ ‭Drop or replay Mutations within a Snapshot constructed by a Base Roller‬

‭Snapshot Integrity‬

‭The server periodically runs a Base Roller which compacts the Patch Queue into‬
‭a single Snapshot. Clients cannot predict when the Snapshot is going to be built‬
‭(at the extreme the Snapshots could be built on every Patch). Thus, clients‬
‭include an additional unforgeable checksum for each Patch in order to be able to‬
‭verify all possible Snapshots built by the server.‬

‭Our approach relies on a homomorphic hashing algorithm called LtHash. It has‬
‭the following two important properties:‬

‭27‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭●‬ ‭Set homomorphism: for any two disjoint sets‬‭S‬‭and‬‭T‬‭,‬ ‭LtHash(S) +‬
‭LtHash(T) = LtHash(S U T)‬‭.‬

‭●‬ ‭Collision resistance: it is difficult (computationally infeasible) to find‬
‭two distinct sets‬‭S‬‭and‬‭T‬‭for which‬‭LtHash(S) = LtHash(T)‬‭.‬

‭A 1024-bit variant called‬‭LtHash16‬‭and HKDF as an‬‭extensible output function‬
‭(XOF) is used. For each Collection, clients must maintain a 1024-bit value of‬
‭LtHash16‬‭computed over the current Snapshot of the‬‭Collection. The MAC‬
‭computed over the content of plaintext index and value together with‬
‭authenticated data is used as input to the‬‭LtHash‬‭.‬

‭Upon receiving or constructing a new Patch, the set homomorphism property of‬
‭LtHash‬‭is used to compute the new 1024-bit value corresponding‬‭to the new‬
‭state (after applying the Patch in question):‬

‭●‬ ‭Assume that the current value of digest is‬‭CurrentLtHash‬‭,‬‭and Patch‬
‭P‬‭is being processed.‬

‭●‬ ‭Build a set‬‭R‬‭of‬‭MACs‬‭of previous states of all records‬‭that are affected‬
‭(deleted with REMOVE or overwritten with a SET operation).‬

‭●‬ ‭Build a set‬‭A‬‭of‬‭MACs‬‭of all SET records (in encrypted‬‭form) in the Patch‬
‭P‬‭.‬

‭●‬ ‭Construct‬‭NewLtHash =‬
‭LtHash16Add(LtHash16Subtract(CurrentLtHash, R), A)‬‭.‬
‭See below on how these operations are defined.‬

‭LtHash16Add‬‭operation mentioned above is defined as‬‭follows:‬

‭where‬‭PointwiseAdd16‬‭performs pointwise overflowing‬‭addition of two‬
‭1024-bit byte arrays interpreting them as arrays of 16-bit unsigned integers.‬
‭Operation‬‭LtHash16Subtract‬‭is defined similarly to‬‭LtHash16Add‬‭replacing‬
‭pointwise addition with pointwise subtraction.‬

‭Further, a MAC over the computed value of‬‭LtHash16‬‭concatenated with 8 byte‬
‭Patch version and the name of the Collection is computed:‬

‭28‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Patch Queue Integrity‬

‭To prevent tampering with content of a Patch, clients must compute the HMAC‬
‭over the 32-byte MACs of each individual Mutation that is part of the Patch‬
‭together with the Patch version number and Collection Name:‬

‭where‬‭MutationMAC_i‬‭is the last 32 bytes of value‬‭ciphertext of Mutation #i in‬
‭the Patch, and‬‭PatchVersion‬‭is the version of the‬‭Patch about to be submitted‬
‭(i.e. latest known version of the Collection plus one). Note that upon receiving a‬
‭Patch, the client must verify it, including the expected version of the Patch (which‬
‭must match the server-assigned version).‬

‭Both values‬‭PatchMAC‬‭and‬‭SnapshotMAC‬‭are included‬‭in the Patch and‬
‭submitted to the server.‬

