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Abstract

The purpose of this diploma dissertation is on one hand the description of MBrace; a programming
model for performing large scale distributed computations, and on the other hand the implementation
of MBrace on the Microsoft Azure cloud computing platform.

In the era of big data and cloud computing, the need for efficient and effective orchestration of dis-
tributed computations becomes a necessity. Cloud computing providers make it easy for someone to
get access to computational resources needed.

Programming large scale distributed systems is a remarkably difficult task, that requires the manage-
ment and orchestration of multiple concurrent processes, software and hardware failures, scalability
and elasticity.

In this diploma dissertation we describe MBrace; a programming model for large scale cloud com-
puting. Based on the F# programming language and the .NET framework stack, MBrace provides a
declarative, expressive and rich model for creating and composing distributed computations. This
pattern is also known as cloud workflows, or cloud monad. Finally, we have implemented this model
on top of the Microsoft Azure platform, providing MBrace.Azure: a distributed execution runtime for
cloud computations.
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Chapter 1

Introduction

1.1 Objectives

This thesis aims at providing a description of the MBrace programming model and framework for
performing large scale distributed computations. It also aims at implementing a runtime that fully
supports all of the MBrace abstractions, build on top of theMicrosoft Azure cloud computing platform.

1.2 Motivation

We live in the era of big data and cloud computing. A huge amount of data is stored and collected on
data centers and amassive amount of information can be extracted fromweb services, social networks,
etc. In addition to that, it’s easier than ever to get access to large computational power, at low cost and
even for a small amount of time, offered by a plethora of cloud computing providers like Microsoft
Azure, Amazon, etc.

Programming these large scale systems can be a notoriously difficult task, as programmers need to
take into account not only the algorithm sophistication or complexity, but also the management and
orchestration of concurrent processes, scalability, elasticity and fault tolerance (in either software or
hardware failures). That effort also includes the overhead of having to pick up each cloud vendor’s
specific software stack.

Several programmingmodels have be proposed and developed over the years, withMap-Reduce [Dean08]
being the most popular paradigm. One of the most successful Map-Reduce frameworks is the open
sourceHadoop [hado] implementation as well as Apache Spark [spar], an open source engine for large
scale data processing. Other implementations include the Akka [akka] distributed actor framework,
and programming models like CloudHaskell [Epst11] and HdpH [Maie12].

This thesis presents MBrace, a novel programming model for scalable cloud programming and data
scripting. MBrace [mbra] is an open source effort with the goal to provide a simple, elegant and declar-
ative approach to describing distributed computations in a cloud vendor agnostic manner. MBrace is
written in the F#/.NET programming language and integrates with the F# Interactive (REPL – Read-
Eval-Print-Loop) providing a powerful experience, which enables fast code prototyping in a cloud
scale, job monitoring and code deployment. MBrace is capable of distributing arbitrary code and
offers native access to the rich collection of libraries offered with the underlying .NET framework.

At the moment MBrace consists of two basic projects:

MBrace.Core which contains the MBrace programming model, basic data structures and algorithms,
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as well as the foundations for implementing MBrace runtimes.

MBrace.Azure which contains a MBrace runtime implementation, built on top of the Microsoft Azure
platform.

1.3 Outline of the thesis

The rest of the thesis is organized as follows : In Chapter 2 we describe the F# async computation
expressions and the transition from asynchronous parallelism to distributed parallelism using MBrace
and the cloud workflow. Chapters 3 to 5 include an overview of the MBrace core programming model,
while chapters 6 and 7 provide an overview of the workflow execution and runtime implementation.

Chapter 3 provides and overview of the primitive operators for distribution and concurrency. In Chap-
ter 4 we present the basic storage and data related primitives and data structures. Chapter 5 concludes
the high level programming model overview, describing the fault tolerance model used by MBrace.

The remaining chapters (6 and 7) provide a more in-depth analysis on how a cloud workflow is ac-
tually executed as well as details on the MBrace.Azure runtime implementation and features. Fi-
nally, in Chapter 8, we reach our conclusion and present some future work and goals for MBrace and
MBrace.Azure.
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Chapter 2

From async to cloud

Although MBrace supports any .NET language like C#, VB.NET, etc, the primary focus for MBrace
is F#. F# [fsha] is a functional-first programming language originated from ML. The essential pillar
of the MBrace programming model is the cloud workflow, which is implemented using a language
construct called Computation Expressions. This chapter includes an introduction to the F# computa-
tion expressions, needed to understand how the cloud workflows work, as well as the asynchronous
computation expressions from which the cloud workflows originate.

2.1 Computation expressions and monads

In this section, we give an overview of the Computation Expressions [comp] [Syme05] construct.
Computation expressions introduce a new syntactic category cexpr, used to indicate the syntax of
computation expressions:

⟨expr⟩ := ⟨cbuilder⟩ ‘{’ ⟨cexpr⟩ ‘}’

The grammar for F# computation expressions is shown in figure 2.1.

⟨cexpr⟩ := ‘do!’ ⟨expr⟩
| ‘let!’ ⟨pat⟩ ‘=’ ⟨expr⟩ ‘in’ ⟨cexpr⟩
| ‘let’ ⟨pat⟩ ‘=’ ⟨expr⟩ ‘in’ ⟨cexpr⟩
| ‘return!’ ⟨expr⟩
| ‘return’ ⟨expr⟩
| ⟨cexpr⟩ ‘;’ ⟨cexpr⟩
| ‘if’ ⟨expr⟩ ‘then’ ⟨cexpr⟩ ‘else’ ⟨cexpr⟩
| ‘match’ ⟨expr⟩ ‘with’ ⟨pat⟩ ‘->’ ⟨cexpr⟩
| ‘while’ ⟨expr⟩ ‘do’ ⟨cexpr⟩
| ‘for’ ⟨pat⟩ ‘in’ ⟨expr⟩ ‘do’ ⟨cexpr⟩
| ‘use’ ⟨val⟩ ‘=’ ⟨expr⟩ ‘in’ ⟨cexpr⟩
| ‘use!’ ⟨val⟩ ‘=’ ⟨expr⟩ ‘in’ ⟨cexpr⟩
| ‘try’ ⟨cexpr⟩ ‘with’ ⟨pat⟩ ‘->’ ⟨cexpr⟩
| ‘try’ ⟨cexpr⟩ ‘finally’ ⟨expr⟩
| ⟨expr⟩

Figure 2.1: Computation expression grammar

Computation expressions are just syntactic sugar to method calls. Below are some of the transforma-
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tions done by the F# compiler when using computation expressions. 1 Defining a custom computation
expression (like the cloud workflow) is straightforward by creating a cbuilder class and defining cer-
tain special methods on the class like Bind, Return, Zero, etc.

