Equivalence by Canonicalization for Synthesis-Backed Refactoring

A SUFFICIENT CONDITIONS FOR CANONICALIZATION FUNCTIONS

We found the following theory helpful for thinking about and working with canonicalization functions.

Definition A.1 (Canonicalization function ingredients). Let $U \subseteq \operatorname{Prog}_{\mathcal{L}^2} \times \operatorname{Prog}_{\mathcal{L}^2} \times \Sigma_{\mathcal{L}}$ be a relation and $\phi : \operatorname{Prog}_{\mathcal{L}^2} \to \operatorname{Prog}_{\mathcal{L}^2}$ a function. Then:

- ϕ is substitution-preserving on $\llbracket \cdot \rrbracket_{\mathcal{L}}$ if for all $S \in \operatorname{Prog}_{f^2}$ and $\sigma \in \Sigma_{\mathcal{L}}, \llbracket \phi(\sigma S) \rrbracket_{\mathcal{L}} = \llbracket \sigma \phi(S) \rrbracket_{\mathcal{L}}$.
- ϕ is injective on $\llbracket \cdot \rrbracket_{\mathcal{L}}$ if for all $P_1, P_2 \in \operatorname{Prog}_{\mathcal{L}}, \llbracket \phi(P_1) \rrbracket_{\mathcal{L}}^{\sim} = \llbracket \phi(P_2) \rrbracket_{\mathcal{L}} \Rightarrow \llbracket P_1 \rrbracket_{\mathcal{L}} = \llbracket P_2 \rrbracket_{\mathcal{L}}.$
- ϕ is semantics-preserving if for all $S \in \text{Prog}_{\mathcal{L}^2}$, $\llbracket \phi(S) \rrbracket_{\mathcal{L}^2} = \llbracket S \rrbracket_{\mathcal{L}^2}$.

LEMMA A.2 (CANONICALIZATION FUNCTION RECIPE). Let U be a partial semantic unification relation for \mathcal{L} and $\phi : \operatorname{Prog}_{\mathcal{L}^2} \to \operatorname{Prog}_{\mathcal{L}^2}$ be a computable function that is substitution-preserving on $\llbracket \cdot \rrbracket_{\mathcal{L}}$ and injective on $\llbracket \cdot \rrbracket_{\mathcal{L}}$. Then ϕ is a canonicalization function for \mathcal{L} with respect to U.

PROOF. We have

$$(S_1, S_2, \sigma) \in \operatorname{Ker}_U \phi \Longrightarrow U(\phi(S_1), \phi(S_2), \sigma)$$

$$\Rightarrow [\![\sigma\phi(S_1)]\!]_{\mathcal{L}} = [\![\sigma\phi(S_2)]\!]_{\mathcal{L}}$$

$$\Rightarrow [\![\phi(\sigma S_1)]\!]_{\mathcal{L}} = [\![\phi(\sigma S_2)]\!]_{\mathcal{L}}$$

$$\Rightarrow [\![\sigma S_1]\!]_{\mathcal{L}} = [\![\sigma S_2]\!]_{\mathcal{L}}$$

$$\Rightarrow [\![S_1]\!] \equiv^{\sigma}_{\mathcal{L}} [\![S_2]\!]$$

$$\Rightarrow (S_1, S_2, \sigma) \in \operatorname{Ker}_{\equiv_{\mathcal{L}}} [\![\cdot]\!]_{\mathcal{L}^2},$$

so $\operatorname{Ker}_U \phi \leq \operatorname{Ker}_{\equiv_{\mathcal{L}}} \left[\!\!\left[\cdot\right]\!\!\right]_{\mathcal{L}^?}$.

LEMMA A.3. If $\phi : \operatorname{Prog}_{\mathcal{L}^2} \to \operatorname{Prog}_{\mathcal{L}^2}$ is semantics-preserving, then ϕ is (i) substitution-preserving on $\llbracket \cdot \rrbracket_{\mathcal{L}}$ and (ii) injective on $\llbracket \cdot \rrbracket_{\mathcal{L}}$.

PROOF. For (i), if $S \in \text{Prog}_{\mathcal{L}^{?}}$ and $\sigma \in \Sigma_{\mathcal{L}}$, then

$$\llbracket \phi(\sigma S) \rrbracket_{\mathcal{L}} = \llbracket \sigma S \rrbracket_{\mathcal{L}} = \llbracket S \rrbracket_{\mathcal{L}^{?}}(\sigma) = \llbracket \phi(S) \rrbracket_{\mathcal{L}^{?}}(\sigma) = \llbracket \sigma \phi(S) \rrbracket_{\mathcal{L}}.$$

For (ii), the result is immediate.

B PROOFS FOR MAIN PAPER

We now provide proofs of the lemmas and theorem in the main paper.

THEOREM 4.5. Algorithm 1 always terminates, and if it returns \top on (ϕ, P_1, P_2) , then $[P_1] = [P_2]$.

PROOF. Termination is immediate from the computability of canonicalization functions and the decidable syntactic equality of Prog. Correctness is immediate from the fact that $\text{Ker } \phi \leq \text{Ker } \|\cdot\|$. \Box

LEMMA 4.13. Let U be a partial semantic unification relation for \mathcal{L} and ϕ : $\operatorname{Prog}_{\mathcal{L}^2} \to \operatorname{Prog}_{\mathcal{L}^2}$ be computable and semantics-preserving. Then ϕ is a canonicalization function for \mathcal{L} with respect to U.

PROOF. Immediate corollary of Lemma A.2 and Lemma A.3.