‭Verification‬

‭After downloading a Patch, clients must first verify its correctness by‬
‭recomputing the‬‭PatchMAC‬‭and comparing it with the‬‭value included with the‬
‭Patch. After that, clients verify that‬‭SnapshotMAC‬‭is correct as well by repeating‬
‭the steps outlined above.‬

‭The Base Roller process on the server must preserve‬‭SnapshotMAC‬‭(and the‬
‭KeyID‬‭used to generate it) of the latest Patch that‬‭was used to construct the‬
‭Base Rolled Snapshot. This value is used by a client that received a Snapshot to‬
‭independently verify its integrity by applying LtHash16 over all of its records and‬
‭further compute the MAC as described above.‬

‭29‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Key Rotation‬

‭A Key Rotation involves a client randomly generating a new key tuple and‬
‭broadcasting it to all other devices. In the event of Key Rotation, all future‬
‭Mutations must not use any previous key version. To preserve the ability of the‬
‭server to coalesce the Mutations applied to a record when updating across a key‬
‭boundary, a client must submit a‬‭REMOVE‬‭Mutation with‬‭the old key and a‬‭SET‬
‭Mutation (if needed) with the new key.‬

‭It is notable that a simultaneous‬‭REMOVE‬‭and‬‭SET‬‭occurring‬‭as the key version‬
‭increases will be relatively easy for the server to correlate as equating to an‬
‭update of the record. In collusion with anyone with access to the old key,‬
‭WhatsApp would therefore be able to determine with high confidence the value of‬
‭the new index; and might be able to assume that this means it has been updated.‬

‭The following two mechanisms are used to combat this:‬

‭1.‬ ‭Post-Rotation Update Obfuscation - When submitting a Mutation to the‬
‭server, clients will use this opportunity to rotate some other number of‬
‭records, ensuring that WhatsApp cannot determine which of the old‬
‭indexes was being updated, and cannot directly map any of the old‬
‭records to which new record represents them.‬

‭2.‬ ‭Asynchronous Key Catch-Up - Ensures that after a Key Rotation, there‬
‭will be at some point in the future when no current records are‬
‭encrypted with the preceding key(s). This means that on some cadence,‬
‭clients will issue a series of‬‭SET‬‭and‬‭REMOVE‬‭to re-encrypt‬‭old records‬
‭under a new key version, without updating the actual plaintext values.‬
‭Catch-Up updates are indistinguishable from a logical‬‭UPDATE‬
‭operation, so that the server in collusion with a removed device can‬
‭never determine when an old record is being updated.‬

‭The key must be rotated whenever a device is being unregistered. Additionally,‬
‭clients rotate the key periodically (for example once a month).‬

‭Each device maintains a list of the encryption keys together with additional data:‬

‭1.‬ ‭KeyData‬‭- Actual base key bytes‬

‭2.‬ ‭KeyID‬‭- ID of the key‬

‭3.‬ ‭Fingerprint‬‭- Data structure which identifies a list‬‭of devices existing‬
‭at the moment when the key was generated (and thus was shared with)‬

‭4.‬ ‭Timestamp‬‭- Time when the key was created‬

‭The‬‭KeyID‬‭is composite and consists of 4 byte‬‭Epoch‬‭and 2 byte‬‭DeviceID‬‭.‬
‭Epoch‬‭is selected randomly between 1 and 65536 by‬‭the primary devices during‬

‭30‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭the registration of the first companion device, and after that increases by 1 every‬
‭time a device rotates a key. The‬‭DeviceID‬‭component‬‭of the‬‭KeyID‬‭is used to‬
‭resolve races between several devices rotating the key at the same time, so that‬
‭all keys will receive unique‬‭IDs‬‭. To settle on a single‬‭key after such an event,‬
‭clients prefer the key with the smallest‬‭DeviceID‬‭component when Epoch‬
‭components are equal. Otherwise, always prefer the‬‭KeyID‬‭with the largest‬
‭Epoch‬‭. Additionally, one (or in rare cases several)‬‭encryption keys can be active‬
‭at any given time.‬