Expression Desugaring
[[let binding in cexpr]] = let binding in [[cexpr]]

[[let! pattern = expr in cexpr]] = cbuilder.Bind(expr,(fun pattern -> [[cexpr]]))
[[do! expr in cexpr]] = cbuilder.Bind(expr,(fun () -> [[cexpr]]))

[[return expr]] = cbuilder.Return(expr)

[[return! expr]] = cbuilder.ReturnFrom(expr)

[[use pattern = expr in cexpr]] = cbuilder.Using(expr,(fun pattern -> [[cexpr]]))
[[use! pattern = expr in cexpr]] = cbuilder.Bind(expr,

(fun value ->

cbuilder.Using(value,

(fun value -> [[cexpr]])))
[[if expr then cexpr0 else cexpr1]] = if expr then [[cexpr0]] else [[cexpr1]]

[[while expr do cexpr]] = cbuilder.While(

(fun () -> expr),

cbuilder.Delay([[cexpr]]))
[[try cexpr with patterni -> expri]] = cbuilder.TryWith(

cbuilder.Delay([[cexpr]]),
(fun value ->

match value with

| patterni -> expri
| exn -> reraise exn)))

[[try cexpr finally expr]] = cbuilder.TryFinally(

cbuilder.Delay([[cexpr]]),
(fun () -> expr))

[[cexpr0 ; cexpr1]] = cbuilder.Combine([[cexpr0]] ; [[cexpr1]])
[[other-expr ; cexpr]] = expr ; [[cexpr]]

[[other-expr ]] = expr ; cbuilder.Zero()

Table 2.1: Computation expression translation rules

Finally, computation expressions are used to provide convenient syntax for monads, since the Bind
and Return methods correspond to the bind and return operators of the monad laws [mona].

Method Signature

Bind : M<’T> * (’T→ M<’U>)→ M<’U>

Return : ’T→ M<’T>

2.2 Async computation expressions

One of themost common computation expressions used in F# are theAsynchronousWorkflows [Syme11].
F# async workflows are part of the language’s core library and provide an easy way to author tasks
that seem sequential, but are given an asynchronous semantic interpretation, without using callbacks.

1 The complete list of transformations can be found in the F# specification [Syme05] and MSDN F# Computation
Expressions [comp].
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1 let getLengthAsync (uri : Uri) : Async<int> =

2 async {

3 let client = new System.Net.WebClient()

4 let! html = client.AsyncDownloadString(uri)

5 return html.Length

6 }

Example 2.1: F # async example

The workflow above, spawns a new task that downloads the content of a web page. This task may or
may not execute in the initial thread. Once the download is complete the result is bound to variable
html and the total length is returned, also as an async computation.

As one can see the Async<T> type, which represents an asynchronous computation, is the primitive
type for F# async programming. All expressions of the form async{ … } are of type Async<T>. When
executed, an async value will eventually produce a value of type T.

The F# core library also provides some basic functions for composing and executing async workflows.

Async.Parallel : Async<’T>[]→ Async<’T[]>

Async.RunSynchronously : Async<’T>→ ’T

Async.StartImmediate : Async<unit>→ unit

Async.Sleep : int→ Async<unit>

...

Example 2.2: Some of the basic F# Core async functions

2.3 Cloud workflow

Inspired by the asynchronous workflows, MBrace provides cloud workflows, used to specify dis-
tributed computations that can run on a cluster of workers. Similarly to async, a cloud workflow has
type Cloud<T> which represents a delayed computation that can be executed by some worker and
return a value of type T.

The simplest cloud workflow would be the following :

1 let helloWorld : Cloud<int> =

2 cloud {

3 return 42

4 }

Example 2.3: The MBrace hello world

Given a runtime implementation that provides a Cloud<T> → T function, this workflow can be eval-
uated :

1 let runtime = Runtime.GetHandle(azureConfiguration)

2 let result = runtime.Run helloWorld

3
4 val result : int = 42
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The runtime implementation (in our case MBrace.Azure) is responsible for packaging and uploading
the image of the cloud computation, scheduling a new job in the available worker pool and returning
the result to our client.

By using computation expressions, MBrace provides a strong foundation for expressing different kinds
of algorithms and paradigms such as Map-Reduce, streaming, iterative or incremental algorithms, etc.

2.4 Summary

To sum up, we have been introduced to the computation expressions concept and especially the F#
async workflows. We also transitioned from the async workflows to cloud workflows. Chapters 6 and
7 provide a more in depth view on the semantics of the cloud workflow and details on the workflow
execution on Microsoft Azure.
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Part I

The MBrace core programming model





Chapter 3

Distribution combinators

In this chapter we offer a description of the basic distribution combinators instructed by the MBrace
programming model. MBrace provides a vast amount of primitive operations for running cloud com-
putations in parallel, as long running tasks or in a non-deterministic way.

3.1 Parallel

Probably the most essential MBrace operator is Cloud.Parallel. This combinator can be used to
execute multiple cloud workflows, in a parallel fork-join pattern. Its type signature is

Cloud.Parallel : Cloud<’T> seq→ Cloud<’T []>

This takes a sequence of cloud computations and returns a workflow that executes them, possibly
in parallel, and returns an array of all results. Although exception handling will be covered later in
this chapter, we can mention that the exception handling semantics are similar to the Async.Parallel
ones; the first exceptions not handled by the child computations will trigger the exception to the overall
computation and cancel the others. Likewise, the first cancellation results in overall cancellation.

You can see below an example of the Cloud.Parallel combinator.

1 let parallelWorkflow : Cloud<int []> =

2 cloud {

3 let compute i = cloud { return i * i }

4 let! results =

5 [1..10]

6 |> List.map compute

7 |> Cloud.Parallel

8 return results

9 }

10
11 // Evaluate workflow

12 runtime.Run(parallelWorkflow)

13
14 val it : int [] = [|1; 4; 9; 16; 25; 36; 49; 64; 81; 100|]

Example 3.1: A simple Cloud.Parallel computation

The root computation will spawn 10 jobs across the cluster. Once the results are aggregated the parent
computation continues and returns the result. Note, that the way Cloud.Parallel jobs are going to
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be executed (order, worker allocation, etc) is dependent to the underneath runtime implementation, in
our case MBrace.Azure.

