
Equivalence by Canonicalization for Synthesis-Backed Refactoring

A SUFFICIENT CONDITIONS FOR CANONICALIZATION FUNCTIONS
We found the following theory helpful for thinking about and working with canonicalization
functions.

De�nition A.1 (Canonicalization function ingredients). Let* ✓ ProgL?⇥ProgL?⇥⌃L be a relation
and q : ProgL? ! ProgL? a function. Then:
• q is substitution-preserving on J·KL if for all (2 ProgL? and f 2 ⌃L , Jq (f()KL = Jfq (()KL .
• q is injective on J·KL if for all %1, %2 2 ProgL , Jq (%1)KL = Jq (%2)KL) J%1KL = J%2KL .
• q is semantics-preserving if for all (2 ProgL? , Jq (()KL? = J(KL? .

L����A.2 (C��������������� �������� ������). Let* be a partial semantic uni�cation relation
for L and q : ProgL? ! ProgL? be a computable function that is substitution-preserving on J·KL and
injective on J·KL . Then q is a canonicalization function for L with respect to* .

P����. We have
((1, (2,f) 2 Ker* q) * (q ((1),q ((2),f)

) Jfq ((1)KL = Jfq ((2)KL
) Jq (f(1)KL = Jq (f(2)KL
) Jf(1KL = Jf(2KL
) J(1K ⌘f

L J(2K
) ((1, (2,f) 2 Ker⌘L J·KL? ,

so Ker* q  Ker⌘L J·KL? . ⇤

L���� A.3. If q : ProgL? ! ProgL? is semantics-preserving, then q is (i) substitution-preserving
on J·KL and (ii) injective on J·KL .

P����. For (i), if (2 ProgL? and f 2 ⌃L , then
Jq (f()KL = Jf(KL = J(KL? (f) = Jq (()KL? (f) = Jfq (()KL .

For (ii), the result is immediate. ⇤

Justin Lubin, Jeremy Ferguson, Kevin Ye, Jacob Yim, and Sarah E. Chasins

B PROOFS FOR MAIN PAPER
We now provide proofs of the lemmas and theorem in the main paper.

T������ 4.5. Algorithm 1 always terminates, and if it returns > on (q, %1, %2), then J%1K = J%2K.

P����. Termination is immediate from the computability of canonicalization functions and the
decidable syntactic equality of Prog. Correctness is immediate from the fact that Kerq  Ker J·K. ⇤

L���� 4.13. Let * be a partial semantic uni�cation relation for L and q : ProgL? ! ProgL? be
computable and semantics-preserving. Then q is a canonicalization function for L with respect to* .

P����. Immediate corollary of Lemma A.2 and Lemma A.3. ⇤

T������ 4.15. Let q be a canonicalization function for a hole-free languageL with respect to* and
D be an inference algorithm for* . Then E�C(q,D, ·, ·) is a semi-inference algorithm for Ker⌘L J·KL? .

P����. Computability follows from the computability of q and D. For correctness, suppose
E�C(q,D, (1, (2) = f . Then D (q ((1),q ((2)) = f , so * (q ((1),q ((2),f). As Ker* q  Ker⌘L J·KL? ,
we have J(1KL? ⌘f

L J(2KL? . ⇤

T������ 4.19. Let q1 and q2 be canonicalization functions for a hole-free language L with respect
to* 1 and* 2 and let D1 and D2 be inference algorithms for* 1 and* 2. Suppose q1 ⌫ q2. Then:

(1) If E�C(q2,D2, (1, (2) = f2 for some hole substitution f2 2 ⌃, then E�C(q1,D1, (1, (2) = f1 for
some hole substitution f1 2 ⌃.

(2) Ifq1 � q2, there exist (1, (2 2 cl? Progwith E�C(q2,D2, (1, (2) = ? yet E�C(q1,D1, (1, (2) = f1
for some hole substitution f1 2 ⌃.

P����.

(1) We must have D2 (q2 ((1),q2 ((2)) = f2, so*2 (q2 ((1),q2 ((2),f2). Therefore,

((1, (2) 2 F (Ker* 2 q2)  F (Ker* 1 q1),

so there exists some f1 2 ⌃ such that*1 (q1 ((1),q1 ((1),f1); the result follows from the fact
that D1 is an inference algorithm.

(2) We can take any ((1, (2) 2 F (Ker* 1 q1) \ F (Ker* 2 q2), which must be nonempty because
the re�nement is strict. ⇤

T������ 5.3. Let q be a canonicalization function for a hole-free language L with respect to* ,
D be an inference algorithm for * , E��� be an enumerator LibL , and % be a program in ProgL . If
Algorithm 3 terminates, it returns a component sketch (2 cl? LibL and hole substitution f such that
Jf(KL = J%KL .

P����. If Algorithm 3 returns ((,f), then E�C(q,D, %, () = f , so we have J(KL? ⌘f
L J%KL?

by Theorem 4.15. Hence, Jf(K = Jf%K = J%K, where the second equality holds because L is
hole-free. ⇤

Equivalence by Canonicalization for Synthesis-Backed Refactoring

C COBBLER’S LIBRARY COMPONENTS
We chose the components to include in C������’s library based on C������ s empirical performance
on the training set (and not the test set).

For CBR�E��, we include the following 17 components mostly from the standard library:5

(1) Basics.or (||)
(2) Basics.and (&&)
(3) Basics.not

(4) Maybe.map

(5) Maybe.withDefault

(6) Result.map

(7) Result.mapError

(8) Result.withDefault

(9) List.append

(10) List.map

(11) List.filter

(12) List.concat

(13) List.any

(14) List.head

(15) List.tail

(16) List.find (not present in Elm standard library)
(17) List.findMap (not present in Elm standard library)

For CBR�P�����, we include the following 21 NumPy components:

(1) np.sum

(2) np.prod

(3) Filtering (e.g. x[x > 0])

(4) np.multiply

(5) np.divide

(6) np.add

(7) np.subtract

(8) np.power

(9) np.equal

(10) np.not_equal

(11) np.full

(12) np.greater

(13) np.greater_equal

(14) np.less

(15) np.less_equal

(16) np.where

(17) np.roll

(18) np.convolve (with “valid” option)
(19) np.random.randint (with “size” argument)
(20) np.arange

(21) np.copy

As mentioned in Section 6.2, we also include two additional functions for CBR�P����� we call
cosmetic (list and np.vectorize), which do not provide any performance bene�ts but can expose
opportunities to apply other functions.

5https://package.elm-lang.org/packages/elm/core/latest/

https://package.elm-lang.org/packages/elm/core/latest/