‭Key Rotation must happen under the following conditions:‬

‭●‬ ‭If a client detects that a previously known device was removed, it must‬
‭locally mark all active encryption keys as expired.‬

‭●‬ ‭Upon receiving an‬‭AppStateSyncKeyShare‬‭message mark‬‭all keys‬
‭with smaller Epoch as expired.‬

‭●‬ ‭Upon receiving a Mutation in any Collection mark all keys with a smaller‬
‭Epoch as expired.‬

‭●‬ ‭When a client wants to submit a new Patch to the server it first must‬
‭check the list of known keys. If there is one that is still active it uses it.‬
‭Otherwise, it performs the Key Rotation. To rotate the key:‬

‭1.‬ ‭Generate a new‬‭KeyID‬‭by concatenating‬‭DeviceID‬‭with‬‭an‬
‭incremented Epoch (maximum value among all known‬
‭encryption keys).‬

‭2.‬ ‭Generate new key material from‬‭CSPRNG‬‭.‬

‭3.‬ ‭Generate a new‬‭Fingerprint‬‭from the current registration‬
‭data.‬

‭4.‬ ‭Persist the key information and send it to all other devices‬
‭using the corresponding pairwise encrypted sessions.‬

‭5.‬ ‭Use the key to encrypt the Mutations and submit them to the‬
‭server.‬

‭●‬ ‭In some cases, clients cannot determine whether a key is still valid‬
‭based on event ordering alone. To compute whether the last known‬
‭active key is valid or not, clients compare the key’s‬‭Fingerprint‬‭with‬
‭the current device registration data.‬

‭If a device receives a Mutation from the server and the‬‭KeyID‬‭is not known, a‬
‭device can request to resend the encryption keys from other devices.‬

‭To guarantee that encryption keys are not shared with untrusted devices, all‬

‭31‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭client applications only send them via authenticated pairwise encrypted‬
‭sessions:‬

‭1.‬ ‭While performing Key Rotation, a device must send the new key to all‬
‭other devices which are known to be authorized by the primary.‬

‭2.‬ ‭When a device receives a new key from a device which is not authorized‬
‭by the primary this key is ignored.‬

‭To make sure that other devices will not inadvertently use an encryption key that‬
‭should be expired on device removal, the device that performs the removal (the‬
‭companion device itself or primary device) submits a Patch into all Collections‬
‭marking all the current keys as expired. This Patch informs other devices that‬
‭encryption keys with epoch less or equal to the provided epoch should not be‬
‭used going forward.‬

‭Verifying Keys‬
‭WhatsApp users additionally have the option to verify the keys of their devices‬
‭and the devices of the users with which they are communicating in end-to-end‬
‭encrypted chats, so that they are able to confirm that an unauthorized third party‬
‭(or WhatsApp) has not initiated a man-in-the-middle attack. Verification can be‬
‭done by scanning the QR code or by comparing the 60-digit number between two‬
‭primary devices. WhatsApp users can also verify individual companion devices‬
‭manually by using a primary device to check the same QR code or 60-digit‬
‭number.‬

‭The QR code contains:‬

‭1.‬ ‭A version.‬

‭2.‬ ‭The user identifier for both parties.‬

‭3.‬ ‭The full 32-byte public‬‭Identity Key or SHA-512 hash‬‭for all‬
‭devices of both parties, except linked Cloud API companions.‬

‭4.‬ ‭Flag indicating if the party has linked to Cloud API .‬

‭When either device scans the other’s QR code, the keys and the Cloud API‬
‭companion flag are compared to ensure that what is in the QR code matches the‬
‭Identity Key‬‭and the Cloud API companion flag as retrieved‬‭from the server.‬

‭The 60-digit number is computed by concatenating the two 30-digit numeric‬
‭fingerprints for each user’s device‬‭Identity Keys‬‭.‬‭To calculate a 30-digit‬
‭numeric fingerprint:‬