3.2 Choice

Another primitive combinator offered by the MBrace.Core is Cloud.Choice. This combinator en-
ables non-deterministic computations.

Cloud.Choice : Cloud<’T option> seq→ Cloud<’T option>

This combines a collection of non-deterministic computations into one. The non-deterministic com-
putation is encoded by the option type, where Some value declares success and None declares failure.
This combinator executes its input in parallel and returns a result as soon as the first child declares
success (Some value). If none of the child computations complete without success then None is re-
turned. Triggering an exception on a child computation causes the overall computation to cancel and
raise this exception.

You can see below an example of the Cloud.Choice combinator.

1 let findIndex (xs : ’T []) (item : ’T) : Cloud<int option> =

2 cloud {

3 return! xs |> Seq.mapi (fun index x→ index, x)

4 |> Seq.map (fun (i,x)→
5 cloud {

6 return if x = item then Some i else None

7 })

8 |> Cloud.Choice

9 }

10
11 // Evaluate workflow

12 runtime.Run(findIndex [|0..100|] 42)

13
14 val it : int option = Some 42

Example 3.2: Parallel search using Cloud.Choice

This example implements a naive distributed search. It creates multiple parallel jobs (one for each
element of the input) that search for the index of the given element. When a job finds the element the
overall computation is canceled and the index is returned.

3.3 CloudTask

The third distribution operator that we are going to mention is Cloud.StartAsTask. The MBrace

programming models defines the notion of cloud tasks. An ICloudTask<T> is a unit of code that can
be executed independently as a child computation.

The Cloud.StartAsTask combinator returns a cloud workflow that queries the result.
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Cloud.StartAsTask : Cloud<’T>→ Cloud<ICloudTask<’T>>

Cloud.AwaitCloudTask : ICloudTask<’T>→ Cloud<’T> 1

Cloud.StartChild : Cloud<’T>→ Cloud<Cloud<’T>>

As can someone notice, ICloudTask<T> is the MBrace/cloud analogous to the .NET Task Parallel

Library Task<T> type.

1 let workflow : Cloud<int * TimeSpan> =

2 cloud {

3 // Spawn a CloudTask

4 let! ctask =

5 Cloud.StartAsTask(

6 cloud {

7 do! Cloud.Sleep 20000

8 return 42

9 })

10
11 let watch = Stopwatch.StartNew()

12 // Block until ctask completes

13 let! value = ctask.AwaitResult()

14 watch.Stop()

15
16 return value, watch.Elapsed

17 }

18
19 // Evaluate workflow

20 runtime.Run workflow

21
22 val it : int * TimeSpan = (42, 00:00:22.4323827)

Example 3.3: Spawning a CloudTask

The example above demonstrates the usage of the Cloud.StartAsTask combinator. A cloud task is
spawned, while the parent computation awaits for the result.

3.3.1 Cancellation

At this point it is natural to give an overview of how cancellation is materialized in MBrace. Both the
Cloud.Parallel and Cloud.Choice combinators involve the notion of cancellation in their seman-
tics. MBrace provides a cancellation mechanism, similar to .NET’s, using cancellation tokens.

An ICancellationToken enables cooperative cancellation between jobs or ICloudTask<T> objects.
You create a cancellation token by instantiating a ICancellationTokenSource object, which man-
ages cancellation tokens retrieved from its CancellationTokenSource.Token property. You then
pass the cancellation token to any jobs, or tasks that should receive notice of cancellation.

In contrast with .NET’s cancellation tokens, those abstractions have distributed semantics: A com-
putation in a worker (or even a client), can request cancellations for jobs, tasks, or even thread-pool

1 The actual return type is Local<T>,subtype of Cloud<T>. For the sake of simplicity we use Cloud<T> as a return type
until Section 3.6.
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work items running in another machine.

Below there is an example of wrapping the result of a computation to an option type, depending on
whether the task completed in the given timespan.

1 let tryExecute (workflow : Cloud<’T>) (interval : int) : Cloud<’T option> =

2 cloud {

3 let! cts = Cloud.CreateCancellationTokenSource()

4 let! ctask = Cloud.StartAsTask(workflow,

5 cancellationToken = cts.Token)

6 do! Cloud.Sleep interval

7 cts.Cancel()

8
9 try

10 let! value = ctask.AwaitResult()

11 return Some value

12 with :? OperationCanceledException→
13 return None

14 }

15
16 let test =

17 cloud {

18 do! Cloud.Sleep 10000

19 return 42

20 }

21
22 runtime.Run(tryExecute test 20000)

23 val it : int option = Some 42

24
25 runtime.Run(tryExecute test 5000)

26 val it : int option = None

Example 3.4: Using cancellation tokens in MBrace

3.4 Exceptions

An important feature of cloud workflows is exception handling. MBrace permits the usage of excep-
tions just like any other .NET/F# value. Exceptions can be raised, handled and transferred between
machines.

1 let workflow =

2 cloud {

3 try

4 let! ctask = Cloud.StartAsTask(cloud { return 1 / 0 })

5 return! ctask.AwaitResult()

6 with ex→
7 do! Cloud.Log ex.StackTrace

8 return! Cloud.Raise(ex)

9 }

10
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11 runtime.Run(workflow)

12
13 System.DivideByZeroException: Attempted to divide by zero.

14 at FSI_0022.workflow@30-28.Invoke(Unit unitVar)

15 at MBrace.Core.Builders.Delay@287-1.Invoke(ExecutionContext ctx, Unit t)

16 in C:\workspace\MBrace.Core\src\MBrace.Core\Continuation\Builders.

fs:line 287

Example 3.5: Exception handling in MBrace

3.5 WorkerRef

Up to this point we have seen job execution without having to specify where each job should execute.
Although a runtime implementation might provide some scheduling optimizations, there are often
cases where a job should be executed in a specific worker.

MBrace introduces the concept of worker references. An IWorkerRef denotes a reference to a unique
worker node in the cluster topology. All of the distribution combinators mentioned, provide overloads
so that the given computations will execute in the targeted workers.