THEOREM 4.15. Let ϕ be a canonicalization function for a hole-free language \mathcal{L} with respect to U and u be an inference algorithm for U. Then $EBC(\phi, u, \cdot, \cdot)$ is a semi-inference algorithm for $Ker_{\equiv r} \llbracket \cdot \rrbracket_{r^2}$.

PROOF. Computability follows from the computability of ϕ and u. For correctness, suppose $EBC(\phi, u, S_1, S_2) = \sigma$. Then $u(\phi(S_1), \phi(S_2)) = \sigma$, so $U(\phi(S_1), \phi(S_2), \sigma)$. As $Ker_U \phi \leq Ker_{\equiv_{\mathcal{L}}} \llbracket \cdot \rrbracket_{\mathcal{L}^2}$, we have $\llbracket S_1 \rrbracket_{\mathcal{L}^2} \equiv_{\mathcal{L}}^{\sigma} \llbracket S_2 \rrbracket_{\mathcal{L}^2}$.

THEOREM 4.19. Let ϕ_1 and ϕ_2 be canonicalization functions for a hole-free language \mathcal{L} with respect to U_1 and U_2 and let u_1 and u_2 be inference algorithms for U_1 and U_2 . Suppose $\phi_1 \geq \phi_2$. Then:

- (1) If $EBC(\phi_2, u_2, S_1, S_2) = \sigma_2$ for some hole substitution $\sigma_2 \in \Sigma$, then $EBC(\phi_1, u_1, S_1, S_2) = \sigma_1$ for some hole substitution $\sigma_1 \in \Sigma$.
- (2) If $\phi_1 > \phi_2$, there exist $S_1, S_2 \in cl_2$ Prog with $EBC(\phi_2, u_2, S_1, S_2) = \bot$ yet $EBC(\phi_1, u_1, S_1, S_2) = \sigma_1$ for some hole substitution $\sigma_1 \in \Sigma$.

Proof.

(1) We must have $u_2(\phi_2(S_1), \phi_2(S_2)) = \sigma_2$, so $U_2(\phi_2(S_1), \phi_2(S_2), \sigma_2)$. Therefore,

 $(S_1, S_2) \in \mathcal{F}(\operatorname{Ker}_{U_2} \phi_2) \leq \mathcal{F}(\operatorname{Ker}_{U_1} \phi_1),$

so there exists some $\sigma_1 \in \Sigma$ such that $U_1(\phi_1(S_1), \phi_1(S_1), \sigma_1)$; the result follows from the fact that u_1 is an inference algorithm.

(2) We can take any $(S_1, S_2) \in \mathcal{F}(\operatorname{Ker}_{U_1} \phi_1) \setminus \mathcal{F}(\operatorname{Ker}_{U_2} \phi_2)$, which must be nonempty because the refinement is strict.

THEOREM 5.3. Let ϕ be a canonicalization function for a hole-free language \mathcal{L} with respect to U, u be an inference algorithm for U, ENUM be an enumerator $\text{Lib}_{\mathcal{L}}$, and P be a program in $\text{Prog}_{\mathcal{L}}$. If Algorithm 3 terminates, it returns a component sketch $S \in \text{cl}_2 \text{Lib}_{\mathcal{L}}$ and hole substitution σ such that $[\sigma S]_{\mathcal{L}} = [P]_{\mathcal{L}}$.

PROOF. If Algorithm 3 returns (S, σ) , then $\text{EBC}(\phi, u, P, S) = \sigma$, so we have $[\![S]\!]_{\mathcal{L}^2} \equiv_{\mathcal{L}}^{\sigma} [\![P]\!]_{\mathcal{L}^2}$ by Theorem 4.15. Hence, $[\![\sigma S]\!] = [\![\sigma P]\!] = [\![P]\!]$, where the second equality holds because \mathcal{L} is hole-free.

Equivalence by Canonicalization for Synthesis-Backed Refactoring

C COBBLER'S LIBRARY COMPONENTS

We chose the components to include in COBBLER's library based on COBBLER's empirical performance on the training set (and not the test set).

For CBR-ELM, we include the following 17 components mostly from the standard library:⁵

(1)	Basics.or()	(9)	List.append
(2)	Basics.and(&&)	(10)	List.map
(3)	Basics.not	(11)	List.filter
		(12)	List.concat
(4)	Maybe.map	(13)	List.any
(5)	Maybe.withDefault	(14)	List.head
		(15)	List.tail
(6)	Result.map	(16)	List.find (not present in Elm standard library)
(7)	Result.mapError	(17)	List.findMap (not present in Elm standard library)
(8)	Result.withDefault		

For CBR-Python, we include the following 21 NumPy components:

(1) np.sum	(11) np.full
(2) np.prod	(12) np.greater
	<pre>(13) np.greater_equal</pre>
(3) Filtering (e.g. $x[x > 0]$)	(14) np.less
	(15) np.less_equal
<pre>(4) np.multiply</pre>	(16) np.where
(5) np.divide	(17) np.roll
(6) np.add	(18) np.convolve (with "valid" option)
(7) np.subtract	(19) np.random.randint (with "size" argument)
(8) np.power	(20) np.arange
(9) np.equal	(21) np.copy
(10) np.not_equal	

As mentioned in Section 6.2, we also include two additional functions for CBR-PYTHON we call *cosmetic* (list and np.vectorize), which do not provide any performance benefits but can expose opportunities to apply other functions.

⁵https://package.elm-lang.org/packages/elm/core/latest/