‭32‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭1.‬ ‭Lexicographically sort public Identity Keys for all of the user’s devices,‬
‭except any device linked to Cloud API and concatenate them.‬

‭2.‬ ‭Iteratively SHA-512 hash the sorted‬‭Identity Keys‬‭and user identi-‬
‭fier 5200 times.‬

‭3.‬ ‭Take the first 30 bytes of the final hash output.‬

‭4.‬ ‭Split the 30-byte result into six 5-byte chunks.‬

‭5.‬ ‭Convert each 5-byte chunk into 5 digits by interpreting each 5-byte‬
‭chunk as a big-endian unsigned integer and reducing it modulo 100000.‬

‭6.‬ ‭Concatenate the six groups of five digits into thirty digits.‬

‭For users wanting to verify keys with WhatsApp Business app users who have‬
‭linked to Cloud API:‬

‭●‬ ‭the QR code can be used to validate the presence of a linked Cloud API‬
‭companion‬

‭●‬ ‭the verification screen will clearly indicate that they are talking to a‬
‭WhatsApp Business user who has linked with Cloud API‬

‭●‬ ‭the 60-digit code can be used to verify all devices except a Cloud API‬
‭companion‬

‭Companion Device Removal‬
‭Companion devices can log themselves out from a WhatsApp account, may be‬
‭logged out by the user’s primary device, or may be logged out by the WhatsApp‬
‭server. When a primary device logs out or detects the log out of one or more of‬
‭its companion devices, while one or more companions remain linked, it generates‬
‭and uploads new Signed Device List Data removing the previously authorized‬
‭device.‬

‭To update the signed device list:‬

‭1.‬ ‭The primary detects a device removal and loads its own Identity Key as‬
‭I‬‭primary‬‭.‬

‭2.‬ ‭The primary generates updated Device List Data containing the currently‬
‭linked devices, as‬‭ListData‬‭.‬

‭3.‬ ‭The primary generates a Device List Signature for the updated Device‬
‭List Data,‬‭ListSignature = CURVE25519_SIGN(I‬‭primary‬‭,‬‭0x0602‬
‭|| ListData)‬‭.‬

‭33‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭4.‬ ‭The primary sends‬‭ListData‬‭and‬‭ListSignature‬‭to WhatsApp‬
‭server. See “Transport Security” for information about the secure‬
‭connection between WhatsApp clients and servers.‬

‭Even if no device removal has been detected, while one or more companions‬
‭remain linked, primary devices will periodically upload updated Signed Device List‬
‭Data following the above steps to produce a signature with an updated‬
‭timestamp.‬

‭See Implementation with Cloud API for details on Companion Device Removal‬
‭with Cloud API.‬

‭Signed Device List Expiry‬

‭In end-to-end encrypted chats, Signed Device Lists are expired with a Time to Live‬
‭of 35 days or less, except for Cloud API, companion which will have a different‬
‭TTL. Clients will only send and receive messages and calls with the primary‬
‭device of an account with an expired Signed Device List. Once an updated Signed‬
‭Device List is received with a more recent timestamp, senders will once again‬
‭communicate with a user’s linked companion devices.‬

‭On receipt of In Chat Device Consistency Data with an updated timestamp for the‬
‭sender’s device list, receiving devices reduce the TTL of the sender’s current‬
‭device list to 48 hours or less (except for Cloud API which will have a different‬
‭time) from receipt of the message. In order to maintain message reliability the‬
‭reduced TTL will not be enforced until the receiving client comes online after the‬
‭48 hour window.‬

‭Companion Device Compromise‬

‭The Time to Live of Device List Signatures, and In Chat Device Consistency‬
‭revoke the associated signed device lists after 35 days and 48 hours respectively‬
‭(except for Cloud API companion which will have different expiries and TTLs). If a‬
‭companion device’s private keys become compromised the compromised device‬
‭should no longer be used, and removed from the account. Devices are revoked‬
‭automatically after their removal to limit the potential for a third party who‬
‭compromised the device colluding with WhatsApp to continue to send and‬
‭receive messages from the previously linked account. The primary device’s‬
‭identity key pair can be re-generated by deleting and reinstalling WhatsApp on‬
‭your primary device to revoke all devices immediately.‬