Cloud.Parallel : seq<Cloud<’T> * IWorkerRef>→ Cloud<’T []>

Cloud.Choice : seq<Cloud<’T option> * IWorkerRef>→ Cloud<’T option>

Cloud.StartAsTask : Cloud<’T> * IWorkerRef→ Cloud<ICloudTask<’T>>

The IWorkerRef abstraction provides information about the workers identity, number of processor
cores, etc. In addition the MBrace.Azure implementation includes performance monitoring informa-
tion like CPU/Memory/Network utilization, the number of currently executing jobs, heartbeat infor-
mation, etc.

This feature:

• Enables user-level scheduler implementations where the programmer can use the information
mentioned above in order to load balance the jobs.

• Enables efficient execution on heterogeneous clusters: e.g. cloud blocks can execute only in
machines with graphics units and use the underlying hardware, specific services that run in
particular machines, as an optimization for data processing libraries in order to allocate jobs in
machines where the data is stored/cached.

• Is used by the library implementations that MBrace.Core includes, in order to balance the com-
putations according to worker processing capacities.

3.6 Constraining execution

So far we have seen that Cloud<T> is the premium type used to denote execution. Although MBrace
is a framework for distributed execution, sometimes it’s quite useful to constraint the execution of a
code block only in-memory, suppressing any distribution effects. For this reason MBrace introduces a
Local<T> type, subtype of Cloud<T>, that describes a computation with in-memory only execution.
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The Local module redefines many Cloud combinators to use local parallelism semantics, as well as
a local computation expression builder.

Local.Parallel : (computations : seq<Local<’T>>)→ Local<’T []>

Local.Choice : (computations : seq<Local<’T option>>)→ Local<’T option>

Cloud.AsLocal : (computation : Cloud<’T>)→ Local<’T>

Cloud.OfAsync : (computation : Async<’T>)→ Local<’T>

...

Local workflows have two important use cases:

• Managing computation granularity. Especially in recursive/divide and conquer algorithms, where
spawning more jobs would actually slow down the computation, local workflows are used to
force in-memory execution.

• Safely using and composing cloud workflows that handle non-serializable object or in general
resources that do not make sense in a distributed context: e.g. filestreams, network connections,
etc.

Consider the following example. We are using a WebClient (non-serializable, disposable) object in
order to download in parallel some webpages. The downloadParallel function is declared as a local
workflow and uses Cloud.Parallel in order to execute those operations in parallel. Note that the
code does not type check because the type Cloud<T> returned by Parallel does not compose with
the type Local<’T>, expected by the local builder:

Error: Cloud<string * string> is not compatible with type Local<’a>.

Function downloadParallel’ fixed this error by using the Local.Parallel combinator.

1 let downloadParallel uri1 uri2 : Local<string * string> =

2 local {

3 use webClient = new System.Net.WebClient()

4 let download uri =

5 webClient.AsyncDownloadString(uri)

6 |> Cloud.OfAsync

7
8 // Error: Cloud<string * string> is not compatible with

9 // type Local<’a>

10 let! values = Cloud.Parallel(download uri1, download uri2)

11 return values

12 }

13
14 let downloadParallel’ uri1 uri2 : Local<string * string> =

15 local {

16 use webClient = new System.Net.WebClient()

17 let download uri =

18 webClient.AsyncDownloadString(uri)

19 |> Cloud.OfAsync

20
21 let! values = Local.Parallel(download uri1, download uri2)

22 return values
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23 }

Example 3.6: Local execution in MBrace

3.7 Pitfalls

As we can see the MBrace programming model offers a very rich, expressive and easy way to declare
computations that run in a distributed environment. As a result, it’s fairly easy to write code that seems
valid, but doesn’t make sense in the context of cloud workflows, or may behave in a different way
than expected.

3.7.1 Non serializable types

This is the category that is easier to recognize and address. In case of cloud blocks returning or
capturing non-serializable objects both the MBrace.Core and MBrace.Azure return a proper exception
as a result.

1 let workflow =

2 cloud {

3 return IO.File.OpenWrite ”foo.txt”

4 }

5
6 runtime.Run(workflow)

7
8 Failed to execute job ’d85985885a8d4eb3802bbf2b46dfe87f’ —>

9 Nessos.FsPickler.NonSerializableTypeException:

10 Type ’MBrace.Azure.Runtime.Primitives.Result[System.IO.FileStream]’

11 contains non-serializable field of type ’System.IO.FileStream’.

Example 3.7: Non-serializable filesystem stream

3.7.2 Mutation

Traditional in-memory value mutation doesn’t make sense when being in a distributed environment
like MBrace. Consider the following example that mutates in parallel the contents of a ref cell. In an
asynchronous workflow this code would be a race condition and the result would be non-deterministic.
In MBrace this workflow will always return 0. Each one of the child jobs will receive a copy of the
original value, and alter that copy. The original value remains 0.

1 let workflow : Cloud<int> =

2 cloud {

3 let cell = ref 0

4 do! [1..10]

5 |> List.map (fun _→ cloud { cell := !cell + 1 })

6 |> Cloud.Parallel

7 |> Cloud.Ignore

8 return !cell

31



9 }

10
11 runtime.Run workflow

12 val it : int = 0

Example 3.8: Value mutation

3.7.3 Large objects

Although MBrace can handle and serialize efficiently any value, regardless of size, it’s quite common
for user code to create unnecessary serialization of big values and thus slow down the computation.

Consider the following example.

1 let workflow =

2 cloud {

3 let largeObj = [|1..10000000|]

4 return! [1..10]

5 |> List.map (fun _→ cloud { return largeObj.Length })

6 |> Cloud.Parallel

7 }

Example 3.9: Capturing large objects

All ten computations created capture the largeObj value. This results in ten serializations of the
environment instead of one that the programmer might expect. Although it might be possible to
optimize such cases, it is very helpful for the programmer to understand how job distribution actually
happens and address this type of issues. In Section 4.2.1 we provide a user-space workaround for this
common problem.

3.8 Streaming operations with MBrace.Flow

Although not part of the Core library, at this point it’s worth mentioning MBrace.Flow. MBrace.Flow
is a framework, implemented on top of the MBrace.Core primitives that provides and easy way to
describe data parallel streaming computations, with caching and in-memory computation capabilities.
MBrace.Flow shares many similarities with the Apache Spark engine [spar].

1 open MBrace.Flow

2
3 let workflow : Cloud<(string * int64) []> =

4 CloudFlow.OfCloudFileByLine ”foobar.txt”

5 |> CloudFlow.collect(fun line→ line.Split(’ ’))

6 |> CloudFlow.filter(fun word→ word.Length > 3)

7 |> CloudFlow.countBy id

8 |> CloudFlow.toArray

Example 3.10: A CloudFlow pipeline

MBrace.Flow handles transparently input partitioning, parallelism, workflow scheduling to workers
where the data is cached, etc, all in a declarative way.
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Chapter 4

Storage abstractions and data structures

4.1 Overview

So far we have seen MBrace as a framework for big computations. In addition to the many combinators
that enable distribution and parallelism MBrace also offers a plethora of abstractions for managing data
in a global, machine-wide scope. The following sections include an overview of the basic storage
primitives.

4.2 CloudFile

CloudFile constitutes the premium storage primitive offered by MBrace. A CloudFile is nothing
more than a string, the path of a file, in a probably distributed but with uniform access filesystem. In
other words a CloudFile is a reference to untyped binary data, either created using the MBrace APIs
or existing in the above mentioned storage.

MBrace provides several methods for creating, accessing, deleting, etc, CloudFiles. Below there is a
typical example of creating a CloudFile and reading it’s contents back in the client.

1 let writeLines path (lines : string seq) : Cloud<CloudFile> =

2 cloud {

3 let writer (stream : Stream) =

4 async {

5 use sr = new IO.StreamWriter(stream)

6 for line in lines do

7 sr.WriteLine(line)

8 }

9 return! CloudFile.Create(path, writer)

10 }

11
12 // Evaluate workflow

13 let file = runtime.Run(writeLines ”temp/foobar.txt” [”Hello”; ”world”])

14 val file : CloudFile = temp/foobar.txt

15
16 // Evaluate in local client rather than the cluster

17 runtime.RunLocally(CloudFile.ReadLines(file.Path))

18 val it : seq<string> = seq [”Hello”; ”world”]

Example 4.1: Implementation of a CloudFile.WriteLines function
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4.2.1 CloudValue

Even though cloud files are a powerful primitive, their untyped nature makes them inconvenient to use
when dealing with typed data. For this reason MBrace includes a primitive called CloudValue<T>. A
CloudValue is a lightweight reference (similarly to CloudFile) to typed and serialized data. Cloud-
Values resemble references found in the ML family of languages. CloudValues:

• Are immutable references that can be either initialized or dereferenced.

• Provide in-memory caching capabilities

• Support any F#/.NET serializable value as a payload.

• Are extremely useful in performance optimizations.

• Fit nicely with iterative algorithms (like kmeans).

At this point, instead of giving a typical example for the CloudValue API or defining a distributed
data structure, let’s return to example 3.9, and update it to use a CloudValue for the large shared object.

1 let workflow =

2 cloud {

3 let! cvalue = CloudValue.New [|1..10000000|]

4 return! [1..10]

5 |> List.map (fun _→ cloud {

6 // Dereference and compute

7 let! value = cvalue.Value

8 return value.Length })

9 |> Cloud.Parallel

10 }

Example 4.2: Using a CloudValue

This way the large array is only serialized once, instead of multiple times, and a lightweight reference
is send to child computations.

4.2.2 CloudSequence

While CloudValues are useful for storing small or medium sized data, using them for large collections
of objects may create unnecessary memory pressure. A CloudSequence<T> is similar to a Cloud-
Value, but offers on-demand fetch for a collection of values of type T, thus a smaller memory foot-
print.

1 let workflow =

2 cloud {

3 let! cseq = CloudSequence.New [|1..10000000|]

4 return! [1..10]

5 |> List.map (fun _→ cloud {

6 // Dereference and fetch on demand

7 let! values = cseq.ToEnumerable()

8 return Seq.length values })
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9 |> Cloud.Parallel

10 }

Example 4.3: Using a CloudSequence

4.3 CloudChannel

In MBrace a CloudChannel<T> is a reference to some queue implementation. Essentially CloudChan-
nel is a pair of an ISendPort<’T> and an IReceivePort<’T>, that can be used to send messages
between cloud workflows. The semantics of a CloudChannel depend on the actual implementation
with regards to multiple senders/receivers, message ordering, etc.

Below there is an example of an agent that ‘ticks’ every second.

1 let tick : Cloud<IReceivePort<int>> =

2 cloud {

3 // Both send and receive port are serializable in MBrace.Azure

4 let! send, recv = CloudChannel.New<int>()

5
6 let rec aux count = cloud {

7 do! send.Send(count)

8 do! Cloud.Sleep 1000

9 return! aux (count + 1)

10 }

11
12 // Spawn

13 do! Cloud.StartAsTask(aux 0)

14 |> Cloud.Ignore

15
16 return recv

17 }

18
19
20 let recv = runtime.Run(tick)

21 val recv : IReceivePort<int>

22
23 runtime.RunLocally(recv.Receive())

24 val it : int = 0

25 runtime.RunLocally(recv.Receive())

26 val it : int = 1

27 runtime.RunLocally(recv.Receive())

28 val it : int = 2

Example 4.4: Defining a ‘tick’ agent using CloudChannels

4.4 CloudAtom

An ICloudAtom<T> represents distributed updatable value reference. A cloud atom can be mutated
(either atomically or not) and is very useful for implementing global counters, synchronisation prim-
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itives like locks, semaphores, etc.

In the example below the result is guaranteed to be 42.

1 let workflow =

2 cloud {

3 let! atom = CloudAtom.New(0)

4 do! [1..42]

5 |> List.map (fun _→
6 // Atomic updates

7 CloudAtom.Update(atom, fun x→ x + 1))

8 |> Cloud.Parallel

9 |> Cloud.Ignore

10 return! CloudAtom.Read(atom)

11 }

12
13 runtime.Run(workflow)

14 val it : int = 42

Example 4.5: Using a CloudAtom

4.5 CloudDictionary

An ICloudDictionary<’T> is a distributed key-value store abstraction. It offers similar functionality
to .NET ConcurrentDictionary data structure. Below there is an example of defining a workflow
that memoizes function values.

1 let memoizer (dictionary : ICloudDictionary<’T>) (f : ’U→ ’T) (x : ’U) =

2 cloud {

3 let key = x.ToString()

4 let! value = dictionary.TryFind(key)

5 match value with

6 | Some v→ return v

7 | None→
8 let value = f x

9 do! dictionary.Add(key, value)

10 return value

11 }

Example 4.6: Implementing function memoization

4.6 CloudDisposable

All of the primitives mentioned above use space in the storage back-end used by the runtime. MBrace
provides a way of deallocating this space by implementing the ICloudDisposable interface.

type ICloudDisposable =

abstract Dispose : unit→ Local<unit>
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Example 4.7: ICloudDisposable

This concept is similar to the IDisposable interface available in .NET. The MBrace cloud builder
offers functionality for using scoped disposable resources, similar to the use and using keywords in
F# and C#.