‭34‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Transport Security‬
‭Communication between WhatsApp clients and WhatsApp chat servers is‬
‭layered within a separate encrypted channel using Noise Pipes with Curve25519,‬
‭AES-GCM, and SHA256 from the Noise Protocol Framework for long running‬
‭interactive connections.‬

‭This provides clients with the following properties:‬

‭1.‬ ‭Extremely fast lightweight connection setup and resume.‬

‭2.‬ ‭Encrypts metadata to hide it from unauthorized network observers. No‬
‭information about the connecting user’s identity is revealed.‬

‭3.‬ ‭No client authentication secrets are stored on the server. Clients‬
‭authenticate themselves using a Curve25519 key pair, so the server only‬
‭stores a client’s public authentication key. If the server’s user database‬
‭is ever compromised, no private authentication credentials will be‬
‭revealed.‬

‭Note: In cases where a business delegates operation of their WhatsApp Business‬
‭API to a vendor, that vendor will have access to their private keys - including if‬
‭that vendor is Meta. However, these private keys will still not be stored on the‬
‭WhatsApp chat server. See below for details.‬

‭Defining End-to-End Encryption‬
‭WhatsApp defines end-to-end encryption as communications that remain‬
‭encrypted from a device controlled by the sender to one controlled by the‬
‭recipient, where no third parties, not even WhatsApp or our parent company‬
‭Meta, can access the content in between. A third party in this context means any‬
‭organization that is not the sender or recipient user directly participating in the‬
‭conversation.‬

‭WhatsApp does not consider communications with Meta services, or‬
‭communications with businesses using Cloud API, to be end-to-end encrypted.‬
‭See the Implementation with Cloud API section below for more details.‬

‭35‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Implementation on WhatsApp‬
‭Services‬
‭When it comes to two people communicating on their phones or computers‬
‭using WhatsApp Messenger or the WhatsApp Business app, each person’s‬
‭WhatsApp endpoint is running on a device they control.‬

‭Some organizations may use the on-premise WhatsApp Business API, an‬
‭application that can be deployed as a WhatsApp endpoint on a server. The API‬
‭allows those organizations to programmatically send and receive messages.‬

‭WhatsApp considers communications with on-premise WhatsApp Business API‬
‭users who manage the API endpoint on servers they control to be end-to-end‬
‭encrypted since there is no third-party access to content between endpoints.‬

‭Some organizations may choose to delegate management of their on-premise‬
‭WhatsApp Business API endpoint to a vendor. In these instances, communication‬
‭still uses the same Signal protocol encryption and clients on or after version‬
‭v2.31 are configured to generate private keys within the vendor-controlled API‬
‭endpoint. However, because the on-premise WhatsApp Business API user has‬

‭36‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭chosen a third party to manage their endpoint, WhatsApp does not consider‬
‭these messages end-to-end encrypted.‬

‭Implementation with Cloud API‬
‭As of 2021, organizations could start using Cloud API hosted by Meta to send‬
‭and receive messages via WhatsApp. In 2023, organizations could use Cloud API‬
‭to make/receive calls. Since such communications are not delivered directly to‬
‭an endpoint controlled by the organization, WhatsApp does not consider‬
‭communications with businesses using Cloud API to be end-to-end encrypted.‬

‭Below are the relevant implementation details:‬

‭App State Syncing Security:‬‭If a user links Cloud‬‭API, the App State is also‬
‭shared with Cloud API and is not considered end-to-end encrypted.‬

‭Call Setup:‬‭Calls involving Cloud API are not considered‬‭end-to-end encrypted.‬
‭However, when Cloud API is linked as a companion, the SRTP master secret is‬
‭not distributed to the Cloud API, so such calls are considered end-to-end‬
‭encrypted.‬