In the example below the CloudValuewill be disposed at the end of it’s scope regardless of exceptions,
etc.

1 let workflow =

2 cloud {

3 use! cvalue = CloudValue.New 42

4
5 failwith ”boom!”

6
7 // cvalue is out of scope, dispose

8 return ()

9 }

Example 4.8: ICloudDisposable

4.7 Summary

Bellow you can see a summary of all the data abstractions offered by MBrace/MBrace.Azure and their
basic properties.

Type Underlying Gives Caching
CloudFile File store Stream/byte[]/lines/text no
CloudAtom<T> Table store T no
CloudDictionary<T> Table store string -> T no
CloudChannel<T> Service Bus T values no
CloudValue<T> CloudFile + deserializer for T T on by default
CloudSequence<T> CloudFile + deserializer for seq<T> seq<T> off by default

Table 4.1: Summary of Data abstractions in MBrace
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Chapter 5

Fault tolerance

This chapter covers the fault tolerancemodel instructed by MBrace and implemented in MBrace.Azure.
By using the term fault tolerance we are referring to either hardware failure or unrecoverable runtime
failure that causes user workflows to not complete with success. Note that user level exceptions are
not considered as abnormal behavior (i.e. faults) and are handled the way described in section 3.4.

MBrace offers a way of defining a fault recovery policy, that after a number of attempts will either fail
or retry after a given delay.

type FaultPolicy = { Policy : int→ exn→ TimeSpan option }

Cloud.FaultPolicy : Local<FaultPolicy>

Cloud.WithFaultPolicy : FaultPolicy→ Cloud<’T>→ Cloud<’T>

Cloud.StartAsTask : (Cloud<’T> * FaultPolicy)→ Cloud<ICloudTask<’T>>

Example 5.1: Fault tolerance in MBrace

The high-level strategy within a workflow is:

• Define your retry strategy and policy.

• Try the operation that could result in a transient fault.

• If transient fault occurs, invoke the retry policy.

• If all retries fail, catch a final exception.

An interesting observation is that, although a fault policy can be set for any workflow, fault tolerance is
closely related to the underlying runtime implementation. This means that a fault policy is a property
of the runtime’s scheduling unit i.e. a job (see Chapters 6 and 7 for more information). As a result
setting a fault policy only takes effect when the given workflow introduces distribution.
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Part II

The MBrace implementation





Chapter 6

The Cloud Monad and Continuation Passing Style

6.1 Overview

The two remaining chapters provide an in-depth view of the cloud workflow execution. This chapter’s
goals are :

• Make the reader familiar to the Cloud<T> internals and representation.

• Describes the cloud monad/builder interaction with the underlying runtime.

• Define what is considered as a job in MBrace.Azure.

• Give an overview of how a core operator like Cloud.Parallel is implemented.

Although giving such overview seems like exposing the user to implementation details, it is funda-
mental for having a correct understanding of the workflow semantics and execution.

6.2 Continuation Passing Style

In chapter 2 we presented the computation expression builder translation rules (table 2.1). By per-
forming a CPS transformation on cloud expressions we can view a Cloud<T> as continuation based
distributed computation. At this point it is useful to define a Continuation<T> type that represents
the Cloud<T> continuations:

type Continuation<’T> = {

SCont : ’T → unit

ECont : exn→ unit

CCont : OperationCancelledException→ unit

}

Example 6.1: Cloud<T> continuations

A cloud expression becomes a function that accepts three continuations: a success continuation scont,
an exception continuation econt and a cancellation continuation ccont. When evaluating a Contin-
uation<T> exactly one of the continuations should be called.

But how can someone implement a primitive combinator like Cloud.Parallel using those three
continuations? It is implied that the three continuations have access to some sort of runtime han-
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dle, responsible for enqueueing jobs, access to storage, logging, etc. The next section describes the
functionality provided by this handle.

6.3 Runtime resources

Creating meaningful combinators presupposes accessing runtime resources. This section gives a short
description of those resources.

6.3.1 Distribution Provider

Probably the most important interface needed for a MBrace runtime implementation is the IDistri-
butionProvider. This type should be the starting and core point of any runtime and provides the
needed functionality for implementing combinators described in chapters 3 and 5.

IDistributionProvider
ScheduleParallel enqueue given workflows as a Parallel
ScheduleChoice enqueue given workflows as a Choice
ScheduleStartAsTask enqueue given workflow as a CloudTask

FaultPolicy get current FaultPolicy
WithFaultPolicy switch FaultPolicy

WithForcedLocalParallelismSetting switch between cloud and local

… other functionality like logging,
creating cancellation tokens,
executing local workflows, etc

Table 6.1: The core of a runtime implementation

6.3.2 Other resources

Other resources provided by a runtime to a computation include, but are not limited to:

• Storage access mechanisms. In particular implementations of CloudFile, CloudAtom, Cloud-
Channel and CloudDictionary factories.

• In-memory/local filesystem caches, etc.

• Access to a job execution pool.

• Primitives used for distributed coordination, like counters, etc.

• Worker specific data.

• Custom, user-specified resources.

At this point let’s define the aggregation of the above mentioned resources as an ExecutionContext.
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type ExecutionContext = {

Token : ICloudCancellationToken

Runtime : IDistributionProvider

JobQueue : JobQueue

CloudFileProvider : CloudFileProvider

…

CounterFactory : CounterFactory

…

CustomResources : seq<obj>

}

Example 6.2: Workflow’s execution context

6.4 The Cloud Monad

One could argue that the Continuation<T> type is adequate for representing a cloud workflow. Im-
plementing any non-trivial operator shows the need to use the ExecutionContext in order to interact
with the runtime. This context could be threaded from the current computation to it’s continuations.

While this is fine in a local/in-memory environment, the fact that Continuation<T> is serialized
and send across machines, as well as the fact that the ExecutionContext holds non-serializable and
worker specific resources makes this representation insufficient.