‭Message History Syncing:‬‭If a user links Cloud API,‬‭a copy of messages from‬
‭recent chats is also transmitted to Cloud API in order for the user to manage‬
‭those conversations, and therefore the process of history syncing is not‬
‭considered end-to-end encrypted. The amount of history shared is also limited in‬
‭this case.‬

‭Companion Device Removal:‬‭If the device being removed‬‭is Cloud API, the‬
‭primary generates a new random Identity Key thereby invalidating all existing‬
‭companions and existing end-to-end encrypted Signal sessions.‬

‭Groups:‬‭Groups involving Cloud API are not considered‬‭end-to-end encrypted.‬
‭When group messages are not end-to-end encrypted, it is clearly indicated by a‬
‭system message‬‭. Cloud API cannot join an end-to-end‬‭encrypted group, nor can a‬

‭37‬ ‭WhatsApp Encryption Overview‬

https://faq.whatsapp.com/807150397208763/?locale=en_US

‭AUGUST 19, 2024‬

‭user or a group admin add Cloud API to an end-to-end encrypted group. The‬
‭Sender Key is distributed to Cloud API for groups created by Cloud API. However,‬
‭when Cloud API is linked as a companion, the Sender Key is not distributed to‬
‭Cloud API and such a group is considered end-to-end encrypted.‬

‭Linking Cloud API to the WhatsApp Business App‬

‭As of 2024, businesses may link Cloud API as a companion to their WhatsApp‬
‭Business app.‬

‭As a result, the end-to-end encryption state changes as follows:‬

‭1.‬ ‭WhatsApp does not consider 1-1 chats with businesses that link Cloud‬
‭API to be end-to-end encrypted since messages in these 1-1 chats are‬
‭shared by the business to Meta to process the messages on behalf of‬
‭the business.‬

‭2.‬ ‭The sender transmits group messages, broadcast list messages, calls,‬
‭status and live location updates only to the WhatsApp Business app, but‬
‭not to linked Cloud API.‬

‭3.‬ ‭When a 1-1 chat with an organization is not end-to-end encrypted, it is‬
‭clearly indicated by a‬‭system message‬‭.‬

‭Invocation Message Responses‬
‭Users on WhatsApp can now interact with automated chats (including Meta‬
‭services, such as Meta AI), by first sending a special type of message called an‬
‭Invocation Message.‬

‭Invocation Messages are optimized for messages that are sent sentence by‬
‭sentence versus an entire message at a time. This is most suited for automated‬
‭chats.‬

‭Invocation Messages can only be initiated by a user, whether it’s a user‬
‭interacting with an automated chat account directly, or in chats between two or‬
‭more users, where an automated chat account is @mentioned in the‬
‭conversation.‬

‭All personal messages that are sent in an individual chat or group remain end to‬
‭end encrypted. When an Invocation Message is sent, a copy of only that message‬
‭is securely sent to an automated chat account.‬

‭When a user sends an Invocation Message to an automated chat account:‬

‭1. The sender generates a random 32-byte‬‭Message Secret‬‭.‬

‭38‬ ‭WhatsApp Encryption Overview‬

https://faq.whatsapp.com/807150397208763/?locale=en_US

‭AUGUST 19, 2024‬

‭2. The sender derives an Invoke Message Secret from the‬‭Message Secret‬‭:‬
‭HKDF-SHA256(length=32, key=Message Secret, info="Invoke‬
‭Message")‬‭.‬

‭3. The message to the automated chat account, other users’ devices, and if‬
‭relevant, other participants in the chat is sent using the Signal protocol‬
‭encryption.‬

‭The message to the automated chat account contains the‬‭Message Secret‬‭if‬
‭this account is a participant of the chat in which the Invocation Message is being‬
‭sent. Otherwise, it contains the‬‭Invoke Message Secret‬‭.‬