6.4.1 Combining with the Reader Monad

The Reader Monad offers a great way of passing state and reading values from a shared environment.
By using the ExecutionContext as the machine-local environment and changing the Continua-

tion<T> type so that the context is passed as an argument we get:

type Continuation<’T> = {

SCont : ExecutionContext→ ’T → unit

ECont : ExecutionContext→ exn→ unit

CCont : ExecutionContext→ OperationCancelledException→ unit

}

Example 6.3: The updated Cloud<T> continuations

Now Continuation<T> becomes an entity that can be serialized and distributed across machines.
Executing Continuation<T> in a worker is done by supplying the non-distributable local Execu-
tionContext to the workflow’s continuations.

As a conclusion: the cloud monad offered by MBrace forms a continuation over reader monad.

6.4.2 Cloud.FromContinuations

Given that knowledge, at this point we introduce two of the most important core combinators:
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Cloud.FromContinuations<’T> :

(ExecutionContext→ Continuation<’T>→ unit)→ Cloud<’T>

Cloud.GetResource<’T> : unit→ ’T

Example 6.4: cloud/cc

Using the functions above, one can either access the monad’s resources, or construct a new computa-
tion from a triple of continuations.

Finally, from the Cloud.FromContinuations type signature we can derive the Cloud<T> definition:

type Cloud<’T> = ExecutionContext→ Continuation<’T>→ unit

Example 6.5: The Cloud<T> signature

6.4.3 Implementing a primitive combinator

Implementing a combinator like Cloud.Parallel in MBrace.Azure is a straightforward procedure.
After defining a set of useful distributed coordination primitives like counters, result aggregators, as
well as a job execution pool, all that remains to be done is provide an implementation that constructs
continuations with the expected semantics (described in 3.1) and enqueues them in the runtime job
pool.

1 let scheduleParallel(computations : seq<#Cloud<’T>>) : Cloud<’T []> =

2 Cloud.FromContinuations(

3 fun (ctx : ExecutionContext) (cont : Continuation<’T []>)→
4 let n = computations.Length

5
6 // aggregate and call cont.SCont when all complete

7 let sconts = mkSuccessConts n cont

8
9 // call cont.ECont on first exception

10 let econts = mkErrorConts n cont

11
12 // call cont.Ccont on first cancellation

13 let cconts = mkCancelConts n cont

14
15 let (jobs : Job []) = pack(sconts, econts, cconts) // serialize, etc

16 ctx.JobQueue.Enqueue(jobs)

17 )

18
19 let parallel (computations : seq<#Cloud<’T>>) : Cloud<’T []> = cloud {

20 let! runtime = Cloud.GetResource<IDistributionProvider> ()

21 let workflow = runtime.ScheduleParallel computations

22 return workflow

23 }

Example 6.6: ScheduleParallel and Cloud.Parallel

At this point it becomes clear what is considered as a job in MBrace.Azure. A Job is the minimum a
unit of work that can be executed by the distributed runtime. Usually a job carries its parent contin-
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uations and as a result code that is not logically/visually part of the child computation is executed in
child jobs.
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Chapter 7

The MBrace.Azure runtime

7.1 Overview

For a runtime implementationwe chose theMicrosoft Azure platform. With MBracewritten in F#/.NET
and rich Azure tooling available in IDEs like Visual Studio, Azure was an obvious choice that a large
amount of the .NET community is familiar with. Azure Service Bus [serv] and Storage [stor] are the
backbone of MBrace.Azure.

Service Bus is a cloud-based messaging system for connecting distributed applications. Service Bus
is used by our runtime in order to implement a job execution pool. A Service Bus Queue is used
to hold the set of pending computations.

Azure Storage provides the capability to store large amounts of binary data in Azure Blobs, as well
as structured NoSQL based records with Azure Tables. Blob storage is used by our runtime
as a backing store for large serialized entities (continuations, etc), and Table storage is used to
implement runtime primitives like counters, runtime state like worker records and logs.

Both Service Bus and Storage are designed with scalability and fault tolerance and elasticity in mind,
and our runtime incorporates those features.

In order to create MBrace.Azure clusters an Azure account is required. After creating an account the
only thing required is acquiring a service bus and storage connection string. Both of these connection
strings are the only configuration needed for MBrace.Azure and can be used to create clients or worker
nodes.

1 let azureConfiguration =

2 { Configuration.Default with

3 StorageConnectionString = myStorageConnectionString

4 ServiceBusConnectionString = myServiceBusConnectionString }

5 let runtime = Runtime.GetHandle(azureConfiguration)

Example 7.1: Creating a client

7.2 MBrace.Azure features

The following sections provide an overview of the features implemented by MBrace.Azure. Our
runtime provides both worker implementations and a client that can be used for interaction with the
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runtime. MBrace.Azure fully implements the MBrace.Core requirements and offers a rich set of APIs
on top of that.

7.2.1 Runtime Service

MBrace.Azure offers a runtime Service that can be used to spawn a worker node. The worker node
is an entity responsible for dequeueing and executing jobs from the global job pool. Note that, in
contrast with other implementations like Apache Hadoop, in our runtime all runtime node are workers
i.e. there are no nodes dedicated on scheduling, holding runtime state, etc. All of the runtime state is
stored in Azure Service Bus and Storage, that guarantee its persistence.

MBrace.Azure provides two samples using the runtime service:

• An Azure Worker Role template used to create multiple virtual machines in Microsoft Azure,
that runs our service. Note that we are referring to Platform As A Service (PaaS) VMs, where
the user doesn’t need to maintain the infrastructure.

• A standalone executable that can be used for local testing i.e. without the need to deploy virtual
machines.

7.2.2 Worker monitoring

Our implementation also offers monitoring of the worker nodes. Periodically each node sends infor-
mation about cpu, memory, network utilization, the number of jobs currently executing, as well as
heartbeats. Nodes fail to give heartbeats in a given interval are considered by the runtime dead and
are not used by the runtime until they are recycled.

1 runtime.GetWorkers() |> Seq.head

2 val it : WorkerRef =

3 MBrace.Azure.WorkerRef {Id = ”3d1dd41c72814386a569de644dbb7d11”;

4 Hostname = ”RD00156D3A3723”;

5 Status = Running;

6 Version = ”0.6.9.0”;

7 ActiveJobs = 4;

8 MaxJobCount = 16;

9 CPU = 37.97297287;

10 Memory = 2756.0;

11 TotalMemory = 6111.0;

12 NetworkUp = 3.726053238;

13 NetworkDown = 8.563692093;

14 HeartbeatTime = 21/06/2015 15:21:32 +00:00;

15 InitializationTime = 21/06/2015 15:20:55 +00:00;

16 ProcessId = 4012;

17 ProcessName = ”mbrace.azureworker”;

18 ProcessorCount = 8;

19 AutoUpdate = false;

20 Fault = null;

21 ConfigurationId = MBrace.Azure.ConfigurationId; }
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7.2.3 Cloud process

MBrace.Azure allows the execution of cloud workflows as ‘processes’. A process is a wrapper of the
workflow’s root job and contains useful information about the execution time, current status, number
of jobs spawned, etc.

1 let ps = runtime.CreateProcess(cloud { return 42 })

2 val it : Process<int> =

3 MBrace.Azure.Client.Process‘1[System.Int32]

4 {Id = ”03656ac893674b629ec77c36106384cc”;

5 Status = Running;

6 ActiveJobs = 1;

7 CompletedJobs = 0;

8 TotalJobs = 1;

9 Completed = false;

10 ExecutionTime = 00:00:00.9161719;

11 InitializationTime = 21/06/2015 18:46:13 +03:00;

12 CancellationTokenSource = dfbb549d5461480c96f66fa305e408a2;

13 Name = ””;

14 Type = System.Int32;}

15
16 ps.AwaitResult() // 42

7.2.4 Job tracking

In addiction, the runtime provides detailed information regarding job execution in the cluster like:
execution times, number of retries, serialized job size, current status, assigned worker, etc. Below
there is a view of the job tree for some process with nested parallelism.

01aa02a...355 Root 5.06 KiB Completed 00:00:10.1961841

├───55eee12...025 Parallel (0,4) 9.55 KiB Completed 00:00:06.1362068

├───3738d33...0de Parallel (1,4) 9.55 KiB Completed 00:00:08.6851059

| ├───0fb1bd3...121 Parallel (0,1) 13.26 KiB Completed 00:00:10.1691793

| ├───b3f32e0...794 Parallel (1,1) 13.26 KiB Completed 00:00:06.1571005

├───e5708e1...31b Parallel (2,4) 9.56 KiB Completed 00:00:09.6100630

| ├───f56160b...c3c Parallel (0,2) 13.26 KiB Completed 00:00:07.1040602

| ├───ca6d137...137 Parallel (1,2) 13.26 KiB Completed 00:00:10.6542046

| ├───5df170d...686 Parallel (2,2) 13.26 KiB Completed 00:00:05.6180358

├───5159dae...ea0 Parallel (3,4) 9.56 KiB Completed 00:00:09.5770645

| ├───f7b1871...9e1 Parallel (0,3) 13.26 KiB Completed 00:00:07.1542197

| ├───128c691...c8c Parallel (1,3) 13.26 KiB Completed 00:00:22.0414365

| ├───5cab915...ef5 Parallel (2,3) 13.26 KiB Completed 00:00:06.8551199

| ├───a4cba07...dc7 Parallel (3,3) 13.26 KiB Completed 00:00:07.1122064

├───a562d87...503 Parallel (4,4) 9.57 KiB Completed 00:00:05.9571426

| ├───072c78e...4c8 Parallel (0,4) 13.26 KiB Completed 00:00:05.9480752

| ├───a78944c...38b Parallel (1,4) 13.26 KiB Completed 00:00:06.4501444

| ├───8c93cd9...196 Parallel (2,4) 13.26 KiB Completed 00:00:06.9761758

| ├───4a57daf...6ba Parallel (3,4) 13.26 KiB Completed 00:00:07.5290255

| ├───8ccfa0d...59e Parallel (4,4) 13.26 KiB Completed 00:00:10.4790779
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7.2.5 Fault tolerance

The runtime implements the required fault tolerance semantics for job execution (see chapter 5) using
the lease/lock mechanism offered by Service Bus. Consider the following code that crashes one of the
worker nodes. Running the code with a NoRetry fault policy causes a FaultException as a result.

1 let ps =

2 runtime.CreateProcess(

3 [1..4]

4 |> List.map (fun i→ cloud { return i <> 2 || exit 1 })

5 |> Cloud.Parallel

6 , faultPolicy = FaultPolicy.NoRetry)

7
8 ps.AwaitResult()

9
10 MBrace.Core.FaultException:

11 Fault exception when running job ’071b96a23264423890cb6577184c6fa6’, faultCount
’1’

12 at Cloud.Parallel(seq<Cloud<Boolean» computations)

13 — End of stack trace from previous location where exception was thrown —

14 Stopped due to error

7.2.6 Storage primitives

MBrace.Azure provides implementations for all of the storage primitives of chapter 4:

• CloudFiles are implemented as Azure Blobs.

• CloudAtoms, CloudDictionaries are implemented on top of the Azure Table storage.

• CloudChannels are implemented using Service Bus queues.

7.2.7 Assembly distribution

At this point it is worth mentioning that the runtime supports transmission of either static or dynamic
assemblies (e.g. assemblies created in the F# REPL) between clients and workers.MBrace.Azure
makes use of the Vagabond library which enables such scenarios. This way our implementation de-
livers a smooth programming experience with rapid prototyping and easy code deployment from a
REPL.
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Part III

Final Remarks





Chapter 8

Conclusion and future work

So, to conclude, we presented the design and programmingmodel of MBrace. MBrace offers a rich and
elegant approach for describing distributed cloud computations and implementing algorithms without
the need to manage the ‘low level ’details that appear in a distributed environment.

In addition, we implement a runtime for MBrace on top of the Microsoft Azure stack. MBrace.Azure
aims to support all concepts described in MBrace.Core. Although MBrace.Azure is still a young
project, we believe that our current implementation is on a stable enough level, with many useful
features, that someone can download and start using. Also having a active community that uses MBrace
would help us find bugs and also help us prioritize on runtime features.

Our first goal is to keep up with the core library and stabilize our APIs and features once MBrace.Core
reaches its 1.0 release milestone.

With MBrace.Azure being the first distributed runtime for MBrace, we acquired a lot of knowledge
on how a real distributed runtime is implemented. The goal is to provide any abstractions extracted
from our runtime as a generic library, part of MBrace.Core, for creating runtime systems for MBrace.

Both MBrace and MBrace.Azure are open source projects. After accomplishing the above mentioned
goal of providing common foundations for runtime implementations, we intent to write a technical
runtime overview that will make it easier for someone to contribute to our project.

Finally, we hope that our implementation helps MBrace become a solid choice for anyone who wants
to perform distributed computations in the .NET ecosystem.
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