‭The message to all other recipients contains the‬‭Message‬‭Secret‬‭.‬

‭4. In order to improve the privacy and performance of Invocation Message‬
‭Responses, they are encrypted with the‬‭Invoke Message‬‭Secret‬‭previously‬
‭shared with other participants of the chat in the Invocation Message. As the‬
‭automated chat account generates the response (an initial response or an‬
‭update to the initial response), it derives a‬‭Message‬‭Encryption Key‬‭from the‬
‭Invoke Message Secret:‬‭HKDF-SHA256(length=32, key=Invoke‬
‭Message Secret, info=Message Identifier || Invoker‬
‭Identifier || Invocation Responder Identifier)‬

‭5. The automated chat account then encrypts the entire message payload with‬
‭the‬‭Message Encryption Key‬‭using‬‭AES-256-GCM(tagLength=16,‬
‭iv=random 12 bytes, aad=Message Identifier || Invoke‬
‭Responder Identifier)‬‭to produce an authenticated‬‭ciphertext.‬

‭6. The automated chat account then transmits this ciphertext and the IV to the‬
‭server, which does server-side fan-out to all participants of the chat the‬
‭Invocation Message was sent to.‬

‭7. Upon receipt of the Invoking Message Response from the automated chat‬
‭account, participants who received a message from the sender in step 3b derive‬
‭a‬‭Invoke Message Secret‬‭from the‬‭Message Secret‬‭as‬‭in step 2, then‬
‭calculate the‬‭Message Encryption Key‬‭as in step 4,‬‭and Additional data as in‬
‭step 5. Finally, they decrypt the message using AES-256-GCM.‬

‭8. The latest update (according to the sender-generated timestamp) to the‬
‭Invocation Message Response is displayed to the user and all previous updates‬
‭are discarded.‬

‭Encryption Has No Off Switch‬
‭All chats use the same Signal protocol outlined in this whitepaper, regardless of‬
‭their end-to-end encryption status. The WhatsApp server has no access to the‬
‭client’s private keys, though if a business user delegates operation of their‬

‭39‬ ‭WhatsApp Encryption Overview‬

‭AUGUST 19, 2024‬

‭Whatsapp Business API to a vendor, that vendor will have access to their private‬
‭keys - including if that vendor is Meta.‬

‭When chatting with an organization that uses the WhatsApp Business API,‬
‭WhatsApp determines the end-to-end encryption status based only on the‬
‭organization’s choice of who operates its endpoint.‬

‭The encryption status of an end-to-end encrypted chat cannot change without‬
‭the change being visible to the user via a‬‭system‬‭message‬‭.‬

‭Displaying End-to-End Encryption‬
‭Status‬
‭Across all our services, WhatsApp makes the end-to-end encryption status of a‬
‭chat clear. If the user’s WhatsApp client sees that it’s communicating with a‬
‭business that uses the WhatsApp Business API, the client will display this to the‬
‭user. The user can also double check the encryption status within the chat or in‬
‭the business info section of their app.‬

‭Conclusion‬
‭All WhatsApp messages are sent with the same Signal protocol outlined above.‬
‭WhatsApp considers all messages, voice calls, and video calls sent between all‬
‭devices controlled by a sender user and all devices controlled by a recipient user‬
‭to be end-to-end encrypted. Communications with a recipient who elects to use a‬
‭vendor to manage their WhatsApp Business API are not considered end-to-end‬
‭encrypted. If this occurs, WhatsApp makes it clear to users within the chat via a‬
‭system message‬‭.‬

‭Between companion devices, WhatsApp message history syncing and app state‬
‭syncing are protected by end-to-end encryption, except when a companion device‬
‭is Cloud API. WhatsApp does not consider communications with Meta services,‬
‭or communications with businesses using Cloud API, to be end-to-end encrypted.‬

‭The Signal Protocol library used by WhatsApp is based on the Open Source‬
‭library, available here:‬

‭http://github.com/whispersystems/libsignal-protocol-java/‬

‭40‬ ‭WhatsApp Encryption Overview‬

https://faq.whatsapp.com/807150397208763/?locale=en_US
https://faq.whatsapp.com/807150397208763/?locale=en_US

